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Cancer cell proliferation is a metabolically demanding process that requires high rate of
glycolysis to support anabolic growth. Deoxypodophyllotoxin (DPT) is a natural
flavonolignan with various pharmacological activities, including antitumor effect. However,
whether DPT affects the metabolic reprogramming of cancer cells is unknown. The purpose
of this study is to investigate the role of DPT on non-small cell lung cancer (NSCLC) and to
explore whether HIF-1a-mediated glycolysis is involved in its mechanism of action.The level
of HIF-1a mRNA and protein in NSCLC cells following DPT treatment was detected using
qRT-PCR and western blotting, respectively. Cell Counting Kit-8 (CCK-8) and caspase-3
activity assays were performed to analyze cell proliferation and apoptosis. The underlying
molecular mechanism was identified by dual luciferase assay, Western blotting, qRT-PCR,
glucose consumption, lactate production, and immunoprecipitation. A murine NSCLC
model was used to clarify the effect of DPT treatment on tumor cell proliferation. Our
findings showed that DPT treatment inhibited NSCLC cell growth in a dose- and time-
dependent manner. Further analysis suggested that DPT treatment inhibited HIF-1a
signaling pathway by Parkin-mediated protein degradation in NSCLC cells. DPT
treatment significantly decreased glucose consumption and lactate production. In
addition, DPT treatment reduced the expression of HIF-1a target genes, including
GLUT1, HK2 and LDHA, resulting in reduction in glycolysis. We further revealed that
DPT-induced cell growth inhibition and increased glucose and lactate levels could be
reversed by overexpressing HIF-1a. Additionally, we found that DPT repressed NSCLC
growth and GLUT1, HK2 and LDHA expression in vivo. Overall, this study suggested that
DPT inhibited NSCLC growth by preventing HIF-1a-mediated glycolysis.
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INTRODUCTION

Lung cancer is the most frequently diagnosed cancer and its
incidence has been increasing in recent years (1, 2). Lung cancer
remains a leading cause of cancer-associated mortality for men
and women worldwide (1). The development of lung cancer is a
multistep process involving alterations in oncogenes and tumor
suppressor genes, and alsoother factors such as alcohol
consumption, smoking, pathogenic infections and genetic
factors (3–5). NSCLC accounts for over 80% of all lung cancer
cases.Because the onset of NSCLC is asymptomatic,NSCLC is
usually diagnosed in late clinical stages when surgical resection is
not possible. The current prognosis of patients with NSCLC is
very poor with a 5-year overall survival (OS) rate of only 10% (6,
7). Thus, there is an urgent need to find novel and effective
means for the treatment of NSCLC.

Aerobic glycolysis, also known as the Warburg effect, was
discovered almost a century ago (8–10). It has been considered as
a hallmark of cancer. Another hallmark of cancer is hyper-cell
proliferation. In addition to the high energy requirements of
enhanced proliferation, cell division also requires large amounts of
biomolecules, including nucleic acids and lipids, for which glucose is
an important biosynthetic precursor. Enhanced levels of glucose
transporters and enzymes in the glycolytic pathway and upregulated
lactate level are often found in NSCLC cells, and inhibition of
aerobic glycolysis arrests cancer cell proliferation (11–13).

Hypoxia inducible factor 1a (HIF-1a) is one of the primary
glycolytic regulators. HIF-1a is ubiquitinated by the von
HippelLindau protein and degraded via the proteasomal
pathway under normoxic condition (14, 15). Due to the low
oxygen content in most solid tumors, the glycolytic enzymes are
consistently upregulated in cancer cells (9, 16, 17). Increased
HIF-1a protein level isinduced by activated RAS, loss of p53 or
increased heat shock protein 90 (Hsp90) in cancer cells
regardless of the availability of oxygen (18–21). The glycolytic
proteins,glucose transporter 1 (GLUT1), hexokinase 2 (HK2)
and phosphoglycerate kinase 1 (PGK1) are genes that are
upregulated by HIF-1a (22). Therefore, targeting HIF-1a-
mediated metabolic pathways in tumor cells has been
hypothesized to be a valuable therapeutic strategy.

