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Abstract
The diversity of plant neighbors commonly results in direct, bottom-up effects on 
herbivore ability to locate their host, and in indirect effects on herbivores involving 
changes in plant traits and a top-down control by their enemies. Yet, the relative 
contribution of bottom-up and top-down forces remains poorly understood. We also 
lack knowledge on the effect of abiotic constraints such as summer drought on the 
strength and direction of these effects. We measured leaf damage on pedunculate 
oak (Quercus robur), alone or associated with birch, pine or both in a long-term tree 
diversity experiment (ORPHEE), where half of the plots were irrigated while the 
other half remained without irrigation and received only rainfall. We tested three 
mechanisms likely to explain the effects of oak neighbors on herbivory: (1) Direct 
bottom-up effects of heterospecific neighbors on oak accessibility to herbivores, (2) 
indirect bottom-up effects of neighbors on the expression of leaf traits, and (3) top-
down control of herbivores by predators. Insect herbivory increased during the 
growth season but was independent of neighbor identity and irrigation. Specific leaf 
area, leaf toughness, and thickness varied with neighbor identity while leaf dry mat-
ter content or C:N ratio did not. When summarized in a principal component analysis 
(PCA), neighbor identity explained 87% of variability in leaf traits. PCA axes partially 
predicted herbivory. Despite greater rates of attack on dummy caterpillars in irri-
gated plots, avian predation, and insect herbivory remained unrelated. Our study 
suggests that neighbor identity can indirectly influence insect herbivory in mixed 
forests by modifying leaf traits. However, we found only partial evidence for these 
trait-mediated effects and suggest that more attention should be paid to some un-
measured plant traits such as secondary metabolites, including volatile organic com-
pounds, to better anticipate the effects of climate change on plant-insect interactions 
in the future.
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1  | INTRODUCTION

Plant diversity is a key driver of insect herbivory in grassland, agri-
cultural, and forest ecosystems (Allan et al., 2013; Broad, Schellhorn, 
Lisson, & Mendham, 2008; Castagneyrol et al., 2014), because het-
erospecific neighbors may either decrease (associational resistance) 
or increase (associational susceptibility) the likelihood of focal plants 
being attacked by insect herbivores (Barbosa et al., 2009; Root, 1973; 
Tahvanainen & Root, 1972; White & Whitham, 2000). Several reviews 
and meta-analyses suggest that associational resistance is the most 
common pattern (Andow, 1991; Barbosa et al., 2009), particularly in 
forest ecosystems (Castagneyrol et al., 2014; Jactel & Brockerhoff, 
2007). However, despite the large body of evidence on associational 
effects (Moreira et al., 2016; Underwood, Inouye, & Hambäck, 2014), 
gaps in our understanding of underlying mechanisms hinder the devel-
opment of a predictive framework of herbivore responses to tree di-
versity. In addition, due to the rising threats to forests that result from 
climate change, like more severe or frequent outbreaks of pest insects 
(Logan, Régnière, & Powell, 2003), it is critical to better evaluate the 
relative contribution of factors responsible for associational resistance 
or susceptibility under contrasting abiotic constraints.

Associational effects depend on the identity of heterospecific 
neighbors, both directly through bottom-up effects on focal host ac-
cessibility (e.g., Castagneyrol, Giffard, Péré, & Jactel, 2013) and indi-
rectly through changes in focal host quality (e.g., Kos, Bukovinszky, 
Mulder, & Bezemer, 2015; Kostenko, Mulder, Courbois, & Bezemer, 
2016; Mraja, Unsicker, Reichelt, Gershenzon, & Roscher, 2011) and 
top-down control of herbivore populations by predators (e.g., Muiruri 
et al. 2015). However, the relative importance of top-down and bot-
tom-up effects remains unclear, in particular because few studies to 
date addressed them simultaneously (Abdala-Roberts et al., 2016; 
Moreira, Mooney, Zas, & Sampedro, 2012).

Three alternative mechanisms have been proposed to explain 
associational resistance. First, associational resistance has been pro-
posed to result primarily from a reduced ability of herbivores to locate 
and reach their host plants among heterospecific neighbors. This may 
be due to patches with greater plant diversity being less attractive 
than monospecific patches (i.e., the resource concentration hypothe-
sis, Root, 1973; Andersson, Löfstedt, & Hambäck, 2013) or from het-
erospecific neighbors reducing the physical (Castagneyrol et al., 2013; 
Damien et al., 2016; Floater & Zalucki, 2000) or chemical (Jactel, 
Birgersson, Andersson, & Schlyter, 2011; Zhang & Schlyter, 2004) ap-
parency of host plants. Alternatively, the attractant-decoy hypothesis 
predicts that herbivores can be diverted from a given plant and aggre-
gate on more apparent, more attractive, or more palatable neighbors 
(Atsatt & O’Dowd, 1976; Hahn & Orrock, 2016).

Second, heterospecific neighbors may affect insect herbivory on a 
focal plant through changes in host food quality, although this is less 
well documented (but see, e.g., Walter et al., 2011; Kos et al., 2015). 
Because the amount of insect herbivory depends on plant traits such 
as leaf toughness, water content, C:N ratio, and secondary metabolites 
(Loranger et al., 2013; Moreira, Abdala-Roberts, Parra-Tabla, & Mooney, 
2014; Pearse, 2011), any biotic or abiotic factor affecting the expression 

of these plant traits may also affect herbivores. For instance, competi-
tion or facilitation among the focal plant and its neighbors may change 
the nutritional value of the host plant tissues (Kos et al., 2015; Schädler, 
Brandl, & Haase, 2007; Walter et al., 2011) or its production of second-
ary metabolites to defend against herbivores (Moreira et al., 2014).

