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From pseudo to real-time dynamics
of T cell thymic differentiation

Avishai Gavish,1,* Benny Chain,2 Tomer M. Salame,3 Yaron E. Antebi,4 Shir Nevo,5 Shlomit Reich-Zeliger,5,6,7,*

and Nir Friedman5,6

SUMMARY

Numerous methods have recently emerged for ordering single cells along devel-
opmental trajectories. However, accurate depiction of developmental dynamics
can only be achieved after rescaling the trajectory according to the relative
time spent at each developmental point. We formulate a model which estimates
local cell densities and fluxes, and incorporates cell division and apoptosis rates,
to infer the real-time dimension of the developmental trajectory. We validate the
model using mathematical simulations and apply it to experimental high dimen-
sional cytometry data obtained from the mouse thymus to construct the true
time profile of the thymocyte developmental process. Our method can easily
be implemented in any of the existing tools for trajectory inference.

INTRODUCTION

Technological advancement in measuring expression profiles of multiple variables at single-cell resolution has

paved theway for the creation of newanalytical frameworks called trajectory inference. Basedon the similarity in

high dimensions, dozens ofmethods exist today that allow sorting cells along the temporal course of biological

processes.1–5 Techniques are constantly evolving to address systemsof growing complexity, aswhen cells bifur-

cate or when development proceeds in a tree-like topology. Recent studies have compared the strengths and

weaknesses of thesemethods to aid users to select themethod that best suits their data.6–8 However, trajectory

inference, also known as ‘‘pseudotime’’ analysis, can only capture the topology and sequence of the develop-

mental process. In order to capture the time dimension, incorporating the length of time spent by each cell

ineachdevelopmental stage, additional informationon thefluxeswithin thesystem (thenumberof cells entering

and leaving the compartments) is required. Several studies attempted todescribe true temporal dynamics using

some a-priori knowledge about the system,9 reconstruct the trajectory using experiments to infer some time-

points along it,10,11 or ignored cell division and cell death.12

A well-studied system for trajectory inference is the mouse thymus. Bone marrow hematopoietic progen-

itors migrate to the thymus, where they commit to the T-cell lineage and further mature into functional T

lymphocytes.6 T-cell development proceeds through a series of discrete phenotypic stages that are char-

acterized by the expression of several important membrane molecules, most notably CD4 and CD8. Thy-

mocytes initially express low CD4 and CD8 levels (CD4�CD8�) in the double-negative stage (DN). The DN

stage can be subdivided into four distinct phases (DN1 to DN4), each characterized by a different marker

expression profile.13–15 The cells gradually start to express higher levels of bothmolecules (CD4+CD8+) and

transition into the double-positive stage (DP). During the DP stage, cells massively proliferate and undergo

two selection processes: positive and negative. In the course of positive selection, only cells that recognize

MHC molecules by their T-cells receptors (TCR) survive, while cells that fail to do so die by neglect.16–22 In

the course of negative selection, cells that have high affinity to the MHC self-peptide complex undergo

apoptosis.22,23 At this point the developmental trajectory bifurcates toward one out of two single-positive

stages (SP), where some cells suppress their high CD8 levels while accumulating further CD4 (CD4+CD8�

CD3+), or vice versa (CD4�CD8+CD3+) (Figure 1A).7,8,14,15,24 During this maturation process, proliferation

and apoptosis occur at varying rates, while many more surface markers are upregulated or downregulated

upon the differentiating T-cells.8,22,24–27 Cell development and selection in the thymus play key roles in

shaping the adaptive immune system and maintaining self-tolerance.28–30

Here, we use mass cytometry (CyTOF) to measure high dimensional protein expression in thousands of unsyn-

chronized differentiating single-cells simultaneously. Data derived for each cell includes a comprehensive panel
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of surface marker levels, together with transcription factors and markers for cell-cycle stage and cell activation.

Using 127IDU-injected mice,31 we were able to infer division and apoptosis rates throughout the process.

Similar to previous pseudotime methods, we first formulate an intuitive model for sorting cells along a devel-

opmental axis.5,32 Our pseudotime orderingmethod emphasizes the importance of local cell densities, which is

a key concept in the consecutive step (however, our real-time method can be implemented directly on one of

the prevailing methods). Next, by incorporating compartment-specific proliferation and death rates, we cap-

ture quantitatively the flow of cells through the developmental process. In this way, we add a true time dimen-

sion to the basic developmental sequence and topology captured by previous approaches.

RESULTS

Trajectory inference in multidimensional data

The initial step is to order cells or segments of ‘‘similar’’ cells, according to chronological order along the

developmental course of events. To illustrate how this method works, we start by simulating an imaginary

Figure 1. Dimensionality reduction and segmentation

(A) Cell differentiation in the thymus. Scatterplot of cells in representative mouse (yellow) depicts a snapshot of the

maturation process, with naive cells entering the thymus in the double-negative state (DN, CD4�CD8�), sequentially
differentiating into double-positive cells (DP, CD4+CD8+), and finally acquiring one of the single-positive fates (SP,

CD4+/� CD8�/+). Arcsine transformation was used here and for gating purposes (see STAR Methods).