Deoxypodophyllotoxin (DPT) is a natural flavonolignan that
destabilizes microtubules and has various pharmacological
activities, including anti-inflammatory, antiviral and
antitumoreffects (23–25). Although there have been some
studies on DPT (26, 27), the mechanism of its antitumor
activity in NSCLC has not been elucidated. This study aims to
investigate the potential therapeutic effect of DPT and its
mechanism of action in NSCLC and to explorethe involvement
of HIF-1a-mediated glycolysis.
MATERIALS AND METHODS

Cell Culture and Drug Treatment
The human NSCLC cell lines A549, SK-MES-1, H460, and SPC-
A1 were obtained from the Cell Bank of Type Culture Collection
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of Chinese Academy of Sciences (Shanghai, China) and were
cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, Waltham, MA) supplemented with 1% penicillin-
streptomycin at 37°C with 5% CO2and 21% O2. Cells were
treated with different concentrations (0, 4, 8, 12, 16, and 20 nM)
of DPT for 12, 24, and 48 h. Then, the cells were subjected to the
following experiments.

Cell Transfection
For transfection, 2 × 104 A549 or SK-MES-1 cells were seeded in
each well of a 24-well plate. After 24 h, the cells were transfected
with the control or HIF-1a overexpressing plasmid (pcDNA-
HA-HIF-1a , MobaiBiotech. , Nanjing, China) using
Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA)
according to the manufacturer’s instructions. Cells were
harvested for analysis after 48 h. DPT (16 nM) was added to
the medium 48 hbefore the experiment.

CCK-8 Assay
Cell viability was assessed by the Cell Counting Kit-8 (CCK-8)
assay (DOJINDO, Kumamoto, Japan) at 12, 24, and 48 h of drug
treatment. Cells (5 × 103 cells/well) were seeded in 96-well plates
and incubated with different concentrations (0, 4, 8, 12, 16, and
20 nM) of DPT for 12, 24, and 48 h. Then, 10 µl of CCK-8 assay
solution was added to each well and incubated for another 4 h.
Finally, the wells were washed with PBS, dried, and 150 ml of
DMSO was added. Light absorbance was measured by a
microplate reader at 490 nm (Thermo Fisher Scientific).

Caspase-3 Activity Assay
NSCLC cells were cultured in 96-well plates. After DPT
treatment for 48 h in DMEM supplemented with 10% FBS,
caspase-3 activity was measured. A caspase-3 activity assay kit
(Beyotime, China)was used for the measurement of caspase-3
enzymatic activity. Briefly, 50 ml of cell lysis buffer was prepared
by mixing 10 ml Ac-DEVD-pNA (2 mM) and 40 ml buffer and
was loaded into a 96-well plate. After incubation at 37°C for 4 h,
the light absorbance was measured at 405 nm by a microplate
reader (Thermo Fisher Scientific). The caspase-3 activity in each
sample solution was calculated by the standard curve method.
The final results were normalized to the quantity of total protein
using a Bradford protein quantitative kit (Beyotime).

Dual Luciferase Assay
After DPT treatment, the Cignal Finder Cancer 10-Pathway
Reporter Array (Qiagen, Shanghai, China; Cat. No.: 336821)
was used to characterize the signaling pathways that were altered
in NSCLC cells as described previously (28). Then, luciferase
assays were performed to confirm the prediction. Briefly, 1 × 105

A549 or SK-MES-1 cells were transfected using Lipofectamine
3000 (Thermo Fisher Scientific) with 0.2 µg of triple hypoxia
response element (3xHRE). A renilla luciferase plasmid was
cotransfected as a transfection efficiency control. After 24 h,
the cells were harvested, and luciferase activity was measured
using the Dual-Luciferase Reporter Assay System (Promega,
Madison, WI, USA) according to the manufacturer’s protocol.
February 2021 | Volume 11 | Article 629543

