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Abstract: In modern vaccines, adjuvants can be sophisticated immunological tools to promote
robust and long-lasting protection against prevalent diseases. However, there is an urgent need
to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases
such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the
cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate
immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific
protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of
“intelligent” vaccines to provide robust protection from pathogens. Various commonly used clinical
adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of
inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases,
resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines
affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes
represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different
inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and
immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to
activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the
NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to
improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that
are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.

Keywords: inflammasome; adjuvant; vaccine; immunogenicity; NLRP3; NLRC4; AIM2; pyrin;
non-canonical; caspase-1

1. Introduction

In the development of modern vaccines, adjuvants play a pivotal role as they can enhance protective
immunity and usually provide an improved safety profile in comparison to live attenuated vaccines [1].
As early as 1924, Gaston Ramon described the first vaccine adjuvants, which enhanced the immune
response to diphtheria and tetanus vaccines [2]. In addition to augmenting the immune response in
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general, adjuvants can also allow vaccine dose sparing - which would enable to increase global vaccine
supply, reduce the number of immunisations, enhance vaccine efficacy in immuno-compromised
individuals, such as young children with a developing immune system and the elderly, or broaden
the immune response against highly variable pathogens, e.g., influenza [3]. Of note, vaccine adjuvant
design and choice should always specifically address the targeted pathogen in order to activate the
appropriate specific pathways. Thus, adjuvants qualitatively and quantitatively direct the immune
system to initiate a pathogen-specific response. Today, a broad range of compounds such as mineral
salts, water and oil emulsions, saponins, liposomes, microparticles and pattern recognition receptors
(PRR)/Toll-like receptors (TLR) agonists are known for their adjuvanticity [4]. Although different
adjuvants have diverse modes of action (MoA) in promoting immunity (reviewed in [5]), the common
feature is to foster activation of innate immune cells, such as dendritic cells (DCs), monocytes,
macrophages or neutrophils in order to boost activation of T- and B-cells, which are then able to mediate
robust and long-lasting immunity against a specific pathogen. In this context, adjuvants can primarily
perform one or more of several functions [5]: (I) creating a depot effect to maintain the release of antigen
at the site of injection, (II) boosting the secretion of cytokines and chemokines, (III) enhancing the
recruitment of innate immune cells at the site of injection, (IV) stimulating antigen uptake by antigen
presenting cells (APCs), (V) enhancing APC maturation/expression of major histocompatibility complex
(MHC) class II and co-stimulatory molecules and migration to draining lymph nodes (dLN) and,
importantly, (VI) activating the inflammasome, which is the main focus of this review. An overview of
inflammasome-activating adjuvants can be found in Table 1.

Table 1. Overview of inflammasome-activating adjuvants.

Adjuvant Description Targeted Inflammasome References

Al(OH)3, AlPO4
Al-hydroxide, Al-phosphate

individually or as part of AS04 NLRP3 [6–10]
[11–15] 1

MF59 Squalene O/W emulsion NLRP3 [16,17] 2

[15,18] 3

AS01
AS02

QS-21 + MPL + liposomes
QS-21 + MPL + O/W emulsion NLRP3 [19–21] 4

AS03 Squalene O/W emulsion + vitamin E NLRP3 5

AS04 MPL adsorbed onto Al(OH)3 or
AlPO4

NLRP3 [6–10] 6

[22] 7

GLA-SE GLA + squalene O/W emulsion NLRP3, Non-canonical [23]

QS-21 Triterpene saponin fraction purified
from Quillaja saponaria NLRP3 [19–21]

ISCOM, IMX
Immunostimulating complex

containing saponins, phospholipids
and cholesterol

NLRP3 [24,25]

CpG-ODN TLR9 agonist (putative
inflammasome-activator) NLRP3 [26]

Ca3(PO4)2 Calcium phosphate NLRP3 [27,28]

TDB
Synthetic trehalose-6,6′-dibehenate
(an analogue of mycobacterial cord

factor trehalose-6,6′-dimycolate)
NLRP3 [29,30]

PLGA Poly(lactic-co-glycolic acid)
microparticles NLRP3 [31]
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Table 1. Cont.