Third, the enemies’ hypothesis posits that predators and parasit-
oids of herbivores are more abundant and diverse in species-rich plant 
communities (Elton, 1958; Root, 1973; Schuldt et al., 2011; Straub 
et al., 2014). Associational resistance may therefore also result from an 
enhanced top-down control of herbivores by predation or parasitism 
in species-rich plant communities (Riihimäki, Kaitaniemi, Koricheva, 
& Vehviläinen, 2004). Besides its effect on abundance and richness 
of enemies, plant diversity may indirectly influence the strength of 
herbivory suppression by predators. For instance, greater predation 
is expected when herbivores are more exposed to their enemies as 
they spend more time foraging for less accessible resource (Straub 
et al., 2014). Plant diversity may also modify the magnitude of top-
down effects by altering the proportion of generalist versus specialist 
herbivores because herbivore communities dominated by generalist 
herbivores are more sensitive to predation (Singer et al., 2014).

The strength and direction of plant-herbivores-enemies (predators 
or parasitoids) interactions is expected to change along environmen-
tal gradients (Bauerfeind & Fischer, 2013; Péré, Jactel, & Kenis, 2013; 
Rodríguez-Castañeda, 2013; Walter et al., 2011). Rooted in the plant 
stress hypothesis (White, 1974) that predicts increasing plant sus-
ceptibility to herbivores with higher water stress, several studies sug-
gest that drought favors leaf-feeding herbivores and reduces damage 
caused by sap-feeders (Huberty & Denno, 2004; Jactel et al., 2012). In 
particular, drought might affect the palatability of plant tissues, nota-
bly through change in carbohydrate content and C:N ratio (Jactel et al., 
2012; Walter et al., 2011). In addition to changes in leaf traits interfer-
ing with plant quality, drought may also indirectly affect herbivory by 
modifying predator attraction (Aslam, Johnson, & Karley, 2013; Staley 
et al., 2006; Weldegergis, Zhu, Poelman, & Dicke, 2015). Yet, although 
underlying mechanisms remain unclear, it is increasingly acknowledged 
that neighbors can also modify plant’s response to drought (Forrester, 
Theiveyanathan, Collopy, & Marcar, 2010; Grossiord et al., 2014). Insect 
herbivory may therefore be affected by both plant diversity and water 
stress, as well as their potential interacting effects (Walter et al., 2011).

Experimental evidence that plant neighborhood mediates the ef-
fect of water stress on herbivores and their enemies—or the opposite—
is still lacking given the difficulties to control for both the composition 
of tree neighborhood and climatic variables. In this study, we searched 
for mechanisms responsible for associational effects under contrasting 
abiotic conditions. We measured insect herbivory as the percentage 
of defoliation by chewing herbivores on pedunculate oak (Quercus 
robur) in a tree diversity experiment with a factorial design crossing 
the identity of their neighbors (homospecific vs. heterospecific) with 
an irrigation treatment (rainfall only vs. rainfall plus irrigation). We 
specifically addressed mechanisms underlying neighbors and drought 
effects on insect herbivory. We predicted that: (1) herbivory is greater 
in tree monocultures where individual oaks are more apparent than in 
tree mixtures where they are protected by taller nonoak neighbors, (2) 
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tree neighbors indirectly mediate the expression of traits involved in 
herbivore-oak interaction; (3) heterospecific neighbors increase top-
down predation by natural enemies, and (4) water stress changes the 
strength of top-down and bottom-up processes. Overall, this study 
addresses how drought indirectly mediates tree neighbor effects on 
insect herbivory via changes in leaf traits and top-down control by her-
bivores’ enemies. We provide partial support to the hypothesis of indi-
rect, bottom-up, effect of tree species diversity on herbivory through 
changes in leaf traits, regardless of drought.

2  | MATERIALS AND METHODS

2.1 | Ethics statement

This study did not involve manipulations of humans or animals. No 
specific permissions were required for our field work. The study did 
not involve endangered or protected species.

2.2 | The ORPHEE experiment

This study was carried out in the ORPHEE experiment in SW France 
(44°440 N, 00°460 W). The design has been fully described in 
Castagneyrol et al. (2013), and we will thus only provide here a brief 
overview. In 2008, eight blocks were established covering 12 ha, with 
32 plots in every block corresponding to the 31 possible combinations 
of one to five tree species (Betula pendula, Quercus robur, Q. pyrenaica, 
Q. ilex, and Pinus pinaster) with an additional replicate of the five-species 
plot. Each plot contained 10 rows of 10 trees planted 2 m apart (100 
trees). Tree species mixtures were established according to a substi-
tutive design, keeping tree density and the identity of tree neighbors 
equal across plots. Within plots, individual trees from different species 
were planted in a regular alternate pattern, such that a tree from a given 
species had at least one neighbor from each of the other species within 
a 2-m radius (Fig. S1 and www.facebook.com/orpheeexperiment).