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. DPT Targets NSCLC Aerobic Glycolysis
Real-Time Quantitative PCR
Total RNA from cells and tissues was extracted using TRIzol
reagents (Invitrogen, Carlsbad, CA, USA). RNA was reverse
transcribed into cDNA using the Reverse Transcription System
Kit (Promega). The reaction mixture was as follows: SYBR
Premix Ex Taq II (Bio-Rad, Hercules, CA, USA), 2 ml of
cDNA, 5 ml of 2× master mix, 0.5 ml forward/reverse primer
and 2 ml of pure water. RT-PCR was performed on an
ABI7900HT machine (Applied Biosystems, Foster City, CA)
with 3 replicates. Amplification conditions were 95°C for
5 min, followed by 40 cycles of 95°C for 15 s and 60°C for
1 min. Primers were obtained from GeneScript (Nanjing, China),
and their sequences were as follows: HIF-1a: Forward 5′-TTGC
TCATCAGTTGCCACTTCC-3′, Reverse 5′-AGCAATTCATC
TGTGCTTTCATGTC-3′; CAIX: Forward 5′-GGATCTACCTA
CTGTTGAGGCT-3′, Reverse 5′-CATAGCGCCAATGACT
CTGGT-3′; GLUT1: Forward 5′-GATTGGCTCCTTCTC
TGTGG-3′, Reverse 5′-TCAAAGGACTTGCCCAGTTT-3′;
HK2: Forward 5′-GAGCCACCACTCACCCTACT-3′, Reverse
5′-CCAGGCATTCGGCAATGTG-3′; LDHA: Forward 5′-
AAGCGGTTGCAATCTGGATTCAG-3′, Reverse 5′-GGTGAA
CTCCCAGCCTTTCC-3′; and GAPDH: Forward 5′-TGACGT
GGACATCCGCAAAG-3′, Reverse 5′-CTGGAAGGTGGA
CAGCGAGG-3′. Data were calculated by the 2-DDCq method
after normalization to b-actin mRNA level.

Western Blot Analysis
Cells were washed with PBS and homogenized in RIPA buffer
(Roche, Basel, Switzerland). Proteins were separated by 10%
SDS-PAGE (Roche) and transferred to a polyvinylidene fluoride
membrane (Millipore, Burlington, MA). Membranes were
blocked with 5% skim milk in TBST (TBS with 20% Tween-
20) for 2 h at room temperature before incubation with primary
antibodies against b-actin (Cell Signaling Technology, Cat. No.
4970; 1:1000), FLAG (Proteintech, Cat. No.66008-3; 1:1,000),
p21 (Proteintech, Cat. No. 66214-1; 1:1,000), and HIF-1a (Cell
Signaling Technology, Cat. No. 36169; 1:1,000) at 4°C overnight.
Afterward, the membranes were incubated with a secondary
antibody (Cell Signaling Technology, Cat. No. 7074; 1:5,000) for
1 h at room temperature. Bands were visualized by
SuperSignalWest Pico Chemiluminescent Substrate (Thermo
Fisher). b-actin was used as an internal loading control.