Adjuvant Description Targeted Inflammasome References

Vault NPs Large cytoplasmic
ribonucleoprotein particles NLRP3 [32]

Chitosan Biodegradable cationic polymer
obtained from chitin NLRP3 [10,33–36]

Silica particles Biocompatible particles NLRP3 [37,38]

Gold NPs Gold nanoparticles NLRP3 [39]

Flagellin
Used as recombinant protein, or

encoded in virus replicon or DNA
plasmid

NLRC4 [40–44]

DNA vaccines DNA plasmids or Aim2 encoded in
vector as immunopotentiator AIM2 [45–47]

CTB
Cholera toxin B from Vibrio cholerae,

added to an Ag, or as a DNA
vaccine

NLRP3, Pyrin [48–50]

oxPAPC

Oxidized
1-palmitoyl-2-arachidonoyl-sn-
glycero-3-phosphorylcholine

(generated during tissue damage)

Non-canonical [51–53]

1 These studies suggest that the NLRP3 inflammasome is dispensable for the adjuvanticity of Al salts. 2 These
studies found indications that NLRP3 might be involved in the MoA of MF59 (induction of expression of caspase-1,
IL-1β, and IL-1R1). 3 These studies suggest that the NLRP3 inflammasome is dispensable for the adjuvanticity of
MF59. 4 These studies used components of AS01/AS02: QS-21 + MPL [20]; QS-21 formulated in liposomes [19,21]. 5

AS03 is listed as a putative activator of NLRP3, since other squalene O/W emulsions (MF59, GLA-SE) have been
suggested as potential inflammasome activators. 6 These studies used components of AS04 (Al salts). 7 This study
showed enhanced adjuvanticity of AS04 compared to Al salts (increased NLRP3 activation through MPL mediated
TLR4 priming is a potential explanation). Abbreviations: aluminium (Al), oil-in-water (O/W), adjuvant system (AS),
antigen (Ag), glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), nano particles (NPs), immunostimulating
complex (ISCOM), ISCOMATRIX (IMX), poly(lactic-co-glycolic acid) (PLGA), trehalose-6,6′-dibehenate (TDB),
cholera toxin B (CTB), oxidized phospholipids (oxPAPC), absent in melanoma 2 (AIM2), nucleotide-binding
oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3), NLR family CARD
domain-containing protein 4 (NLRC4), CpG oligodeoxynucleotide (CpG-ODN); 3-O-desacyl-4′-monophosphoryl
lipid A (MPL); Quillaja Saponaria fraction 21 (QS-21).

Inflammasomes are cytosolic multiprotein signalling platforms that drive the activation
of inflammatory caspases [54]. ‘Canonical’ inflammasome complexes are made of specialised
(germline-encoded) PRRs that couple to the effector enzyme pro-caspase-1, typically via adaptor
molecule called apoptosis speck-like protein containing a caspase activation and recruitment domain
(ASC) [55]. Best characterised PRRs that make up ‘canonical inflammasomes’ are nucleotide-binding
domain, leucine-rich repeat receptor (NLR) family, pyrin domain containing 1 (NLRP1); NLR family,
pyrin domain containing 3 (NLRP3); NLR family, caspase activation and recruitment domain
containing 4 (NLRC4); absent in melanoma 2 (AIM2), and pyrin. There is also a ‘non-canonical’
inflammasome, made of inflammatory caspase-11 in mice, and caspase-4 or -5 in humans [55]. In general,
inflammasomes recognise diverse pathogen-associated molecular patterns (PAMPs), danger-associated
molecular patterns (DAMPs), or the loss of cellular homeostasis. All canonical inflammasomes drive
a common downstream response: activation of pro-caspase-1 to cleave pro-inflammatory cytokines
interleukin-1 beta (IL-1β) and IL-18 and induce the secretion of their active forms. Activated caspase-1
also cleaves a pore-forming protein Gasdermin D (GSDMD), to create a large plasma membrane
pore in the cell in which the inflammasome was activated. GSDMD pore allows rapid release of
IL-1β and IL-18, causes cell swelling and ultimately leads to a pro-inflammatory form of cell death,
called pyroptosis. Pyroptosis releases more DAMPs and alarmins, including IL-1α, and sustains the
inflammatory reaction (Figure 1).
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of pro-IL-1β and pro-IL-18 as well as the secretion of their mature forms. Activated caspase-1 also 
cleaves and activates GSDMD, resulting in pore formation and pyroptosis, which mediates the release 
of pro-inflammatory DAMPs such as IL-1α or HMGB1. Caspase-11 cleaves GSDMD and induces 
pyroptosis, but it does not process pro-IL-1β or pro-IL-18. However, non-canonical inflammasomes 
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Figure 1. Vaccine adjuvants can activate inflammasomes. Clinically approved (black) and
experimental (grey) vaccine adjuvants induce (or possibly induce) assembly and activation of canonical-
(NLRP3, NLRC4, AIM2, Pyrin) and non-canonical (caspase-11 in mice, caspase-4/5 in humans)
inflammasomes. Canonical inflammasomes recruit caspase-1 via the adaptor molecule ASC, which
leads to proximity-induced auto-processing and activation of caspase-1, resulting in cleavage of
pro-IL-1β and pro-IL-18 as well as the secretion of their mature forms. Activated caspase-1 also
cleaves and activates GSDMD, resulting in pore formation and pyroptosis, which mediates the release
of pro-inflammatory DAMPs such as IL-1α or HMGB1. Caspase-11 cleaves GSDMD and induces
pyroptosis, but it does not process pro-IL-1β or pro-IL-18. However, non-canonical inflammasomes
activate the NLRP3 inflammasome, which indirectly induces the maturation and secretion of IL-1β and
IL-18 via the non-canonical route. Abbreviations: apoptosis-associated speck-like protein containing a
CARD (ASC), caspase recruitment domain (CARD), pyrin domain (PYD), high-mobility group box
1 (HMGB1), leucine-rich repeat (LRR), domain present in NAIP, CIITA, HET-E, and TP1 (NACHT),
gasdermin D (GSDMD), reactive oxygen species (ROS), adenosine triphosphate (ATP), coiled-coil (CC),
exon B30.2 domain (B30.2), B-box-type zinc finger domain (BB); immunostimulating complex (ISCOM);
ISCOMATRIX (IMX). Created with BioRender.com (Toronto, Canada).