In this study, we focused on a subsample of plots to reconstruct 
a tree diversity gradient spanning from the monoculture of peduncu-
late oak, the two-two-species mixtures associating oak with pine or 
birch, and the three-species mixtures of oak, birch, and pine, for a total 
of four compositions. These plots were chosen in order (1) to span 
a gradient of oak apparency by increasing the number of neighbors 
taller than oaks (i.e., high apparency in monocultures, intermediate 
apparency in oak-birch and oak-pine mixtures and low apparency in 
oak-birch-pine mixtures, Castagneyrol et al., 2013) and (2) to contrast 
functional diversity by associating oak with a broadleaved or a conifer 
species. Within the selected 32 plots (4 plots × 8 blocks), we sampled 
at random six individual trees of the 36 innermost trees of each plot, 
for a total of 192 sampled oaks.

In 2015, half of the blocks were irrigated (Fig. S2). Irrigation con-
sisted in sprinkling ca 42 m³ per night and per block from early May to 
late September, corresponding to ca 3 mm/day per plot. This volume 
was calculated based on regional climatic data (evapotranspiration) 
and was assumed to avoid any soil water deficit in the irrigated blocks 
during the entire growing season.

2.3 | Insect herbivory

Insect herbivory was assessed twice to test for a season effect, in early 
June and early August 2015 by visual inspection of 30 leaves per sam-
pled oak (Johnson, Bertrand, & Turcotte, 2016). Three branches were 
selected at the top, middle, and bottom of each tree. Five leaves were 
then randomly chosen at the tip, and five at the basis of each branch. 
The percentage of leaf area removed (LAR) by insect defoliators (chew-
ers and skeletonizers) was estimated on each sampled leaf by a unique 
observer all along the experiment (BC) using seven classes (0%, 1%–5%, 
6%–15%, 16%–25%, 26%–50%, 51%–75% and >75% LAR) and then 
averaged per sampled tree using the midpoint of each damage class.

2.4 | Leaf traits

We measured five leaf traits known to significantly influence insect 
herbivory: specific leaf area (SLA), leaf dry matter content (LDMC), 
leaf toughness and thickness, and leaf C:N ratio (e.g., Loranger et al., 
2013; Pearse, 2011).

Leaf traits may vary in response to the identity of oak neighbors, 
herbivory, or both. To avoid confounding the effect of tree species 
neighbors and insect herbivory on leaf traits, half of the sampled 
trees were sprayed every two weeks with a broad action spectrum 
insecticide (5% λ-cyhalothrin, KARATE®, Syngenta, diluted at 15 g/hl). 
Sprayed and unsprayed oaks were at least 4 m apart to reduce acci-
dental drift of insecticide onto control oaks.

In June 2015, we randomly collected six sunlit, mature, and fully ex-
panded leaves from the top part of the canopy on each target oak (n = 6 
per plot, for a total of 192 trees), stored them in zipped plastic bags and 
immediately put them into a cool box. In order to standardize trait mea-
surements, leaves were rehydrated for 48 hr (Pérez-Harguindeguy et al., 
2013) and then scanned and weighted individually. Leaf toughness was 
assessed as the resistance to piercing, with six measurements per leaf. 
Measurements were conducted with a dial tension gauge model with 
peak hold (Mitutoyo Messgeräte Leonberg GmbH, Leonberg, Germany). 
Leaves were then dried until constant weight (at least 48 hr at 60°C) 
and weighted again to obtain LDMC (mg/g) and SLA (cm2/g). Leaf 
thickness was derived from SLA and LDMC (Pérez-Harguindeguy et al., 
2013). In early August 2015, we again collected six leaves per tree as 
explained above. Leaves were dried and then bulked for each tree and 
finely grinded. Leaf carbon isotope composition (δ13C, per mil), foliar 
carbon (C%, %), and nitrogen (N%, %) contents were measured on these 
bulked samples. Isotope and elementary analyses were performed at 
the INRA Nancy Technical Facility of Functional Ecology (OC 081) with 
an EA/GA-IRMS (Carlo Erba, Elementar, Finnigan, Isoprime, Bremen, 
Germany). C% and N% were used to calculate C:N ratios. Together with 
the punctual measurement of leaf water potential (see below), δ13C was 
used to confirm that irrigation actually alleviated water stress.

2.5 | Tree water status

To assess the effectiveness of irrigation at alleviating water stress, we 
compared tree water status of oak trees by measuring predawn leaf 

http://www.facebook.com/orpheeexperiment
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water potential (ψw) in early August 2015 on 1–3 oaks per plot. ψw 
is used as a proxy of the spatially integrated water potential of the 
soil explored by roots. We used a Scholander-type pressure chamber 
(model 1000; PMS Instruments, Corvalis, OR) to measure Ψw on one 
leaf per oak tree. Leaves were sampled between 4:30 and 6.30 a.m. 
local time (before sunrise) with clippers.

2.6 | Insectivory

Total and avian insect predation rates were assessed using a standard-
ized method (e.g., Barbaro et al., 2014; Mäntylä et al., 2008; Muiruri, 
Rainio, & Koricheva, 2016). We modeled 2-cm-long dummy caterpil-
lars made with green modeling clay to mimic larvae of locally abundant 
moth species, notably Geometridae and Noctuidae. Dummy caterpil-
lars were secured on oak branches with a thin metallic wire. Three to 
six oaks were randomly selected at the center of each sampled plot. 
We installed three caterpillars per oak, at the tip of three different 
branches at ca 1.5 m from the ground. Insectivory was assessed twice, 
after 3 and 6 weeks of exposure (June 9–10 and July 2) by counting the 
number of lures showing obvious beak (birds), teeth (micro-mammals), 
and mandibles (arthropods) marks per individual tree.