In vitro Ubiquitination Assay
For in vitro ubiquitination assays, NSCLC cells were transfected
with pcDNA-HIF-1a (MobaiBiotech.) and the transfected cells
were treated with 16 nM DPT for 48 h. Cell lysates were
harvested and HIF-1awas purified by immunoprecipitation.
Purified HIF-1a protein (0.4 mg) was incubated with reaction
mixtures (50 ml) consisting of buffer [5mM MgCl2, 50mM Tris
(pH 7.4), 1mM DTT, and 2mM ATP], 0.5 µg of E1 (Boston
Biochem, Cambridge, MA, USA), 0.5 µg of E2 (UbcH7; Boston
Biochem), 5 µg of Ub (Boston Biochem), and 0.5 µg of PINK1
(Boston Biochem). After incubation for 3 h at 37°C, the postreaction
mixtures were used for Western blot analysis with an anti-Ub
antibody (sc-8017, Santa Cruz Biotechnology, TX, USA; 1:2,000).
Frontiers in Oncology | www.frontiersin.org 3
Immunoprecipitation
Immunoprecipitation assay was performed as described previously.
A549 cells were transfected with pcDNA-FLAG-Parkin(MobioTech.)
for 24 h with or without DPT (16 nM DPT) and lysed in EBC buffer
for 30 min. The precleared soluble supernatants were centrifuged at
12,000 × g for 20 min at 4°C to remove the debris. The lysates were
mixed with 1 g of anti-FLAG (Proteintech, Cat. No. 66008-3)
antibody for 16 h at 4°C, followed by precipitation of the protein
A/G-agarose beads. After washing the immune complexes, the bound
proteins were resuspended in sodium dodecyl sulfate sample buffer,
separatedby sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, and incubated with antibodies to HIF-1a, p21, or
FLAG. The elution was analyzed by Western blotting.

Glucose Consumption and Lactate
Production Measurements
To determine whether DPT treatment altered glucose utilization
or lactate production in A549 and SK-MES-1 cells, cells were
plated at 2×105 cells per flask and incubated at 37°C with 5%
CO2. After allowing the cells to attach and grow for 24 hr, 16 nM
DPT was added to the flasks and incubated at 37°C for 48 hr. The
medium was collected by centrifugation to remove the cells, and
glucose and lactate levels were detected by standard colorimetric
assay kits for glucose (K606-100, BioVision, Milpitas, CA) and
lactate (K607-100, BioVision) per the manufacturer ’s
instructions. Glucose consumption and lactate production was
calculated as described in the previous report (22).

Tumor Xenograft Assay
All animal experiments were approved by the Animal Care and Use
Committee of Chengdu Medical College (No. 19JY751). Male
athymic nude mice(BALB/cnu/nu) (6–7 weeks old) were purchased
from the Model Animal Research Center(Nanjing, China). To
generate subcutaneous tumors, 4 × 106A549 cells were
subcutaneously injected i nto the flanks of the mice. Tumor sizes
(calculated by the formula volume = length × width2/2) and mouse
weights were measured three times per week using a caliper and an
electronic balancer. The animals were randomly divided into a
vehicle control group and DPT treatment groups (10 or 20 mg/kg
DPT, administered three times a week by intravenous injection).

Statistical Analysis
All experiments were performed at least three times. Statistical
analyses were performed with SPSS software version 18.0 (IBM
Corp., Armonk, NY). Data are displayed as the mean ± standard
deviation (SD). Statistical comparisons between groups were made by
one-way analysis of variance with Tukey’s post hoc test or Student’s t-
test. A p value < 0.05 was considered statistically significant.

RESULTS

DPT Dose- and Time-Dependently
Inhibited the Proliferation and Promoted
Apoptosis of Lung Cancer Cells
To assess the effect of DPT on lung cancer cells, A549, SK-
MES-1, H460 and SPC-A1 cellswere treated with various
February 2021 | Volume 11 | Article 629543
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concentrations of DPT for the indicated time periods, and
CCK-8 assays were performed to measure cell viability. As
shown in Figures 1A–D, DPT suppressed cell viability in a
dose- and time-dependent manner in A549, SK-MES-1,
H460, and SPC-A1 cells. To further investigate the
mechanisms of DPT toxicity, we assessed apoptosis levels
in these NSCLC cells following treatment with 16 nM DPT
for 48 h. Caspase-3 activity was detected and found increased
in the DPT-treated cells compared with the control
cells (Figures 1E–H). These data indicated that DPT can
inhibit cell proliferation and promote apoptosis of lung
cancer cells.
Frontiers in Oncology | www.frontiersin.org 4
DPT Decreased Glycolysis in A549 and
SK-MES-1 Cells