Many synthetic adjuvants activate inflammasomes, typically in myeloid cells of the innate immune
system. The best characterised inflammasome, NLRP3, is also the most common adjuvant target [56].
NLRP3 expression is induced in myeloid cells via nuclear factor kappa-light-chain-enhancer of activated
B-cells (NF-kB) signalling [57], upon recognition of microbial ligands, such as lipopolysaccharide
(LPS) or its synthetic mimics. The activation of NLRP3 inflammasome is then triggered upon the
loss of cellular homeostasis, for example after membrane damage caused by microbial pore-forming
toxins, membrane permeabilising saponins, or during uptake of crystalline compounds such as
aluminium crystals or uric acid crystals [58]. NLRP3 can also be activated during local tissue
damage upon sensing of DAMPs such as extracellular adenosine triphosphate (ATP), accumulation
of reactive oxygen species (ROS) or changes in cell volume [58,59]. NLRP3 does not recognise all
of the above signals directly, rather it detects a common downstream consequence of cell damage,
such as the efflux of potassium ions, or disruption of the trans Golgi network [60,61]. Unlike NLRP3,
other inflammasomes directly recognise specific microbial ligands. For example, NLRC4 detects
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bacterial flagellin in the cytosol, and it has been assessed as the target of flagellin-adjuvanted
vaccines (either admixed or fused to the antigen) [62]. AIM2 detects cytosolic double stranded
DNA, and has been identified as a sensor of DNA vaccines [46]. The non-canonical inflammasome,
pro-caspase-11, detects cytosolic lipopolysaccharide (LPS) (during infection) or oxidated membrane
lipid oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) (generated
during tissue damage) [63]. It also cleaves GSDMD to create the membrane pore and, as a result of
potassium efflux, indirectly activates NLRP3 and caspase-1 to cleave IL-1β and IL-18 [63]. Pro-caspase-11
has been assessed as adjuvant target of emulsion-based vaccines [23]. In this review, we will cover
adjuvanticity of inflammasome-activating substances with a focus on clinically relevant adjuvants.

2. Inflammasome-Mediated Activation of Adaptive Immunity

To understand how inflammasome activating adjuvants can enhance vaccine immunogenicity,
it is fundamental to identify the mechanisms of the inflammasome-induced innate signal transduction
to adaptive immunity, which eventually leads to pathogen-specific protection. An excellent review by
Evavold & Kagan [64] describes how bridging of innate and adaptive immunity via inflammasome
signalling is characterised by two elementary features: (1) maturation of innate APCs, which in
turn initiate T-cell mediated responses, and (2) secretion of cytokines and chemokines to induce a
specific immunological programme [64–66]. APC maturation includes antigen loading on MHC
molecules, expression of the co-stimulatory molecules CD80 and CD86, and the upregulation
and secretion of stimulatory cytokines such as IL-12, which is secreted by DCs to initiate Th1
responses [64,67–70]. These mechanisms can be seen as a ‘direct bridge’ from innate to adaptive
immunity to initiate differentiation of naïve T-cells into effector and memory cells [64]. Additionally,
inflammasome-induced activation of adaptive immunity is realised through an ‘indirect route’ via
secretion of inflammasome-dependent cytokines, IL-1β and IL-18. Inflammasome-activated pyroptotic
cells also release potent DAMPs such as ATP or high mobility group box 1 (HMGB-1) as well as
the pro-inflammatory cytokine IL-1α to sustain inflammation. Even though inflammasome-driven
cell death eventually terminates cytokine release, recent studies suggest that in some cases, upon
inflammasome activation, IL-1β can be released through GSDMD pores from living cells, without
pyroptosis, which might represent a novel mechanism for constant and long-lasting secretion of this
cytokine [51,71].