(B) Five simulated markers. Profiles are shown without adding noise. Each time step (dt = 0.01), 100 new cells were added

and assigned with t = 0. Initial marker values for each cell were chosen from a normal distribution centered at the values

plotted at t = 0, with a SD of 0.1. Noise was also added to the cycle time length of each cell (after which the cell was

removed) which was chosen from a normal distribution centered at T = 1 with a SD of 0.1. Division and apoptosis were not

implemented in these simulations, which were run until reaching the steady state.

(C) Trajectory course calculated upon density plot of two markers in B. Starting and ending points are predetermined (upper

and lower crosses respectively). Anchors (corresponding symbols) are placed in positions of local maxima. The trajectory (red

circles) travels upon the crest connecting path edges and anchors. Panel to the right magnifies the last position obtained and

illustrates how new position coordinates are chosen; new coordinates are chosen from nearest neighbors surrounding the

previous position on a grid, where progression in the direction of the previous position is forbidden (optional new coordinates

are surrounded by black circles). Default choice is for the neighbor in the direction aligned toward the next anchor (moment).

Deviation is permitted only if the difference in densities between the default neighbor and some other permitted neighbor

exceeds a predetermined value, thereby justifying a detour. See methods for more details.

(D) Trajectory calculation in five dimensions. The principle is similar to calculation in two dimensions (see text), allowing for

trajectory dynamics in any region where at least one of the markers changes. The calculated trajectory is projected here

upon a two-dimensional density plot, with anchors and crosses representing landmarks as in C. Note that anchors are

placed near, but not in the exact position, of the global maxima in two dimensions (see methods for superfluous anchor

removal in higher dimensions).
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process where cells enter the system at a constant flux at time t = 0, and begin expressing five markers as

illustrated (Figure 1B). Random noise was added so that initial values of each marker were chosen from a

distribution centered at f iðt = 0Þ with a SD of 0.1 (f i is the expression function for each i = ½1; 5�marker). Noise

was also added to the entire cycle time length T of each cell after which cells were removed, so that T was

chosen from a random distribution centered at T = 1 with a SD equal to 0.1. Assuming no cell division or

apoptosis during the process at first, marker values were updated every dt = 0:01 time interval. The simu-

lation was run until reaching the steady state, in which the total cell number was constant up to some level

of fluctuations due to noise. Importantly, at steady state, local cell density as a function of time was also

constant (SI Figures S1 and S2).

For simplicity, we first calculate the trajectory in two-dimensions, choosing the markers illustrated in Fig-

ure 1C. Marker expression space is divided into a mi,mj grid, with Dij denoting cell density at each grid

position. Our working assumption is that the trajectory must pass through points of local maxima in cell

density (anchors in Figure 1C). We also assume that the initial and final positions of the trajectory are known

approximately and are manually determined (e.g. the assumed location of the starting and ending cells).

The trajectory, denoted as l, then progress between points on the grid from one anchor to the next, trav-

eling upon the density crest. The default trajectory is in the direction of the next anchor (‘‘moment’’), while a

detour is only permitted when the difference in densities between the grid point aligned with the moment

and that at some other neighboring point exceeds some predetermined value (see supplemental informa-

tion section 2 for more details).

Computing trajectory coordinates lij effectively reduces dimensionality to one. Each cell is now associated

with a single point upon l to which it is closest based on Euclidean distance. Assuming the trajectory is

composed of k evenly spaced points, each point can generaly affiliate many cells; the k cell-segments

are ordered according to the chronological course of the systems’ evolution. Inside a given segment, there

is no internal ordering of cells. Thus, the number of sections (or initial grid density) and the extent of tra-

jectory curvature, dictate the resolution by which cells are sorted.

Trajectory inference in this method is closely dependent on dynamics in marker expression. E.g., if the two

markers in Figure 1C happen to be stationary at some point, density in two-dimensional space around that

point will be relatively high. Extending the method to higher dimensions by adding more markers is there-

fore beneficial, as local kinetics in the expression of even a single marker is able to unfold regions where

seemingly no dynamics occur. Following a similar line as in two dimensions, the trajectory can be calculated

in higher dimensions by dividing each dimension into a grid and passing from a given initial position

through regions of local maxima. Notably, the removal of superfluous local maxima points might be neces-

sary after expanding the number of dimensions (SI section 2). Figure 1D illustrates the trajectory that was

calculated in 5 dimensions (using all 5 markers) projected upon a two-dimensional density plot.

From pseudotime to real-time: Theory and simulation

The method described above segments similar cells according to Euclidian proximity in high dimensions

with respect to the trajectory. To illustrate the principle by which real-time can be calculated, it is useful to

first focus on fluxes and dynamics within a single segment of cells (Figure 2A). Within every time interval, a

fraction of cells mature to a point where they exit the segment and enter the neighboring one ahead. Simi-

larly, some other fraction of cells enters the segment by exiting the preceding segment. For a segment with

index i, these density fluxes of entering and exiting cells can be written respectively as fi� 1$vi� 1 and fi$ vi ,

where f denotes cell density (the number of cells in a segment divided by the total number of cells), and v

denotes the progression rate along the trajectory l. Other sources for cell turnover within a segment are cell

division and apoptosis, whose rates are denoted as g1 and g2 respectively. Every time interval, fi$ g
i
1 cells

are added to the segment, while fi$g
i
2 cells are removed. Thus, the local density within a segment, which in

