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Abstract

Objectives

This study assesses the whole brain microstructural integrity of white matter tracts (WMT)

among older individuals with a history of falls compared to non-fallers.

Methods

85 participants (43 fallers, 42 non-fallers) were evaluated with conventional MRI and diffu-

sion tensor imaging (DTI) sequences of the brain. DTI metrics were obtained from selected

WMT using tract-based spatial statistics (TBSS) method. This was followed by binary logis-

tic regression to investigate the clinical variables that could act as confounding elements on

the outcomes. The TBSS analysis was then repeated, but this time including all significant

predictor variables from the regression analysis as TBSS covariates.

Results

The mean diffusivity (MD) and axial diffusivity (AD) and to a lesser extent radial diffusivity

(RD) values of the projection fibers and commissural bundles were significantly different in

fallers (p < 0.05) compared to non-fallers. However, the final logistic regression model

obtained showed that only functional reach, white matter lesion volume, hypertension and

orthostatic hypotension demonstrated statistical significant differences between fallers

and non-fallers. No significant differences were found in the DTI metrics when taking into

account age and the four variables as covariates in the repeated analysis.

Conclusion

This DTI study of 85 subjects, do not support DTI metrics as a singular factor that contrib-

utes independently to the fall outcomes. Other clinical and imaging factors have to be taken

into account.
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Introduction

Falls are common in the older population. The annual incidence of falls is nearly 30% in indi-

viduals 65 years and above and the number is expected to increase further as the population

ages [1]. Falls in older people lead to physical disability, psychosocial problems, deterioration

in quality of life and reduced survival [2, 3]. It often results in hospitalization and institutional-

ization with expensive medical costs [4]. Falls in the elderly are associated with numerous risk

factors, e.g. physical limitation, gait and balance deficits, visual impairment, chronic medical

illness, neurological disorders and postural hypotension [5, 6].

In the LADIS study, Baezner et al (2008) concluded that a strong association exists between

the severity of age-related white matter (WM) changes with gait and motor compromise [7].

Blahak et al (2009) have reported that the severity of WM changes were significantly associated

with balance disturbances and falls, with periventricular and deep frontal WM changes found

to be independent predictors for both balance disturbances and falls [8]. Nevertheless, a recent

diffusion tensor imaging (DTI) study reveals that in older subjects with small vessel disease,

disruption of WM integrity in both (a) WML that appears as hyperintensities on T2-weighted

MRI images as well as (b) “normal-appearing WM”, are associated with gait disturbances [9].

Therefore DTI enables us to detect loss of integrity even in the “normal-appearing WM” on

conventional MRI images.

An additional advantage of DTI is the ability to study the integrity of individual white mat-

ter tracts (WMT) [10], therefore allowing for better localization of WM pathologies. The integ-

rity of the WMT can be quantified using fractional anisotropy (FA) and mean/ axial/ radial

diffusivity (MD/ AD/ RD) as the loss of integrity will cause the loss of anisotropy and an

increased diffusivity of water molecules. A DTI study by Bhadelia et al (2009) demonstrates

that loss of WM integrity in the genu of corpus callosum is an important marker of gait prob-

lems in older individuals [11]. In a recent DTI study based on tract-based spatial statistics

(TBSS) analysis, older individuals with gait and balance impairments determined with an

established scale have WM abnormalities in specific locations in the brain believed to be

responsible for maintenance of normal gait [12].

Studies determining the integrity of the WMT among older fallers remain limited, with

many studies evaluating surrogate balance and gait outcomes rather than comparing WMT

changes with actual fall outcomes. To our knowledge, there has been no similar whole-brain

analysis study in an Asian population. We, therefore, conducted a case-control comparison of

WMT changes between older fallers with recurrent or injurious falls and non-fallers in an

urban Malaysian population consisting of various racial backgrounds. We also took into

account the various confounding factors contributing to falls to assess the importance of DTI

as an independent diagnostic measure.