Metabolic pathways in cancer cells are usually reprogrammed to
favor glycolysis, which provides a source of metabolic intermediates
needed for cell proliferation (29). A549 and SK-MES-1 lung cancer
cells treated with 16 nMDPT showed reduced glucose consumption
and lactate production compared with the control cells (Figures
2A–D). Furthermore, the mRNA levels of glycolytic pathway genes,
including GLUT1, lactate dehydrogenase A (LDHA), and HK2,
were significantly decreased in A549 and SK-MES-1 cells following
48 h of DPT treatment (Figures 2E, F).
A B

D

E F

G H

C

FIGURE 1 | DPT dose- and time-dependently inhibited the proliferation and promoted apoptosis of lung cancer cells. (A–D) A549, SK-MES-1, H460 and SPC-A1
cells were treated with different concentrations (0, 4, 8, 12, 16, and 20 nM) of DPT for varying lengths of time (12, 24 and 48 h). Cell viability was detected by CCK-8
assay. (E–H) Apoptosis of A549 and SK-MES-1 cells following treatment with 16 nM DPT for 48 h,detected using acaspase-3 activity detection kit. *P < 0.05, **P <
0.01, ***P < 0.01, compared with the control group; #P < 0.05. ##P < 0.01, compared as indicated.
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DPT Blocked HIF-1a Signaling in A549 and
SK-MES-1 Cells
To further characterize the mechanism by which DPT inhibits A549
and SK-MES-1 cell growth, we performed an analysis on various
signaling pathways using Qiagen Cignal Finder. It was found that
DPT significantly inhibited HIF-1a signaling in both lung cancer
cell lines, indicating impairment ofHIF-1a-dependent signaling
(Figures 3A, B). To examine whether DPT treatment affected
HIF-1a protein levels, A549 and SK-MES-1 cells were transfected
with pcDNA-HIF-1a (Figures 3C, D) in the presence or absence of
DPT for 48 h. As shown in Figures 3E, F, DPT significantly
decreased HIF-1a-dependent luciferase activity following hypoxia
treatment in both cell lines.Furthermore, we examined the
expression ofCA IX, which is a specific target gene of HIF-1a and
is a key mediator of tumor progression (30).As shown in Figures
3G, H, DPT treatment decreased CA IX mRNA expression
compared with the control treatment.
Frontiers in Oncology | www.frontiersin.org 5
DPT Promoted HIF-1a Ubiquitination and
Degradation by Increasing the Interaction
Between HIF-1a and Parkin
As shown in Figures 4A, B, DPT decreased HIF-1a protein level
but had no effect on the mRNA levels. To investigate whether
DPT negatively regulates HIF-1a through ubiquitin-proteasome
degradation, we examined HIF-1a degradation after DPT
treatment. In NSCLC cells transfected with pcDNA-HIF-1a,
DPT decreased HIF-1a protein level and increased the
ubiquitinationlevel (Figure 4C). These data indicatethat DPT
negatively regulates HIF-1a through ubiquitin-proteasome
degradation. Bioinformatic analysis suggested that HIF-1a is
the potential targets of DPT (Supplementary Data), and the
immunoprecipitation results demonstrated that DPT treatment
promoted the interaction of HIF-1a with Parkin, which is a HIF-
1a interacted E3 ligase (31) (Figure 4D), but not p21, which is
another substrate of Parkin (32). These data demonstrated that
A B

D

E F

C

FIGURE 2 | DPT reduced glycolysis in A549 and SK-MES-1 cells. A549 and SK-MES-1 cells were treated with 16 nM DPT for 48 h. (A–D) Glucose consumption
and lactate production detected using specific test kits. The mRNA levels of the glycolytic pathway-related genes including GLUT1, LDHA and HK2 in A549 (E) and
SK-MES-1 cells (F) detected by qRT-PCR. **P < 0.01, ***P < 0.001.
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A B