the steady statemust remain constant over time, is ultimately defined by the different fluxes of entering and

exiting cells, and the local proliferation and apoptosis rates. A high local density, in the presence of a low

division-to-apoptosis rate ratio, is indicative of a prolonged dwelling time of cells in the segment, and vice

versa. This conservation principle is presented compactly in the equation shown Figure 2B. A closed-form

expression in the case when g1 and g2 are constant in space is highlighted below the equation (rectangle),

where t is the cumulative average time spent up tp point l on the trajectory, and represents the average

developmental time of cells in that segment (More derivatives of this equation are given in supplemental

information section 3).
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To test the theory formulated above, we simulated the dynamics in Figure 1B, this time adding proliferation

and apoptosis. Figure 2C compares the ‘‘real’’ dwell time, which was calculated by averaging the known

simulated times of all cells within each segment, to the time calculated using the equation given in Fig-

ure 2B. The simulation and prediction agree to within a threshold determined by noise (Figure 2C) and

by a deviation as t approaches 1 that can be explained by the open-ended model, allowing cells to leave

the system, rather than dying. The trajectory of marker expression plotted as a function of calculated or

simulated times are also in good agreement (Figure 2D), but differ substantially when plotted as a function

of pseudotime, which does not incorporate division and death methods (Figure 2E). Notably, by incorpo-

rating known timing landmarks and adjusting points along the pseudotime trajectory accordingly (e.g. via a

designated experiment) a better estimate of the real-time profile could be achieved, but the pseudotime

points in-between the landmarks would still not be scaled. Rescaling the entire pseudotime axis (as in Fig-

ure 2D) is equivalent to adjusting each of the time points to its correct relative position along the axis.

Experimental determination of proliferation and apoptosis rates

To measure cell proliferation in-vivo, we injected mice with 5-Iodo-20-deoxyuridine (127IDU), a thymidine

analog incorporated into DNA during the S-phase. Accordingly, only proliferating cells incorporate IDU

and integrate it into the DNA. Upon further division, half of the initially incorporated IDU is passed on to

each daughter cell. Following injection, we harvested the mouse thymus after 1, 3, 6, and 12 h (3 mice in

each group) and performed CyTOF analysis (Figure 3A). IDU levels are readily detected as elemental Iodine

by CyTOF, with no additional experimental requirements.

Plotting IDU expression as a function of DNA levels allows the identification of two cell populations—

dividing and non-dividing cells, with and without IDU uptake respectively (Figure 3B). Gating the dividing

(IDU positive) cells selects the cells that have divided in the time interval that lapsed between IDU injection

Figure 2. Time calculation

(A and B) The time equation. Cartoon outlining dynamics within a single segment is shown in A. Red circles represent

trajectory points in some imaginary data, with the red stripe magnifying a given segment. The local density in each

segment is determined by the flux of entering cells f1,v1 (f and v represent local cell density and velocity, respectively), flux

of cells exiting the segment f2,v2, and cell division and apoptosis rates (g1 and g2, respectively). High local density can be

a manifestation of lengthy dwell-time of cells in a segment, or of a high division to apoptosis rate ratio. Similarly, low local

density can be a result of rapid progression through the segment, or of a high apoptosis to division ratio. (B) gives the time

equation in its general form with V denoting the differential operator. The formulation for the time as function of location

along the trajectory, tðlÞ, is given after solving the time equation assuming constant g1 � g2 > 0, with F denoting the

cumulative density up to location l = l’, and T denoting the time reached when cells arrive at the trajectory end. See

methods for more derivations including numeric formulation for when division is not constant.

(C) Validation of formulation accuracy. Simulations were performed as in Figure 1B, this time incorporating constant

division and apoptosis rates (g1 = 0.09, g2 = 0.03). The ‘‘Average segment time’’ directly averages simulation times of cells

in each segment and represents real time. ‘‘Calculated time’’ represents time in each segment using the formulation in B.

The deviation toward the end is due to an increasing number of cells exiting the cycle, with the few remaining cells adding

negligibly to the cumulative density. Correlation coefficient reaches 0.99.

(D) Average values of Marker2 (Figure 1B), using real segment average time (green) and calculated times (pink).

(E) Average marker times as the function of segment index (pseudotime) distorts the expression profile. Arrows indicate

rescaling applied by the time equation.
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and thymus harvesting (we denote this time interval as dt). We assume that the number of cells dividing

more than once within dt (max 12h) is negligible. Thus, the proliferation parameter in each segment gi
1

can be calculated by dividing the proportion of IDU-positive cells within the segment by dt.

Our chosen apoptosis marker was Caspase3, a 32 kDa cysteine protease that is activated during the early

stages of programmed cell death.33 Caspase3-positive cells could be observed as a scatter of cells above

the remaining non-apoptotic cells (Figure 3C). Since calculating the apoptosis parameter necessitates

dividing by a time interval within which apoptosis will occur, we chose only cells that were positive for

both Caspase3 and IDU. To check whether these cells indeed reliably represent the entire population

destined for apoptosis within dt, and not some unique sub-population, we verified that cells considered

Caspase3-positive are evenly distributed throughout the IDU-DNA plane, and are not skewed into some

specific region (Figure 3D).