Material and methods

Recruitment of participants

A total of 85 subjects were recruited for the study over a period of 2 years which included 43

patients with falls and 42 healthy non-fallers. Fallers were recruited from among participants

of a separate randomised controlled trial—the Malaysian Falls Assessment and Intervention

Trial (MyFAIT) [13]. These participants were urban-dwelling older adult fallers recruited

from the primary care unit, geriatric clinic, the Accident & Emergency department, and

through referrals from other specialties. Participants were included if they satisfied two crite-

ria: (i) being 65 years or older in age with (ii) a history of two or more falls, or one injurious

fall in the past 12 months. Participants were excluded if they had any of the following: (i)
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clinically diagnosed dementia based on the ICD-10 criteria (International Classification of

Diseases, 10th Edition (ICD-10) definition) as determined by a consultant geriatrician with at

least 10 years of experience, (ii) severe physical disabilities (iii) major psychiatric illnesses, psy-

chosis or brain damage, or (iv) contraindication to MRI. Non-fallers were those with no his-

tory of falls in at least 12 months, and were recruited from senior citizen groups from within

the hospital catchment population. Verbal and written informed consent was obtained from

all patients before recruitment. The study was approved by the Medical Ethics Committee of

University Malaya Medical Center in 2012 (Ethics approval no. 943.21).

Clinical assessment

All participants received a baseline clinical assessment conducted by trained researchers and a

consultant geriatrician. Gait and balance performance were assessed using Functional Reach

(FR) and Timed Up-and-Go (TUG) tests [13]. FR was used to identify change in balance

performance over time while TUG was a composite measure of walking speed, limb girdle

strength and dynamic balance. Other clinical variables assessed included age, gender, ethnicity,

and history of diabetes, hypertension, stroke, orthostatic hypotension, syncopal events, carotid

sinus syndrome, visual impairment, osteoarthritis and peripheral neuropathy. Blood pressure

was measured using an digital sphygmomanometer first in the supine position after at least 10

minutes’ rest, and at the first, second and third minutes after standing. Orthostatic hypoten-

sion was diagnosed if a systolic or diastolic blood pressure reduction of at least 20mmHg or

10mmHg respectively or both were present [14].

Magnetic resonance imaging acquisitions

All MR examinations were performed on a clinical 3.0 Tesla Signa1 HDx MR System (GE

Healthcare, Milwaukee, Wisconsin, USA) equipped with a dedicated 8-channel high definition

head coil. The imaging protocols included: (i) Axial T1-weighted 3D fast spoiled gradient echo

(3D FSPGR) with imaging parameters of TR = minimum 6.7ms, TE = minimum 1.9ms, range

1.9–11.0ms, FOV = 31mm, matrix = 256 x 256, isovoxel, thickness = 1.2mm and image scan

time of 3mins 47s; (ii) Coronal T2-weighted fluid-attenuated inversion recovery sequence

(FLAIR) with TR = 1600ms, TE = minimum 9.9ms, range 9.8–68.5mms, TI = 920ms, FOV =

24mm, matrix = 512 x 320, thickness = 5.0mm, spacing = 2mm and image scan time of 2mins

57s; and (iii) DTI datasets using single-shot spin-echo echo-planar imaging (EPI) with TR =

13000ms, TE = 81.2ms, FOV = 24mm, matrix = 128 x 128, thickness = 3.0 mm, gradient

encoding along 32 non-collinear directions and diffusion-weighted factor, b = 700 s/mm2 and

image scan time of 7mins 22s.

Diffusion tensor imaging (DTI) analysis

Voxel-wise, whole brain tract-based spatial statistics (TBSS) were carried out to identify tracts

of interest that showed significant differences between fallers and non-fallers (FSL v5.0.6 Uni-

versity of Oxford, UK) [15]. Standard preprocessing was applied to all volumes, including

eddy current correction, brain masking, and linear fitting of the diffusion tensors. TBSS-spe-

cific steps [16] included non-linear registration of all images to the FMRIB58_FA standard-

space image, and FA skeletonization with an FA threshold of 0.2. Randomise, a subtool in

TBSS was used to carry out voxel-wise statistical analysis. The analysis was carried out with

10000 permutations using threshold-free cluster enhancement with 2D optimization as correc-

tion for multiple comparison across voxels.