D

E F

G H

C

FIGURE 3 | DPT inhibited HIF-1a signaling in A549 and SK-MES-1 cells. A549 (A) and SK-MES-1 (B) cells were treated with 16 nM DPT for 48 h. The various
signaling pathways were analyzed using the Cignal Finder Cancer 10-Pathway Reporter Array. A549 (C) and SK-MES-1 (D) cells were transfected with a HIF-1a
expression plasmid in the presence or absence of 16 nM DPT for 48 h. Western blot assay detected HIF-1a protein and quantified by ImageJ. (E, F) HIF-1a
luciferase activity detected using luciferase reporter assay. (G, H) mRNA expression of CA IX in A549and SK-MES-1 cells detected by qRT-PCR. *P < 0.05,**P <
0.01, ***P < 0.001.
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DPT targets HIF-1a and increases the interaction between HIF-
1a and Parkin, followed by HIF-1a degradation.

DPT Inhibited HIF-1a Overexpression-
Induced Cell Growth and Glycolysis
To confirm whether DPT-induced reduction in cell growth and
glycolytic flux is mediated through inhibition of HIF-1a signaling,
A549 and SK-MES-1 cells were treated with 16 nM DPT for 48 h
after transfection with a HIF-1a expression plasmid. HIF-1a
overexpression increased cell viability, glucose consumption and
lactate production, all of which could be reversed by DPT treatment
(Figures 5A–C). These data indicated that HIF-1a is required for
the DPT-induced inhibition of cell growth and glycolysis.

DPT Inhibited A549 Xenograft Growth
In Vivo
We further examined the effect of DPT on HIF-1a and glycolysis in
A549 xenografts in nude mice. The mice were randomly divided
into three groups with 5 animals in each group. As shown in
Figures 6A–C, DPT (10 mg/kg or 20 mg/kg) significantly reduced
xenograft volumes and weights. Additionally, DPT (10 or 20mg/kg)
decreased GLUT1, LDHA and HK2 mRNA levels compared with
Frontiers in Oncology | www.frontiersin.org 7
the control treatment (Figure 6D). These findings indicated that
DPT inhibited tumor growth and glycolysis in vivo.
DISCUSSION

This study investigated the antitumoreffect and potential
mechanism of action of DPT in NSCLC both in vitro and in
vivo. The data revealed that DPT has a potent growth-inhibitory
effect onA549 and SK-MES-1 cells. Additionally, DPT inhibited
the growth of A549 xenograft in vivo. These findings indicated
that DPT may be a potential drug for NSCLC treatment.
Furthermore, our data showed that DPT functions as an
anticancer agent in NSCLC by increasing HIF-1a degradation
to reduce glycolysis. Here, we showed that DPT suppresses HIF-
1a activation at the protein level in NSCLC cells. Moreover,
based on the structure of DPT, two state-of-the-art
computational methods (33, 34) were employed to predict its
potential targets, and HIF-1a was one of the most representedt
argets. Immunoprecipitation indicated that DPT increased the
interaction between HIF-1a and Parkin, and the E3 ubiquitin
ligase promoted HIF-1a protein ubiquitination and degradation.
A
B

DC

FIGURE 4 | DPT promoted HIF-1a ubiquitination and degradation by increasing the interaction between HIF-1a and Parkin. A549 and SK-MES-1 cells (transfected
with pcDNA-HIF-1a) treated with 16 nM DPT for 48 hr. (A, B) HIF-1a mRNA detected by qRT-PCR, and HIF-1a protein detected by Western blot. (C) In vitro
ubiquitination assay detected the effect of DPT on HIF-1aubiquitination in A549and SK-MES-1 cells. (D) Immunoprecipitation detected the interaction of Parkin with
HIF-1a and p21.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. DPT Targets NSCLC Aerobic Glycolysis
The role of DPT has been investigated in multiple cancers,
including breast cancer (35), osteosarcoma (23), gastric cancer
(36) and NSCLC (37). The findings suggested that DPT has a
wide range of effect on tumor development, such as inhibiting
tumor growth, inducing cell cycle arrest, inhibiting angiogenesis
and promoting apoptosis. A previous study also reported that
DPT triggers necroptosis in human NSCLC NCI-H460 cells (37).
To assess the potential antitumor effect of DPT, this study
investigated its time- and dose-dependent activity on lung
carcinoma cell lines. Our data demonstrated that DPT
inhibited cell viability and induced apoptosis. Additionally,
Qiagen Cignal Finder was used to predict the signaling
Frontiers in Oncology | www.frontiersin.org 8
pathways that were altered following DPT treatment by which
we found that HIF-1a was a DPT target.