2.7 | Analyses

Irrigation being applied at the block level (i.e., whole plot), the ORPHEE 
experiment is a split-plot experiment which requires adapting the cal-
culation of degrees of freedom and mean sum of squares of residu-
als. This was achieved using linear mixed effect models (LMM), with 
Block and Block × Irrigation as random factors (1|Block:Irrigation in R 
syntax). Herbivory and leaf trait data were analyzed at the tree level. 
Nonindependence of individual oaks within plots was accounted for 
by defining plot as a random factor, nested within blocks (Schielzeth & 
Nakagawa, 2013). For each test, we first built a full model including all 
fixed effects and their interactions (see details for each response vari-
able below). The full model was then simplified by sequentially drop-
ping nonsignificant terms, starting with highest-order interactions. 
Model parameters were finally estimated on the most parsimonious 
model obtained using restricted maximum likelihood (REML).

2.8 | Leaf traits

Leaf traits were measured on all trees, insect damage might trigger 
induced defenses modifying leaf traits. To test the direct, independ-
ent effect of oak neighbor identity (here after “‘Neighbors”) on leaf 
traits, we limited the analysis of tree diversity on leaf traits to insec-
ticide sprayed trees. The insecticide treatment reduced herbivory by 
ca 33% in spring (Kruskal-Wallis test: χ² = 40, p < .0001) and 45% in 
summer (Kruskal-Wallis test: χ² = 50, p < .0001). Traits were analyzed 
individually, using the same LMM modeling approach, with Irrigation, 
Neighbors, and their interaction as fixed effects.

Then, we tested whether oak leaf traits could account for variability 
in herbivory. We conducted a principal component analysis (PCA) on 
traits measured on unsprayed trees and extracted coordinates on the 

two-first PCA axes (PC1 and PC2, respectively) that together explained 
88% of variability in leaf traits. We used LMM (see above) to test whether 
PC1 and PC2 were explained by Irrigation, Neighbors, or their interaction.

2.9 | Insect herbivory

Only unsprayed trees were included in this set of analyses. We first 
tested the effect of oak neighbors and irrigation on insect herbivory 
using the same approach as for traits. Fixed effects were Season, 
Neighbors, and Irrigation, and all interactions. Because herbivory was 
assessed twice on the same individual oaks, we added tree identity as 
a random factor, nested within Block and Plot factors, to account for 
repeated measurements.

We then tested whether the effect of neighbors could be ac-
counted for through changes in leaf traits measured on the same trees 
or predation pressure at the plot scale (i.e., proportion of attacked 
caterpillars pooled across the two surveys). Traits and Predation were 
included into the model as fixed effects, together with Irrigation and 
Neighbor factors and Neighbors × Irrigation interactions. Because trait 
values may have changed during the course of the season, and because 
predation was only assessed in early summer, we tested the effects of 
SLA, LDMC, leaf toughness, thickness, and predation on early season 
herbivory, and the effect of C:N on late season herbivory, separately. 
Given that both leaf traits and predation rates might have been influ-
enced by irrigation and neighbor identity, this approach allows testing 
whether some residual variance can still be explained by plot-level 
factors (i.e., Irrigation and Neighbors) when accounting for traits and 
predation, and conversely. We expected that, should herbivory be bet-
ter explained by leaf traits or predation than by irrigation or neighbor 
identity, significant effects of any of these factors (or their interaction) 
would become nonsignificant once traits and predation are accounted 
for. Conversely, should irrigation or neighbor identity effects remain 
significant after including leaf traits and predation, this would suggest 
that irrigation and neighbor identity influence herbivory through other 
unmeasured plant traits or unknown natural enemies (e.g., parasitoids).

Finally, we summarized the univariate effects of all individual traits 
using coordinates on the two PCA axes and followed the same ap-
proach to model insect herbivory as a function of PC1, PC2, Irrigation, 
Neighbors, PC1 × PC2, and Irrigation × Neighbors interactions. We then 
applied the same simplification procedure as explained above.

2.10 | Insectivory

We analyzed predation rates using generalized LMM (GLMM), with 
binomial error and logit link. The response variable was the number 
of attacked versus nonattacked dummy caterpillars per tree. We 
modeled separately the response of total predation (i.e., all predators 
combined, including birds, small rodents, and arthropods) and avian 
predation only to neighbor identity and irrigation.

For every model, conditions of application were visually checked 
and the response variable was log-transformed whenever necessary. 
All analyses were conducted in R (R Core Team, 2016) using the lmerT-
est and ade4 libraries.
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3  | RESULTS

3.1 | Effects of irrigation and neighbors on water 
stress in oaks

Predawn leaf water potential of oaks (ψw) was significantly lower 
(F = 35.13, p < .0001) in blocks receiving only rainfall (−0.37 MPa) 
than in irrigated blocks (−0.19 MPa), confirming the effectiveness of 
the irrigation treatment (Fig. S1). There was a significant effect of plot 
composition on ψw in oaks (F = 4.14, p = .017), with lower ψw in nonir-
rigated plots containing pines (Fig. S1). Consistently, δ13C was greater 
in the mixture with pine as compared to the two other mixtures and 
monocultures, thus confirming the greater water stress of oaks in 
two- and three-species mixtures including pine (Figure 2).