Microstructural white matter tracts of older fallers
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Voxel-based morphometry (VBM) analysis

Axial T1-weighted 3D FSPGR images were used for whole brain volume measurement. Voxel-

based morphometry (VBM) analysis was computed using Christian Gaser’s VBM8 toolbox [17]

with default parameters, running within the Statistical Parametric Mapping software package

version 8 (SPM8) [18]. The images were first bias-corrected for MRI field inhomogeneity, then

registered to the brain averages of the subjects using linear and non-linear transformations,

and tissue-classified into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF)

within the same generative model. Total brain volume is the sum of the generated WM and

GM volumes. After the pre-processing steps using SPM8 and its extension VBM8 as described

above, the WML segmentation and total lesion volume (TLV) calculation were subsequently

performed using the Lesion Segmentation Toolbox (LST) for SPM8 (Fig 1) [19]. The algorithm

of LST operates in the space of the original T1-weighted image, known as the native space. The

bias-corrected FLAIR image was co-registered to the space of the native T1 image. Each voxel

in the native T1 image was assigned to 1 of 3 classes: GM, WM or CSF. The FLAIR intensity

distributions were calculated for the respective 3 classes to detect hyperintense FLAIR outliers,

which are further weighted according to their spatial probability of being WM lesion [20, 21].

Statistical analysis

Individual statistical analysis for demographic, clinical and imaging characteristics was per-

formed using computerized statistic software SPSS version 22.0 (Illinois, USA). Mann-Whit-

ney and Chi-square tests were used for numerical and categorical variables respectively. A p-

value of< 0.05 was considered to be statistically significant.

Multiple logistic regression analysis

Multiple binary logistic regression analysis was carried out using fallers or non-fallers as the

dependent variable, and demographic, clinical, and imaging characteristics as independent

variables. Known risk factors for falls which showed significant differences in the univariate

analysis were selected for the regression analysis. These factors included age, TUG, FR,

WMLV, hypertension, orthostatic hypotension, and syncopal events (Table 1). The regression

analysis was carried out using the stepwise backward likelihood ratio (backward LR) selection

method. The TBSS analysis was then repeated, but this time including all significant predictor

variables from the regression analysis as TBSS covariates. This was to investigate whether the

DTI metrics contributed significantly to the outcomes independent of the covariates.

Fig 1. The VBM analysis. Axial T2-Weighted FLAIR Image, T1-Weighted FSPGR Image and lesions

segmented using LST of SPM8.

https://doi.org/10.1371/journal.pone.0179895.g001
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Table 1. Demographic, clinical and imaging characteristics of fallers and non-fallers at baseline.

fallers (n = 43) non-fallers (n = 42)

Characteristics Median Mean SD Range Median Mean SD Range p-values

Age (years) 74.0 73.21 4.26 65–83 71.0 71.52 4.55 65–84 0.027*

TUG (seconds) 13.38 17.42 10.55 7–62 11.0 11.97 3.55 6.7–22 0.003*

FR (cm) 21.0 19.97 7.79 3–33 28.5 26.79 8.67 10.9–42 <0.001*

WMLV (cm3) 12.13 22.33 20.66 4.37–94.21 2.87 4.85 4.68 0.30–17.84 < 0.001*

Gender (% male) 34.9 28.6 0.534

Ethnicity (%) 0.355

Malay 23.3 9.5

Chinese 58.1 73.8

Indian 14.0 11.9

Others 4.7 4.8

Diabetes (%) 32.6 19.5 0.174

Hypertension (%) 62.8 26.8 0.001*

Stroke (%) 9.3 9.8 0.335

OH (%) 41.9 15.0 0.007*

Syncopal Events (%) 34.9 12.5 0.017*

CSS (%) 9.3 2.5 0.196

VI (%) 20.9 10.0 0.17

OA (%) 11.6 12.5 0.904

PN (%) 9.3 2.5 0.196

*p<0.05

CSS, carotid sinus syndrome; FR, functional reach; OA, osteoarthritis; OH, orthostatic hypotension; PN, peripheral neuropathy; TUG, timed-up-and-go; VI,