Hence, the gated cells positive to both Caspase3 and IDU were assumed to undergo apoptosis within the

same dt used for assessing the division rate. Similar to gi
1, the apoptosis parameter in each segment was

calculated by dividing the proportion of IDU-Caspase3-positive cells within the segment by dt. Notably,

this approach allows the apoptosis rate to be locally higher than the division rate.

Assessing the proliferation and apoptosis parameters should be relatively robust to the time of IDU injec-

tion (which is arbitrary). Indeed, the relative population of IDU-positive cells roughly increased linearly with

dt, resulting in comparable similar proliferation and apoptosis parameters irrespective of injection time

(Figures 3C and supplemental information Figure S3).

It is well established that in a short time interval during the positive selection process that occurs in the DP

phase, approximately 90% of the thymocytes undergo death by neglect.8,16,34 The direct measurement of

death-by-neglect using established apoptosis markers such as Caspase3 is nevertheless challenging, since

dying cells are rapidly removed by scavenger macrophages, leading to significant under-estimates of the

number of dying cells. We verified this extensive apoptosis incident by an in-vivo experiment in which we

Figure 3. Determining division and apoptosis rates

(A) Scheme describing the IDU injection process.

(B and C) Threshold for dividing and apoptotic cells. The logarithm of markers used to estimate the thresholds for division

and apoptosis (IDU and Caspase3, respectively) are plotted against normalized DNA. Panel B shows data from a mouse

1 h post-IDU injection, and panel C shows data from two mice 1 and 6 h post-IDU injection. Cells above the red line in B

were considered as dividing cells within 1 h. Cells above the red line in C, that were also positive for IDU, were considered

as cells that will undergo apoptosis within 1 or 6 h. g1 and g2 in each segment for this mouse were calculated as the

percentage of IDU or IDU-Caspase3 positive cells in the segment divided by the corresponding dt in day units.

(D) Caspase3-positive cells in a mouse 1 h post-IDU injection are roughly evenly distributed between the two populations

of IDU positive and negative cells (SI Section 4).
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adoptively transferred DN thymocytes from CD45.1 (B6SJL) mice into the thymus of CD45.2 (C57Bl) mice,

and followed their development (Figure 5A). The observed reduction in CD45.1 cell-number reduction be-

tween 21 and 28 days supported the hypothesis that about 90% of cells are eliminated (Figures 5B and sup-

plemental information Figure S3), Based on the literature, and these additional experiments, we therefore

modified the parameter controlling the rate of cell death g2 in the DP phase so as to model the loss of 90%

of the thymocytes during this stage (SI section 3).

Imputation of a real-time dimension in the thymus developmental trajectories

CD4 and CD8 are the two most pivotal markers that define the final outcome as well as key transitional

phases along a thymocyte developemental trajectory. Trajectory calculation in high dimensions and cell-

affiliation to trajectory points according to Euclidian distance can result in cell dispersion across CD4/

CD8 space, so that for instance some cells expressing low CD4 and CD8 (and therefore considered to

be in DN phase) are assigned to relatively distant points along l (SI Figure S4). This results from the fact

that a simple Euclidian calculation gives all markers a similar weight in defining cell proximity to trajectory

points. A priori knowledge of CD4 and CD8 importance in specifying differentiation states can therefore

help refine the segmentation process.

We thus performed trajectory calculation and cell assignment in two steps. At first, we calculated the tra-

jectory in CD4/CD8 plane and assigned cells to trajectory points using these twomarkers alone (Figure 4A).

The bifurcation point was identified manually, along with the initial and final trajectory points. The esti-

mated dwelling time of cells in each segment was calculated as described above. We next performed

sub-segmentation by considering more markers. For each given segment, aside from CD4 and CD8, we

chose another six markers with the highest local variability in the segment, which thus have the potential

of contributing the most to understanding the systems’ dynamics. In segments where cells dwelled for a

relatively long period according to the calculation in 2-dimensions (high Dt), we wanted a higher resolution

and therefore divided the segment into more points by choosing a compact grid. On the other hand, in

regions where cells spent less time according to the calculation in 2-dimensions (low Dt), we allowed a

sparser grid and hence less points were added within the segment (Figure 4B).

Dividing the segmentation process into two steps enforced the distribution of cells according to the CD4/

CD8 expression. Sub-segmentation in the second step allowed ‘‘unfolding’’ of regions where additional

transitions could be discovered by the addition of more markers.

Construction of the time axis allows the comparison of different marker profiles along the two SP branches.

CD4 and CD8 expression profiles follow the expected trend in which both markers rise up to the bifurcation

point (end of DP phase), after which the counter marker starts to decrease along the respective branch

Figure 4. A two-step segmentation process

(A and B) Since one-step segmentation in higher dimensions can lead to significant dispersal of cells along the projected

trajectory in CD4/CD8 space (e.g. assigning DN cells to points far along the trajectory, supplemental information