3.2 | Effects of irrigation and oak neighbor identity 
on insect herbivory

On average (±SE), insect herbivory on unsprayed trees was twice 
as high in summer compared to spring (16.7 ± 1.0 in summer and 
8.7 ± 0.6% leaf area damaged in spring, respectively, F(1,92.4) = 78.72, 
p < .001, Figure 1a).

Insect herbivory did not vary with the identity of oak neigh-
bors (F(3, 85.1) = 0.60, p = .617, Figure 1b), regardless of the season 
(Neighbors × Season: F(3,89.8) = 1.58, p = .201).

The effect of irrigation was not significant (F(1,6.0) = 0.01, p = .913), 
neither separately nor in interaction with the season (F(1,88.8) = 0.50, 
p = .479) nor with oak neighbor identity (F(3,81.9) = 0.72, p = .543). The 
simplified model only retained the season as predictor and explained 
21% of variability in herbivory (R2

m = 0.21, R2
c = 0.49).

3.3 | Effects of irrigation and neighbor identity on 
oak leaf traits

In sprayed oak trees, SLA, leaf toughness, and leaf thickness signifi-
cantly varied with oak neighbor identity (Figure 2), but none was influ-
enced by irrigation or Irrigation × Neighbor interaction (Table 1). SLA 
was higher in plots where oak was associated with pine (two- and 
three-species mixtures). Toughness was lower in plots where pine was 

present (two- and three-species mixtures). Thickness was higher in 
monocultures than in mixed plots. There was no significant effect of 
oak neighbor identity on LDMC or C:N.

The first and second axes of the principal component analysis ex-
plained 64.3% (PC1) and 23.5% (PC2) of variability in leaf traits, re-
spectively. PC1 was driven by SLA, thickness, and toughness, positive 
values being associated with large, thin, and soft leaves (Figure 3a). 
PC2 was driven by water content, positive values being associated 
with high LDMC, that is, low water content (Figure 3a). There was a 
significant effect of oak neighbors on PC1, which was independent of 
irrigation (Table 1). Oak leaf traits were not significantly different be-
tween monocultures and oak-birch mixtures, but with two- and three-
species mixtures containing pine (Figure 3b). There was no effect of 
neighbors or irrigation on PC2.

3.4 | Effects of irrigation and oak neighbors 
on predation

Overall, the predation rate of dummy caterpillars averaged across 
predator identity, plots, and dates was 12.7 ± 1.7%. Among the 110 
lures displaying obvious predator marks (of 1,359 observations), 70.9% 
were attributed to birds (Figure 4). Attacks by small rodents (16.4%) 
and arthropods (12.7%) were too scarce and unevenly distributed 
to be analyzed separately. Insectivory was thus analyzed first for all 
predators and then for birds only. Overall, total insectivory was higher 
in irrigated than in rainfall only plots (χ² = 4.62, p = .032, Figure 4). 
Differences in predation rates among plots with different tree species 
composition were not significant (χ² = 1.89, p = .596, Figure 4). There 
was no difference between the two surveys (χ² = 0.12, p = .728), and 
results were identical when only bird insectivory was considered. 
There was no correlation between the proportion of predated dummy 
caterpillars and the percentage of leaf area removed by herbivores, 
neither at the tree (Pearson’s r = −0.04, p = .814) nor at the plot scale 
(Pearson’s r = 0.13, p = .100).

3.5 | Effects of oak leaf traits on insect herbivory

When considered individually, none of the leaf traits measured in early 
season (i.e., SLA, thickness, toughness, LDMC) on unsprayed oak trees 

F IGURE  1 Effects of season (a) and 
tree species composition (b) on herbivory 
(% Leaf Area Removed—%LAR). Rainfall 
only and irrigated plots are combined. 
Boxes indicate the lower and upper 
quartiles. Thick horizontal lines and dots 
represent the median and the mean, 
respectively. Different letters above 
boxes indicate significant differences. 
n indicates sample size. Qr, Quercus 
robur; QrBp, Q. robur + Betula pendula; 
QrPp, Q. robur + Pinus pinaster; QrBpPp, 
Q. robur + B. pendula + P. pinaster
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had a significant effect on insect herbivory (Table S1). Insectivory had 
no effect on herbivory neither (Table S1). While individually, the meas-
ured traits failed to explain variability in insect herbivory, there was a 
significant effect of PC1 × PC2 interaction on early season herbivory 
(F(1,57.6) = 5.30, p = .025). Although main effects of PC1 and PC2 were 

not significant, model parameter estimates were positive for PC1 
(0.08 ± 0.09) and negative for PC2 (−0.11 ± .16). Furthermore, the sig-
nificant interaction between PC1 and PC2 had a positive parameter 
estimate (model parameter estimate ± SE: 0.20 ± 0.09) which indicates 
that herbivory tended to increase more along PC1 axis (i.e., with larger, 