visual impairment; WMLV, white matter lesion volume

https://doi.org/10.1371/journal.pone.0179895.t001

Table 2. History of falls for fallers and non-fallers group.

Characteristics Percentages

Fallers (n = 44) Non-fallers (n = 41)

Indoor Falls

No fall 43.2 100

One fall 29.5 0

More than one fall 27.3 0

Outdoor Falls

No fall 36.4 100

One fall 34.1 0

More than one fall 29.5 0

Injury 59.1 0

Medical attention 27.3 0

Hospital admission 13.6 0

Vertigo 11.4 14.6

Presyncope 11.4 14.6

Dizziness 27.3 29.3

LOC 13.6 0

Slips or trips 50 22

Visual Problems 27.3 29.3

LOC, loss of consciousness

https://doi.org/10.1371/journal.pone.0179895.t002
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Results

The demographic characteristics of fallers and non-fallers are presented in Table 1. Fallers ran-

ged between 65 and 83 years in age (mean, 73.21; standard deviation (SD), 4.26), whereas the

non-fallers ranged between 65 and 84 years in age (mean, 71.52; SD 4.55). Both fallers and

non-fallers were predominantly female (65.1% and 71.4% respectively). There was no signifi-

cant difference in the gender and ethnicity of the fallers versus non-fallers. The mean age and

timed-up-and-go (TUG) were higher in the fallers group compared to non-fallers, whereas FR

was lower in fallers compared to non-fallers (mean, 19.97 cm; SD 7.79. vs mean, 26.79 cm; SD

8.67). Fallers had significantly higher white matter lesion volume than non-faller (mean, 22.33

cm 3; SD 20.66 vs mean, 4.85 cm 3; SD 4.68).

Tested individually, clinical variables that demonstrated statistical significances were hyper-

tension, orthostatic hypotension and syncopal events. All the clinical variables with significant

differences showed higher fractional values in the fallers group compared to the non-fallers.

Fig 2. The tract-based spatial statistics (TBSS). The tract-based spatial statistics (TBSS) showing mean

diffusivity (MD) voxels of the white matter tracts that demonstrated significant differences between the fallers

and non-fallers. TBSS skeleton (green); p <0.05 (red-yellow); significance levels gradient (red < orange <
yellow).

https://doi.org/10.1371/journal.pone.0179895.g002

Microstructural white matter tracts of older fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0179895 June 28, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0179895.g002
https://doi.org/10.1371/journal.pone.0179895


Table 2 describes the history of falls of the fallers and non-fallers group. Most of the fallers had

one indoor or outdoor fall with the presence of several associated symptoms such as vertigo,

presyncope, dizziness, loss of consciousness, slips or trips or visual problems.

Using TBSS, significant differences in the white matter tracts are seen between the fallers

versus non-fallers in the MD and AD values genu/body/splenium of corpus callosum, fornix,

anterior /posterior/ retrolenticular part of the internal capsules, external capsule, anterior/pos-

terior/superior corona radiata, posterior thalamic radiation, superior longitudinal fasciculus,

superior fronto-occipital fasciculus and tapetum (Figs 2 & 3 and S1 Table). The RD values

showed significant differences in the genu/body/splenium of corpus callosum, anterior part of

the internal capsule, anterior/posterior/superior corona radiata, external capsule, superior

fronto-occipital fasciculus and both tapetum (Fig 4). The white matter fibers involved are

mainly the projection and commissural bundles. The FA values of the tracts however did not

demonstrate significant differences between fallers and non-fallers.