Figure S4), segmentation was first performed in 2D. Panel in A shows the trajectory upon the density plot in CD4/CD8

space, leading from DN to DP, and splitting toward SP states. The time equation was solved separately for the DN + DP

phase and each SP phase. Sequentially, each segment was sub-segmented using more markers (8 dimensions) as

illustrated in B. A zoomed portion of the trajectory calculated in A is shown, with cells between two pairs of points colored

differently (green and pink). The grid size for sub-segmentation was proportionally chosen with respect to the relative

time spent in the original segment (Dt), potentially resulting in the addition of more or less time points.
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(Figure 5C). To compare our expression profiles to those obtained using pseudotime, we used the well-es-

tablished algorithm Wishbone, originally used to infer developmental trajectories for maturing thymo-

cytes5 (Figure 5D). The two approaches were successful in detecting the major developmental states,

but the relevant time spent in each state was apparently different. While the Wishbone trajectory sug-

gested that cells spent �30% of the time in the DN state and �20% of the time in the DP state, our real-

time trajectory indicates that cells spent less than 20% in the DN state and about 60% of the time in the

DP state. One limitation of our segmentation approach is in detecting relatively rare cells whose population

size is much lower than the number of cells in the segment to which they belong. For example, the DN1

(CD4-/CD8-/CD3-/CD25-/CD44+) population size is considered to be about 1% of all DN cells (and

�0.03-0.05% 37), while the initial segments in the trajectory are more than an order of magnitude larger

in terms of cell numbers. Indeed, the initial segments in our model seem to capture the dynamics of the

DN3 phase in which cell density starts to increase rapidly, which results in an effective shortening of the

DN phase. This is seen in Figures S5, S6, and S7 where CD25 and CD3 levels are relatively high, consistent

with the DN3 phase (CD4-/CD8-/CD3+/CD25+/CD44-).

To validate the predicted dwell times in the different developmental phases predicted by the model, we

sought to determine the timeline of differentiation experimentally. To this end, we used the adoptive-

transfer model outlined above, detecting T-cells 1,3,10,14,21 and 28 days post-transfer (Figure 5A). We

observed that CD45.1 T cells remained in the DN state for approximately 7 days, after which they began

to express CD4 and CD8 in parallel, thereby entering the DP state. About 25 days post-transfer we could

not detect �90% of cells. We speculate that the reduction in cell number was because cells either under-

went apoptosis (via positive or negative selection), or matured to CD4 or CD8 SP cells and left the

Figure 5. Real-time axis validation

(A) In-vivo validation was performed by intrathymic, adoptive transfer of DN1-3 (CD4�CD8�CD44+/�CD25+/�) cells from

CD45.1 mice (B6SJL) into CD45.2 (C57BL) mice (left and center panel). Thymi were harvested 1, 3, 10, 14, 21, and 28 days

post-transfer and stained with antibodies against CD45.1, CD45.2, CD8, CD4, and other developmental markers (center).

Further analysis was performed by gating the CD45.1+/CD45.2- cells. Each time point presents Thymi from two mice, and

the experiment was repeated twice.

(B) CD8 (Black) and CD4 (Red) expression levels were calculated by tracking the CD45.1+/CD45.2- gated cells. The

expression levels for CD4 and CD8 were separately normalized to themedian fluorescence of all the cells from all the time

points. Black broken vertical lines separate here (and in later figures) between the DN, DP, and SP phases as indicated on

top.

(C) CD4 and CD8 profiles as constructed by our method for real-time axis inference averaged across 12 mice.

(D) Wishbone pseud-temporal ordering captures the major stages in T cell development but scales differently than the

real-time axis.
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thymus.8,23,34 The inferred dwell times, therefore, correspond well to the experimental observations, and fit

the data better than the standard pseudotime projections.

The full profiles of all markers we used can be found in supplemental information Figures S6 and S7.

A real-time trajectory recognizes dynamics overseen using pseudotime

We examined the inferred dynamics of expression of all the markers and compared them to the Wishbone tra-

jectories. The general trends were similar for most markers (SI Figures S6 and S7). However, some specific dif-

ferences emerged. CD69, amarker of TCR signaling17,18 exhibited complex dynamics during theDP stage, with

a high expression peak around day ten, which declined sharply and then rose again between days 15-20 (Fig-

ure 6A). The second peak was less obvious in the Wishbone trajectory (Figure 6A, right panel).

A similar but delayed pattern is seen in the expression of cleaved-PARP1 (cPARP), which is produced during

both apoptosis and necrosis35 (Figure 6C).

Proliferation, identified by IDU incorporation, also exhibits a biwave profile, where cells divide more exten-

sively around day 5 during the third phase of the DN state (DN3),36,37 and then again at the DP state38,39

between days 15 and 20 (Figure 6B). The cases in which the two methods exhibited different capacities

in detecting peaks or falls in marker expression, rather than merely differing in the scaling of the time

axis, are due to differences in pre-processing and in pseudotime axis construction. While Wishbone relies

on nearest-neighbor graphs, diffusion maps and sampled waypoints along the trajectory to ultimately

achieve ordering at a single-cell level and detect bifurcation points, we rely on local densities and assign

cells into segments (rather order all cells) in which marker values are averaged. In addition, we averaged

values from 12 mice that were harvested at different times after IDU injection, whereas Wishbone was per-

formed on a selected mouse that was harvested 3 h post-IDU injection.

CD25 and CD44 are two markers that are known to have higher expression levels during the DN phase and

decrease during the DP phase (SI Figure S5). Notably, the profiles of CD25 and CD44 were inferred primarily

via dynamics in the expression of other markers who defined the trajectory route, as these two markers did

not happen to participate in the sub-segmentation of any of the segments. Interestingly, while CD25 seems

to decrease toward the DP phase and remain relatively low in the SP phase along both branches, CD44 de-

creases during the DP phase along the CD8-SP branch but rises toward the end of the CD4-SP branch.