F IGURE  2 Effects of tree species composition on oak leaf traits. (a) Specific leaf area, (b) leaf dry matter content, (c) leaf toughness, (d) leaf 
thickness, (e) leaf δ13C (×−1), (f) Leaf C:N. Data were summarized across all blocks, regardless of irrigation. Traits were compared in trees sprayed 
with insecticide such that differences in leaf traits are independent of any herbivory effect. Boxes indicate the lower and upper quartiles. Thick 
horizontal lines and dots represent the median and the mean, respectively. Same letters above bars indicate nonsignificant differences. Number 
within brackets below boxes indicates sample size. Qr, Quercus robur; QrBp, Q. robur + Betula pendula; QrPp, Q. robur + Pinus pinaster; QrBpPp, 
Q. robur + B. pendula + P. pinaster
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thinner, and smoother leaves) when PC2 values were high (i.e., leaves 
with a low water content) and conversely (Figure 5a). These results 
indicate that altogether, leaf trait variation can significantly contribute 
to explain insect herbivory, although the final model explained only a 

small fraction (8%) of variability in early season herbivory (R2
m = 0.08, 

R2
c = 0.25).

In late season, insect herbivory significantly decreased with the 
C:N ratio of oak leaves (F(1,66.5) = 4.53, p = .037, Figure 5b), irrespective 

Trait Predictors F value (df) p value R2m (R2c)

SLA Neighbors 4.20 (3, 20.73) .018 0.12 (0.29)

Irrigation 0.01 (1, 7.36) .91

Neighbors × irrigation 1.37 (3, 18.04) .283

LDMC Neighbors 1.77 (3, 20.26) .185 – (0.30)

Irrigation 0.01 (1, 6.49) .916

Neighbors × irrigation 2.81(3, 17.21) .07

Toughness Neighbors 5.08 (3, 81.66) .003 0.05 (0.70)

Irrigation 0.19 (1, 8.00) .672

Neighbors × irrigation 0.45 (3, 78.50) .715

Thickness Neighbors 13.21 (3, 81.91) <.0001 0.22 (0.56)

Irrigation 0.02 (1, 7.44) .901

Neighbors × irrigation 0.46 (3, 78.63) .711

δ13C Neighbors 14.97 (3, 18.71) <.0001 0.35 (0.62)

Irrigation 4.65 (1, 5.93) .075

Neighbors × Irrigation 0.64 (3, 15.46) .6

C:N Neighbors 0.49 (3, 19.16) .695 −(0.34)

Irrigation 0.02 (1, 6.18) .884

Neighbors × irrigation 0.65 (3, 17.04) .591

PC1 Neighbors 13.17 (3, 19.32) .0001 0.34 (0.65)

Irrigation 0.11 (1, 5.86) .748

Neighbors × irrigation 1.49 (3,15.30) .256

PC2 Neighbors 0.90 (3, 57.80) .0447 −(0.38)

Irrigation 0.07 (1, 6.00) .794

Neighbors × irrigation 0.07 (3, 54.70) .978

Marginal (R2
m) and conditional (R2

c) R
2 were calculated for the simplified model. They correspond to the 

variance explained by fixed and fixed plus random factors, respectively.
Bold values indicate significant effects (P < 0.05).

TABLE  1 Summary of LMM testing the 
effects of oak neighbor identity and block 
irrigation on oak leaf traits

F IGURE  3 Principal Components Analysis of leaf traits. (a) Correlation circle showing correlations among leaf traits (SLA: specific leaf area; 
LDMC: leaf dry matter content) and between leaf traits and PCA axes. (b-c) Projections of individual trees on PCA axes according to (b) tree 
species composition and (c) irrigation treatment. Qr, Quercus robur; QrBp, Q. robur + Betula pendula; QrPp, Q. robur + Pinus pinaster; QrBpPp, 
Q. robur + B. pendula + P. pinaster
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of irrigation (Irrigation: F(1,29.4) = 1.38, p = .249; Irrigation × C:N: 
F(1,62.6) = 0.70, p = .405). C:N ratio, however, only explained 6% of vari-
ability in late season herbivory (R2

m = 0.06, R2
c = 0.19).

4  | DISCUSSION

Contrary to our expectations (i.e., associational effects in presence of 
heterospecific neighbors), insect herbivory on oak was not influenced 
by oak neighbor identity. Insect herbivory was, however, partially in-
fluenced by leaf traits, which responded to the identity of oak neigh-
bors. Despite higher predation in irrigated plots, water stress had no 
direct or indirect effect on insect herbivory.

4.1 | Oak neighbor identity had weak indirect trait-
mediated effects on insect herbivory

Contrary to previous studies reporting an effect of tree composi-
tion or diversity on insect herbivores associated with oaks (Alalouni, 
Brandl, Auge, & Schädler, 2014; Castagneyrol et al., 2013; Setiawan 
et al., 2014), we observed no difference in insect herbivory among 
different neighbor identities. Two main mechanisms have been 
proposed to explain why herbivory should vary with the compo-
sition of forests: (1) The probability of a tree being colonized by 
herbivores (i.e., its apparency, frequency, and concentration) may 
depend on the diversity and identity of its neighbors (Barbosa et al., 
2009; Castagneyrol et al., 2013; Hambäck, Inouye, Andersson, & 
Underwood, 2014; Setiawan et al., 2016) and (2) the abundance and 
activity of herbivore enemies may change with forest composition 
and structure (Muiruri et al., 2016; Riihimäki et al., 2004; Schuldt 
et al., 2011). Our results support neither of these. Oak apparency, 
frequency, and concentration (i.e., oak accessibility) were consist-
ently low in all mixtures as compared to monocultures, and yet, they 
did not receive lower herbivory in the presence of taller birches or 
pines (Castagneyrol et al., 2013). It is unlikely that the effects of 
greater apparency on herbivore recruitment were compensated by 
higher predation rates in oak monocultures, as predation remained 
unaffected by oak neighbor identity.