Fig 3. The tract-based spatial statistics (TBSS). The tract-based spatial statistics (TBSS) showing axial

diffusivity (AD) voxels of the white matter tracts that demonstrated significant differences between the fallers

and non-fallers. TBSS skeleton (green); p <0.05 (red-yellow); significance levels gradient (red < orange <
yellow).

https://doi.org/10.1371/journal.pone.0179895.g003
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To take into account all the confounding factors that may contribute towards falls, we then

performed a multiple logistic regression analysis. Clinical variables known to be related to falls

which demonstrated significant differences in univariate analysis (age, TUG, FR, WMLV, hyper-

tension, orthostatic hypotension, and syncopal events) were entered for stepwise backward elimi-

nation of the non-significant variables. The final logistic regression model obtained showed that

only functional reach (FR), white matter lesion volume, hypertension and orthostatic hypotension

demonstrated statistical significant differences between fallers and non-fallers, with age retained

in the model although no significance is shown (Table 3). Age and the four clinical variables were

then incorporated as covariates in the repeated TBSS analysis. No significant difference was found

after rerunning the TBSS analysis taking into account the covariates (Fig 5).

Discussion

This is the first study utilising DTI for whole brain white matter tract analysis while taking into

account confounding factors of fallers in an ageing multi-racial Asian population. DTI has

Fig 4. The tract-based spatial statistics (TBSS). The tract-based spatial statistics (TBSS) showing radial

diffusivity (RD) voxels of the white matter tracts that demonstrated significant differences between the fallers

and non-fallers. TBSS skeleton (green); p <0.05 (red-yellow); significance levels gradient (red < orange <
yellow).

https://doi.org/10.1371/journal.pone.0179895.g004
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been shown to be a reliable technique to detect microstructural abnormalities in the individual

white matter tracts [22]. Using whole-brain TBSS analysis, we found significant differences in

MD and AD values for various white matter tracts between fallers and non-fallers. Significant

tracts included the projection fibers and commissural bundles.

Previous studies evaluated the relationship between motor disturbances, grades and DTI

metrics in Parkinson’s patients and found association between motor disturbances and the

DTI abnormalities in the body of the corpus callosum [23, 24]. Several studies have concluded

that older people with increased risk of falls have gait and DTI abnormalities in a number of

WM tracts, which include genu and splenium of the corpus callosum, corticospinal tract, ante-

rior limb of internal capsule medial frontal and parietal subcortical pathways, and frontal-pari-

etal-temporal longitudinal pathways [11, 12, 25, 26]. Further studies [27–29] have reported

that increases in AD are linked to axonal damage which unveils potential structural changes

associated with falls in older adults. An AD change not accompanied by FA changes is thought

to represent widespread tissue damage, gross tissue loss, increased extracellular space as a

result of axonal atrophy secondary to Wallerian degeneration [30, 31]. Increased MD in DTI

measurements are considered non-specific and are associated with inflammation or oedema

[32].

The microstructural changes in major WM tracts are associated with age-related changes in

adults older than 50 years [33]. WM degeneration appears to be detectable in even healthy

older individuals while aging has been shown to be accompanied by functional decline even in

the absence of disease [34]. The decline in WM microstructural organization was reported to

be associated with lower gait stability [35–37]. In our study, age did not contribute significantly

to the outcome of falls when taking into account the other contributing factors.

Aside from the clinical parameters such as FR, hypertension and orthostatic hypotension,

the imaging parameter of significant values is total WML volume in fallers. WML affect the

information processing speed and executive function [38]. WML had also shown to increase

Table 3. The logistic regression analysis of the covariates using backward LR selection.