Figure 6. The real-time axis is able to unfold regions of biological significance

(A-C) CD69, IDU, and cPARP real-time trajectory profiles along the CD4 SP and CD8 SP paths (left and center panels

respectively, averging data from 12 mice.), and along Wishbone pseudotime trajectory (right, one mouse). Black broken

vertical lines separate between DN, DP, and SP phases as in Figure 5. Black arrows in A indicate the second elevation in

CD69 expression which is spread over several days along the real-time axis as opposed to the relative condensed portion

it occupies in the Wishbone trajectory.
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The method described in this article not only infers the experimentally observed dynamics of the overall

developmental trajectory, but identifies and highlights some more complex dynamic features of individual

molecules (such as CD27, Helios, TCF1, andNotch1) which are compatible with the known complex biology

of thymocyte differentiation.

DISCUSSION

Trajectory inference has gained wide popularity as a tool for analyzing single-cell omics data. Although

many ordering approaches have evolved during the last few years, most methods are comprised of

some sort of dimensionality reduction followed by trajectory inference based on expression profile similar-

ities, and ultimately allocate cells along a continuous pseudo-temporal axis.2,40

Our study builds on this work by estimating cell fluxes along the developmental trajectory and hence re-

scaling the pseudotime axis to more closely reflect the real dynamics of thymic differentiation.

We initially formulate a method for pseudo-temporal ordering based upon expression densities, which is

conceptually similar to existingmethods but highlights the importance of local cell densities as preparation

for the next step. While this method is less sensitive in detecting relatively rare cell populations that can be

diluted within segments (such as the DN1 and DN2 cell populations) and better performs after initially out-

lining the trajectory in CD4/CD8 space, it is much less sensitive to initial condition selection (e.g. as seen in

cases where an initial single cell is selected). Selection of the first cell in the approximate region of the initial

segment is sufficient for the trajectory to later converge with the maximal density crest. We further incor-

porate apoptosis and division, and assuming steady-state, infer the real-time dimension. One limitation of

our model is detecting subpopulations of cells that progress at different rates along the same trajectory.

Mean marker values of the different populations in each segment would be calculated, and the inferred

time would reflect a weighted average of the different cell populations. Future models better fit for detect-

ing such cases would allow splitting these cell populations and rescaling the pseudotime axis separately.

Another limitation of this study is its reliance on Caspase3 as the sole apoptosis marker in the thymus, which

does not capture ‘‘death by neglect’’ known to occur during the DP phase. This limitation, however, is not

unique to our model, since to our knowledge there is no well-established marker for tracking that mode of

apoptosis. We were hence obliged to manually introduce this event in our model based on published es-

timates as to the rates of cell elimination during positive selection.

Developing T-cells in the mouse thymus is an ideal system for trajectory inference, since cells are known to

continuously travel across developmental stages (characterized by different markers) in a well-defined

period of time. Implementing our method, we were able to depict the observed course of T cell differen-

tiation and extract temporal profiles for all markers that we measured. Importantly, regions of the develop-

mental landscape that were compacted by traditional pseudotime inference could be expanded by incor-

porating additional markers revealing events of biological significance. This temporal reconstruction of the

differentiation pathway can readily be applied to other complex developmental systems, and the trajec-

tories can be further refined as higher dimensional datasets become available.

Limitations of the study

Since all cells with a similar marker expression profile are grouped into the same segment, our model does

not detect subpopulations of cells that progress along the same trajectory at different rates. Instead, the

inferred time would reflect a weighted average of the different populations. Another limitation of the study

is detecting ‘‘death by neglect’’ that occurs during the DP phase, where apoptotic cells are rapidly elimi-

nated by scavenger macrophages, with standard apoptosis markers such as Caspase3. We were hence ob-

liged to explicitly adjust the apoptotic rate during theDP phase according to what is known in the literature.

Finally, since cells in the early DN (DN1-2) phase are sparse in number, we had difficulty in detecting them,

and our trajectory initiates at a later stage within the DN phase.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD4 (RM4-5)-172 Yb FLUIDIGM RRID:AB_2924892.

Anti-Mouse CD8a (53-6.7)-153Eu FLUIDIGM RRID:AB_2924893

Anti-Mouse CD45 (30-F11)-89Y FLUIDIGM RRID:AB_2924894

Anti-Cleaved Caspase 3 (D3E9)-142Nd FLUIDIGM Cat: #3142004; RRID:AB_2847863

Anti-Human cleaved PARP (F21-852)-143Nd FLUIDIGM Cat: #3143011; RRID:AB_2927562.