Here, we additionally investigate a third, complementary hy-
pothesis, where (3) oak neighbor identity could modify leaf traits in-
volved in tree-herbivore interactions (Halpern, Bednar, Chisholm, & 

Underwood, 2014; Kos et al., 2015). Our results partially support this 
hypothesis.

4.1.1 | Oak leaf traits varied with oak 
neighbor identity

The main differences in oak leaf traits were detected between oak 
monocultures and mixtures (Figure 2), in particular between mono-
cultures and oak-pine mixtures. In the ORPHEE experiment, in 
2015, oaks (mean height ± SE: 110.0 ± 0.8 cm) were much smaller 
than birches (510.0 ± 2.0 cm) and pines (563.0 ± 1.5 cm) (Damien 
et al., 2016). The total amount of light received by oaks was thus 
likely reduced in mixed plots where oaks were dominated by pines 
and birches. Although we did not quantify light interception by 
dominant species, this is consistent with the observed differences 
in SLA, toughness, δ13C, and thickness among treatments (Figure 2). 
Higher SLA, more negative δ13C values, and lower leaf thickness 
and toughness, as observed in mixtures, are indeed typical re-
sponse patterns to more shaded conditions (Pérez-Harguindeguy 
et al., 2013). Furthermore, differences in leaf traits between oak 
monocultures and oak-pine mixtures were clearly shown on the 
first PCA axes (Figure 3) while leaf traits in oak-birch mixtures 
were more similar to leaf traits in monocultures. Given the canopy 
shape and foliar content of birch and pine trees, one can hypoth-
esize that even though the two species have similar mean heights, 
solar radiation is more intercepted by pine trees (which are more 
opaque). Light could thus be one factor controlling leaf traits of 
oaks growing below the canopy of taller neighbors, but it was prob-
ably not the only one. Furthermore, our results do not support the 
hypothesis that variability in leaf traits among plots with different 
specific compositions was driven by differential response to water 
stress (Walter et al., 2011; Forey et al., 2016) as irrigation had no 
effect on leaf traits, neither in univariate nor in multivariate analy-
ses. It must be acknowledged that we applied irrigation only few 
weeks before traits were measured, and it cannot be excluded that 
stronger effects will emerge in the future. Here, we can only spec-
ulate on the mechanisms responsible for such differences among 
mixtures, but it is likely that litter composition or understory veg-
etation differentially also affected oak traits in monocultures and 
oak-birch or oak-pine mixtures (Nickmans, Verheyen, Guiz, Jonard, 
& Ponette, 2015).

F IGURE  4 Effects of block irrigation 
(a) and tree species composition (b) 
on predation (i.e., attacks of dummy 
caterpillars). ‘*’ indicates significant 
difference between treatments. Qr, Quercus 
robur; QrBp, Q. robur + Betula pendula; 
QrPp, Q. robur + Pinus pinaster; QrBpPp, 
Q. robur + B. pendula + P. pinaster Rainfall only Irrigated
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4.1.2 | Leaf traits predicted only a limited fraction of 
insect herbivory

As oak neighbor identity affected variability in oak leaf traits, we ex-
pected that particular traits might be the functional link between oak 

neighbor identity and herbivory. This would have been in accordance 
with recent work showing trait-mediated effects of heterospecific 
plant neighbors on insect herbivores and herbivory (Halpern et al., 
2014; Ohgushi & Hambäck, 2015; Kos et al., 2015; Kostenko et al. 
2017). Our results weakly support this prediction. Indeed, only leaf 
C:N ratio had an effect on herbivory (Figure 5), yet this trait did not 
vary with oak neighbor identity (Figure 2). Individually, none of the 
other traits measured in early season had a significant effect on her-
bivory. However, traits may have had a combined effect on herbivory 
as suggested by the multivariate analysis. This effect was, however, 
complex and explained only 8% of total variability in herbivory.

Although our results partially support the idea that tree species 
composition had indirect trait-mediated effects on overall insect 
herbivory, they should be considered with caution. Previous studies 
reported mixed evidence for such a relationship between plant diver-
sity, leaf traits, and herbivory (Moreira et al., 2014; Abdala-Roberts, 
2016; Kostenko et al. 2017). Here, because we measured total chew-
ing damage, we cannot dismiss the fact that the overall pattern ob-
scures species-specific variability in herbivore response to leaf traits 
(Heiermann & Schütz, 2008; Plath et al., 2011), which would deserve 
more investigation.