95% CI for Odds Ratio

Step B (SE) Odds Ratio Lower Upper p-value

First step Age -0.209 (0.108) 0.812 0.657 1.003 0.054

TUG 0.036 (0.069) 1.037 0.907 1.186 0.596

FR -0.128 (0.054) 0.880 0.791 0.979 0.019*

WML 0.286 (0.081) 1.332 1.135 1.562 <0.001*

HPT 1.981 (0.860) 7.250 1.343 39.154 0.021*

OH 1.489 (0.888) 4.431 0.778 25.240 0.094

VS 1.424 (1.098) 4.156 0.483 35.752 0.195

Constant 13.347 (7.611)

Final step Included

Age -0.183 (0.103) 0.833 0.681 1.020 0.076

FR -0.151 (0.050) 0.860 0.779 0.949 0.003*

WML 0.276 (0.076) 1.318 1.136 1.530 <0.001*

HPT 1.750 (0.821) 5.757 1.152 28.761 0.033*

OH 1.903 (0.850) 6.707 1.268 35.486 0.025*

Constant 12.845 (7.319)

FR, functional reach; HPT, hypertension; OH, orthostatic hypotension; TUG, Timed Up-and-Go; VS, vasovagal syncope; WML, white matter lesion

*p<0.05

https://doi.org/10.1371/journal.pone.0179895.t003

Microstructural white matter tracts of older fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0179895 June 28, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0179895.t003
https://doi.org/10.1371/journal.pone.0179895


the risk of falls in the elderly population. Many cross sectional and longitudinal studies have

shown that white matter changes within the brain are associated with falls, gait and balance

disturbances [9–11].

To understand the confounding effects of the clinical and imaging variables towards

the outcomes (fallers and non-fallers), a multiple binary logistic regression analysis was per-

formed, which identified functional reach, WML volume, hypertension, and orthostatic hypo-

tension as independent predictors of falls. Repeated TBSS analysis accounting for age and

these four variables demonstrated that DTI metrics did not contribute significantly to the out-

comes independent of the covariates, which identifies that the difference in DTI metrics

between fallers and non-fallers were mediated by the differences in dynamic balance, WML

volume and blood pressure drop with posture change between the two groups [39].

Hemodynamic changes related to orthostatic hypotension were reported to be associated

with white matter changes and white matter hyperintensities volume in patients with

Fig 5. The tract-based spatial statistics (TBSS). The tract-based spatial statistics (TBSS) showing medial

diffusivity (MD) voxels of the white matter tracts between the fallers and non-fallers, taking into account age,

functional reach (FR), white matter lesion volume, hypertension and orthostatic hypotension as covariates.

TBSS skeleton (green).

https://doi.org/10.1371/journal.pone.0179895.g005
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neurodegenerative disorder [40, 41]. Another factor that was identified to have an independent

effect on falls is the presence of hypertension as comorbidity. Hypertension is a known vascu-

lar risk factor associated with WML or leukoaraiosis. There is increasing evidence that the

underlying pathophysiology of leukoaraiosis is due to microvascular disease secondary to

hypertension resulting in chronic cerebral ischemia [42, 43].

Several limitations were apparent in our study. Due to the presence of susceptibility arte-

facts at the brainstem and cerebellum in our DTI datasets, the white matter tracts assessment

for a number of subjects had been eliminated from our analyses. Our study was limited by its

relatively small sample size and cross-sectional design, therefore limiting any causal inference.

The assessment of falls was retrospective based on patient history that may be inaccurate. A

larger, prospective study should now be conducted to evaluate WM integrity and their correla-

tion with new falls or new motor disturbances in older adults.

Conclusion

Overall DTI data suggests that there are changes in the white matter micro-structural integrity

in projection fibers and commissural bundles in fallers. However, DTI is not a singular factor

that contributes independently to the fall outcomes in the presence of functional reach, WML

volume, hypertension, and orthostatic hypotension. This novel finding importantly highlights

the potentially synergistic relationship between postural blood pressure fluctuations, balance

disorders and structural abnormalities observed among fallers. Prospective evaluation of this

relationship is required to establish the potential causal relationship between these factors.
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