Anti-Mouse ikaros 144Nd Biolegend Cat: #653302; RRID:AB_2561711

Anti-Mouse CD69 145Nd FLUIDIGM Cat: #3145005; RRID:AB_2895115

Anti-Mouse Notch1 147Sm Biolegend Cat: #130602; RRID:AB_1227721

anti-mouse CD90.2 149sm FLUIDIGM Cat: #105333; RRID:AB_2927564

Anti-Mouse CD24 150Nd FLUIDIGM Cat: #3150009; RRID:AB_2916042

Anti-Mouse CD25 151Eu FLUIDIGM Cat: #3151007; RRID:AB_2827880

Anti-Mouse CD3e 152Sm FLUIDIGM Cat: #3152004; RRID:AB_2687836

Anti-Human/Mouse Bcl11b - 154Sm Biolegend Cat: #6506; RRID:AB_10915967

Anti-Mouse CD366 (Tim-3) - 155Gd Biolegend Cat: #1197; RRID:AB_1626128

Anti-Mouse CD196-156Gd FLUIDIGM Cat: #3156016; RRID:AB_2895120

Anti-Human/Mouse pStat3 158Gd FLUIDIGM Cat: #3158005, RRID:AB_2661827

Anti-Mouse TCRgd (GL3) 159 Tb FLUIDIGM Cat: #3159012; RRID:AB_2922919

Anti-Mouse CD5 160Gd FLUIDIGM Cat: #3160002; RRID:AB_2927568

anti-mouse/human CD11b 161Dy Biolegend Cat: #101202,PRID:AB_312785

Anti-Mouse CD11c 161Dy Biolegend Cat: #117341; RRID:AB_256280

Anti-Mouse CD19 161Dy Biolegend Cat: #1155; RRID:AB_2629714

Anti-Human/Mouse/Rat pLck 162Dy FLUIDIGM Cat: #3162004; RRID:AB_2827886

Anti-Human/Mouse RUNX3 163Dy Biolegend Cat: #697902; RRID:AB_2687207

Anti-Mouse CD62L 164Dy FLUIDIGM Cat: #3164003; RRID:AB_2885021

Anti-Mouse Foxp3-165Ho FLUIDIGM Cat: #3165024; RRID:AB_2687843

Anti-Mouse CD117 (ckit) - 166Er FLUIDIGM Cat: #3166004; RRID:AB_2801435

Anti-Human/Mouse GATA3 167Er FLUIDIGM Cat: #3167007; RRID:AB_2927569

Anti-Human/Mouse/Rat Ki-67 168Er FLUIDIGM Cat: #3168007; RRID:AB_2800467

Anti-Mouse TCR b 169 Tm FLUIDIGM Cat: #3169002; RRID:AB_2827883

Anti-Mouse NK1.1 170Er FLUIDIGM Cat: #3170002; RRID:AB_2885023

Anti-Human/Mouse CD44 171 Yb FLUIDIGM Cat: #3171003; RRID:AB_2895121

anti Mouse TCF7/TCF1-173Yb R&D Systems Cat: #MAB8224; RRID:AB_1771413

Anti-Mouse CD197 (CCR7) 174 Yb Biolegend Cat: #1201; RRID:AB_389229

Anti-Mouse CD127 (IL7Ra) 175Lu FLUIDIGM Cat: #3175006; RRID:AB_2927570

Anti-Human/Mouse Helios - 176 Yb Biolegend Cat: #1372; RRID:AB_10900638

Chemicals, peptides, and recombinant proteins

IDU (5-Iodo-20-deoxyuridine) Sigma-Aldrich Cat: #I7125

Critical commercial assays

Cell-ID� 20-Plex Pd Barcoding Kit FLUIDIGM Cat# 201060

cell-ID Cisplatin FLUIDIGM Cat: #201064

Cell-ID Intercalator-Ir FLUIDIGM Cat: #201192

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Shlomit Reich-Zeliger (Shlomit.reich-zeliger@weizmann.ac.il).

Materials availability

This study did not generate new unique reagents.

There are no restrictions to the availability of newly generated materials in this study.

Data and code availability

d All original code has been deposited on our GitHub repository https://github.com/avishai-g/

trajectory_inference, and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

d CyTOF data have been deposite at FLLOWRespository, DOIs are listed in the key resources tableAny

additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Female C57BL/6 and B6SJL mice (six weeks old) were obtained from Envigo and Jackson Laboratories. All

mice were housed at the Weizmann Institute in compliance with institutional ethics approvals (from the

Institutional Animal Use Committee of Weizmann institute).

METHOD DETAILS

Thymus data and mass cytometry

Thymocytes were isolated from 6-week-old C57Bl mice thymus. Thymocytes were treated in red blood cell

lysis buffer and then resuspended in staining media and counted. Cells were stained with metal-conju-

gated antibodies according to manufacturer’s protocol (Table S1). Briefly around 200k cells were stained

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MIBItag Conjugation Kit_144Nd FLUIDIGM Cat: #600144

MIBItag Conjugation Kit_147Sm FLUIDIGM Cat: #600147

MIBItag Conjugation Kit_154Sm FLUIDIGM Cat: #600154

MIBItag Conjugation Kit_155Gd FLUIDIGM Cat: #600155

MIBItag Conjugation Kit_161Dy FLUIDIGM Cat: #600161

MIBItag Conjugation Kit_163Dy FLUIDIGM Cat: #600163

MIBItag Conjugation Kit_173 Yb FLUIDIGM Cat: #600173

MIBItag Conjugation Kit_174 Yb FLUIDIGM Cat: #600174

Deposited data

CyTOF data FLOWRespository http://flowrepository.org/id/FR-FCM-Z5UP

Experimental models: Organisms/strains

C57BL/6JOlaHsd Envigo Cat:#: 057

B6.SJL-PtprcaPepcb/BoyJ Jackson Cat:#:002,014

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

FLOWJO BD Biosciences

WISHBONE Dana Peer lab https://github.com/dpeerlab/wishbone

Trajectory Inference Avishai Gavish https://github.com/avishai-g/trajectory_inference
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with cell-ID TM Cisplatin (Fluidigm) (5 min RT). Next cells were stained with surface antibodies (30 min RT),