4.2 | Predation barely changed with oak 
neighbor identity

The enemies’ hypothesis posits that more species-rich forest plots 
should shelter a greater diversity or abundance of predators than 
monocultures, enhancing potential biological control of herbivores. 
In particular, mixing conifer and deciduous tree species at both for-
est stand and landscape scales is expected to increase insectivorous 
predator abundance (Charbonnier et al., 2016; Oxbrough, García-
Tejero, Spence, & O’Halloran, 2016), with cascading effects on pest 
control (Felton et al., 2016; Giffard, Barbaro, Jactel, & Corcket, 2013). 
Although the enemies’ hypothesis has received some empirical sup-
port in grasslands and agro-ecosystems (Andow, 1991; Langellotto 
& Denno, 2004; Letourneau et al., 2011; Scherber et al., 2010), its 
validity for forest is still debated (Letourneau, Jedlicka, Bothwell, & 
Moreno, 2009; Muiruri et al., 2016; Riihimäki et al., 2004; Schuldt 
et al., 2011). In addition, it must be noticed that the use of dummy 
caterpillars underestimates the importance of top-down processes as 
it does not capture the effect of other natural enemies such as spiders 
or parasitoids which are known to, respectively, respond to struc-
tural and chemical complexity of their habitat (Kostenko et al., 2015; 
Langellotto & Denno, 2004).

4.3 | Irrigation had no direct effect on herbivory but 
indirectly changed predation

Although predawn leaf water potentials (ψw) and carbon isotope values 
(δ13C) confirmed that irrigation alleviated water stress, neither leaf traits nor 
insect herbivory was influenced by irrigation. However, water stress var-
ied among oaks with different neighbors as indicated by the more nega-
tive ψw and less negative δ13C in oak-pines mixtures, both indicating 

F IGURE  5 Effect of leaf traits on herbivory. (a) Interactive effects 
of PC1 and PC2 on herbivory. Gray scale colors represent herbivory 
(% leaf area removed—%LAR) predicted by GLMM retaining only 
PC1, PC2, and their interaction as predictors. Individual trees are 
plotted as in Figure 3b. Herbivory increased strongly with PC1 for 
high values of PC2, but decreased slightly with PC1 for low values 
on PC2. Herbivory increased along PC2 axis when PC1 values 
were high, while it decreased slightly for low values of PC1. (b) 
Effects of C:N ratio on late season herbivory. Dashed and solid 
regression lines are for irrigated and rainfall only blocks, respectively. 
Shaded area represent model SE. Qr, Quercus robur; QrBp, 
Q. robur + Betula pendula; QrPp, Q. robur + Pinus pinaster; QrBpPp, 
Q. robur + B. pendula + P. pinaster
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stronger water stress. This could be due to pines being much taller than 
oaks and exploiting a greater amount of water. Such an effect of inter-
specific competition for water may have been less pronounced with 
birches that lose leaves during summer, while pines kept their needles.

The lack of effect of irrigation on leaf traits and herbivory was 
unexpected, as the influence of drought on leaf functional traits has 
been known for decades (Chaves, Maroco, & Pereira, 2003). However, 
ψw in the rainfall only plots did not reach very negative values during 
the 2015 growing season. They remained above −0.5 MPa and the 
difference in ψw suggests that during the 2015 growing season, unir-
rigated trees were subject to low water stress. Yet, the response of 
herbivores may vary nonlinearly with stress intensity (Gutbrodt, Dorn, 
& Mody, 2011; Jactel et al., 2012). Therefore, we cannot exclude that 
the lack of effect of irrigation on leaf traits and herbivory was due to 
low drought intensity.

Moreover, irrigation started only a few weeks before trait measure-
ments. This period was enough to influence soil water availability in the 
rainfall only versus irrigation plots (as seen in ψw values, Fig. S1), but it 
may not have been long enough, and the soil water deficit may not have 
been severe enough, to significantly influence leaf morphological and 
physiological properties. This later assumption is also supported by the 
fact that many temperate Quercus species have preformed growth of 
shoots in buds (Fontaine et al., 2000): The organogenesis period for the 
first growth unit ranges approximately from August to October of the 
previous year (Fontaine et al., 2000), whereas the elongation periods 
range from March to September of the current year. The influence of 
changing environmental conditions in spring on Quercus leaf traits may 
have thus been lower than for species in which leaf organogenesis is 
directly occurring in spring. This explanation is also consistent with the 
fact that changes in herbivory-related leaf traits involving cell division 
and differentiation (such as those we measured: SLA, LDMC, tough-
ness) take longer than changes in leaf chemistry involving the produc-
tion of secondary metabolites (Herms & Mattson, 1992; Moreira et al., 
2014) and may contribute to explaining why we did not detect any 
significant effect of irrigation on leaf structural traits.

Predation was the only response variable that was influenced by 
drought, with greater predation in irrigated plots, especially by rodents 
and arthropods. This may result from understorey vegetation being 
denser and more stratified in irrigated plots (personal observations), 
potentially resulting in larger niche opportunities, higher prey avail-
ability, or lower top-down predation risk by apex predators (Figure 4a). 
Similar effects of structural complexity have been observed by Poch 
and Simonetti (2013) who detected higher predation rates in forest 
plantations with a more developed understorey. Further investigation 
will be needed to tease apart the potential direct effects of irrigation 
on herbivory and indirect effects mediated by predation.

5  | CONCLUSION

We did not find strong support to some of the most commonly pro-
posed hypotheses to explain herbivory patterns, notably the ap-
parency hypothesis. We found no clear support for the enemies’ 

hypothesis. We found only partial support for the emerging idea that 
associational effects could be mediated by change in leaf traits rel-
evant to insect herbivory. Although we could only speculate on the 
mechanisms linking tree species composition, variability in leaf traits, 
and herbivory, our results suggest that indirect trait-mediated effects 
(including secondary metabolites) will be a key aspect to consider in 
the future studies addressing associational effects of plant diversity 
on higher trophic levels.
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