HIF-1a is degraded under normoxic condition via the
proteasome pathway but is stabilized under hypoxia (38).To
date, a series of studies have reported that HIF-1a expression
could be an important predictor of tumor prognosis, including
for hepatocellular carcinoma, cervical carcinoma and lung cancer
(39–41). A previous study also reported that HIF-1a is
overexpressed in NSCLC and that targeting the HIF pathway
may be a promising approach for NSCLC management (42). In
other reports, DPT has been shown to inhibit cancer cell cycle/
microtubule formation and induce apoptosis/autophagy both in
A B

C

FIGURE 5 | DPT inhibited HIF-1a-induced cell growth and glycolysis.A549 and SK-MES-1 cells treated with 16 nM DPT and the HIF-1a plasmid for 48 h. (A) Cell
viability detected by CCK-8 assay. (B, C) Glucose consumption and lactate production detected using specific test kits. **P < 0.01, ***P < 0.001.
A B

DC

FIGURE 6 | DPT inhibited A549 xenograft growth in vivo. Mice were randomly divided into the vehicle control group and DPT treatment groups (10 or20 mg/kg
DPT). (A, B) In vivo A549 tumor and control xenograft growth curve. Tumor sizes were measured three times per week with a calliper and calculated using the
formula volume = (length×width2)/2. (C) The average tumor weight of the DPT treatment (10 or 20 mg/kg) and control xenografts at the end point. (D) The
mRNAlevel of HIF-1a and glycolytic pathway-related genes including GLUT1, LDHA, and HK2 detected by qRT-PCR. *P < 0.01, **P < 0.01, ***P < 0.001,
n.s., not significant.
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vitro and in vivo (23, 43–46). Our study supports previous data
showing that DPT acts as an anticancer agent through
degradation of HIF-1a.

HIF-1a is a master transcriptional regulator of glycolysis that
controls the expression of amultitude of glycolytic genes, including
HK2, GLUT1, PGM, PGK1 and LDHA (38). Cancer cells exhibit
significant alterations in glucose metabolism compared with normal
cells (47). Previous studies have indicated that cancer cells use
aerobic glycolysis (or Warburg metabolism) to facilitate cell
proliferation by providing sufficient metabolic intermediates (48).
Although some studies have shown that DPT triggers necroptosis in
human NSCLC NCI-H460 cells (37), whether DPT inhibits
glycolysis in NSCLC cells is unclear. In this study, we
demonstrated that HIF-1a overexpression increased glucose
consumption and induced lactate production, both of them could
be reversed by DPT treatment. Additionally, DPT decreased the
expression of genes in the glycolytic pathway. To exclude
mycoplasma infection, which was found to cause major shifts in
cellular metabolism (49), mycoplasma testing was performed on the
cell lines utilized in this study.

As both HIF-1a and DPT have been reported to beassociated
with cancer cell cycle progression (43, 50), cancer cell
microtubule destabilization (45, 51), cancer cell necroptosis
(37, 52) and autophagy (23, 53), our data suggest that the
effect of DPT on cancer cells might occur through the
degradation of HIF-1a. Whether DPT inhibits the NSCLC cell
cycle progression, microtubule destabilization, necroptosis and
autophagy by abrogating HIF-1a requires further study.

Taken together, our study demonstrated that DPT inhibitscell
proliferation of NSCLC by inhibiting glycolysis via
downregulation of HIF-1a expression. Ourin vivo experiments
supported the notion that DPT could be a potential candidate for
NSCLC therapy.
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