and fixed with 1.6% PFA (10 min RT). After permeabilization with 100% ice-cold Methanol (15 min, 4C), the

cells were stained with intracellular antibodies (30 min, RT). Finally the cells were labeled with Iridium DNA

intercalator for DNA content and analyzed by CyTOF mass cytometry using CyTOF2. Data was normalized

using bead normalized with bead standards.

We collected data from 12 independent C57Bl mice thymuses

IDU injection

IDU (5-Iodo-20-deoxyuridine) was purchased from Sigma-Aldrich (ref. I7125). All mice were injected in their

peritoneum with a solution of 0.4 mg of IDU diluted in 200 mL of sterile PBS, adjusted to a pH of 8.5–9. Thy-

mocytes were isolated 1, 3, 6 and 12h post injection. Cells were stained with metal-conjugated antibodies

according to manufacturer’s protocol (Table S1). Briefly, around 200k cells were stained with cell-ID TM

Cisplatin (Fluidigm) (5 min RT). Next cells were stained with surface antibodies (30 min RT), and fixed

with 1.6% PFA (10 min RT). After permeabilization with 100% ice-cold Methanol (15 min, 4 �C), the cells

were stained with intracellular antibodies (30 min, RT). Finally, the cells were labeled with Iridium DNA in-

tercalator for DNA content and analyzed by CyTOF mass cytometry using CyTOF2. Data were normalized

using bead normalized with bead standard.

CD45.1 Thymocyte adoptive transfer

Thymucytes were purified from B6SJL (CD45.1) mice. The cells were stained with CD4, CD8, CD44 and

CD25 and sorted to the CD4�CD8 double-negative population. 10,000 cells in 50 mL of the DN population

were adoptively transferred directly to the thymus of each C57BL/Hj (CD45.2) mice. Thymocytes were iso-

lated 1, 3, 10, 14, 21 and 28 days post adoptive transfer. Cells were stained with various antibodies and

analyzed by Flow cytometer.

Data processing and parameters

Here we first describe the pipeline for pre-processing data before inferring the trajectory path and calcu-

lating time. We later give the parameters we chose for results presented in the main text and sections

above.

Data pre-processing

Pre-processing the data before trajectory inference included the following steps:

Raw data

Raw data from a single mouse thymus, including expression levels of unsynchronized differentiating single-

cells measured by CyTOF, was loaded to a custom written MATLAB program. We analyzed altogether 12

mice, including mice harvested 1, 4, 6 and 12 h after IdU injection (3 mice in each group). Initial cell counts

for each mouse ranged between 40,000 and 174,000 (with a mean of 97,000 and a SE of 16,500). Notably,

cells were not synchronized, representing all stages of maturation in the thymus.

Expression levels of the following markers were measured for every cell

Gating

To gate out only T-cells from the raw data, we first used the inverse hyperbolic sine transformation,

Marker/arsinh
�
Marker
cofactor

�
, choosing cofactor = 5: T-cells were gated by choosing cells with low levels of

’Non T-Cells’ markers (see Table S1), with the transformed marker threshold set at �5 (Figure S8).

Outlier removal

we removed any cell with expression levels above the 99.99 percentile, for any of these markers:

CD4, CD8, CD45, CD27, CD69, CD90, CD24, CD25, CD3, CD336, CD62l, CD5, CD117, CD44, CD197, CD127.

Normalization

Normalizing each marker by its mean value was performed, since marker value outputs from CyTOF are

arbitrary and are only significant for comparing signaling strengths between cells for a given marker, but

not for comparing different marker values.
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Parameters

The trajectory was initially calculated in two-dimensions (CD4/CD8 space) as described, where the trajec-

tory was divided into 60 evenly-spaced points from the initial starting point until the point of bifurcation.

Using the same interval between points, the trajectory was extended from the bifurcation point along

each of the SP states. A detour from the path leading to the next anchor was allowed if the density in a

neighboring position on the grid was 1.5 times that of the mean of all neighboring cells and twice that

of the density in the default point.

After the trajectory position was determined, cells were assigned to the closest trajectory point based on

Euclidian distance, and the time equation was solved numerically (Figure 2B and supplemental information

section 3). For sub-segmentation we picked the 8 most varying markers in each segment. We chose a

different grid density for each segment based on the time spent in the segment that was calculated in

two dimensions (Figure 4). The maximal allowed grid size in 8-dimensions was of size 10 for the segment

where the maximal time was spent, and other segments were assigned grid sizes proportional to the ratio

in times compared to the maximal time.

QUANTIFICATION AND STATISTICAL ANALYSIS

CyTOF data analysis

After the acquisition, data were performed using the CyTOF software for normalization. Barcodes were de-

convoluted using the CyTOF ‘‘debarcoding’’ function. The residual normalization beads, debris, dead cells,

and doublets were exclusively gated using CYTOBANK.
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