IL-1α and IL-1β signal via interleukin-1 receptor type 1 (IL-1R1). As IL-1α and IL-1β use
the identical receptor, different outcomes depend on the context of their release rather than on
ligand-specific effects [72]. IL-1R1 signalling sustains pro-inflammatory innate immune responses
by further promoting innate signalling via NF-kB, inducing expression of inflammatory cytokines
and chemokines, endothelial adhesion molecules, and leukocyte recruitment [73]. IL-1R1 drives
adaptive responses by several mechanisms, including: (I) survival of naïve T-cells through induction of
transient IL-2 release, (II) upregulation of the IL-2R, which further enhances survival and proliferation
of naïve T-cells, (III) expansion of naïve and memory T-cells and increase of antibody production of
B-cells through prolonged T-cell help, (IV) reduction of tolerance through expansion of conventional
T-cells in the presence of regulatory T-cells (Tregs), (V) inhibition of cell death in T-cells through the
downregulation of Fas ligand, and (VI) differentiation from naïve T-cells into Th17 cells [64,74–82].
Even in the absence of CD28 co-stimulation, IL-1β potently drives the differentiation into IL-17/IFN-γ
double-producing T-cells (Th17) [83,84] suggesting that IL-1β inducing adjuvants may foster vaccine
immunogenicity against pathogens that require Th17 responses, such as pneumococcal or fungal
infections. Thus, caspase-1-dependent IL-1 release plays an important role in the transition from innate
to adaptive immunity, which is a prerequisite for effective vaccine adjuvants (Figure 2).

IL-18 signals via the IL-18R, which in combination with IL-12 initiates production of IFN-γ in NK
cells, innate lymphoid type-1 cells (ILC1), and Th1 cells, eventually leading to enhanced differentiation
into type-I immunity [64,85–93]. In the context of adjuvants, IL-18 also mediates antigen-specific CD8
T-cell responses [25,94] (Figure 2). The functions of IL-18 signalling are not always proinflammatory,
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and depending on the cytokine milieu and genetic background, IL-18 can also promote T helper type 2
(Th2) differentiation in the presence of T-cell receptor activation [95].

Caspase-1 cleaves and thereby inactivates IL-33. IL-33 receptor Interleukin-1 receptor-like 1 (ST2)
is expressed on innate and adaptive cells, such as alternatively-activated macrophages, type 2 innate
lymphoid cells (ILC2), Th2 cells, and Tregs. IL-33 drives Th2 polarisation and tissue repair responses [73],
and thus by inactivating IL-33, inflammasomes generally block type-2 responses (Figure 2). IL-33 also
augments CD8 T-cell responses by affecting their proliferative and cytotoxic activity [96]. In B-cells,
IL-33 mediates B-cell activation of B-1 type cells for enhanced IgM production [97] and also functions
as a cell-intrinsic regulator of fitness during the early development of B-cells [98].

Not all inflammasome substrates are pro-inflammatory. IL-37 is known to reduce LPS-induced
production of IL-1β and tumor necrosis factor alpha (TNF-α) in vitro and thus may have a role in
shaping the immune response to adjuvants through inhibition of mitogen-activated protein kinase and
NF-kB transcription [99,100]. In support of this, mice expressing human IL-37 transgene developed
lower inflammation and were protected from LPS challenge [101]. IL-37 is a less well understood
inflammasome substrate, because human IL-37 lacks the mouse orthologue that would enable in-depth
genetic and functional studies.
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Figure 2. Caspase-1-dependent cytokines activate adaptive immunity. IL-1α and IL-1β signalling via
IL-1R1 activates the pro-inflammatory transcription factor NFκB via the MyD88 pathway. In addition,
caspase-1 induces NFκB activation through the cleavage of MAL [102]. NFκB activation results in
the production of various pro-inflammatory cytokines such as IL-6 or TNF-α, which (I) enhances
innate and adaptive immune responses and (II) provides a further priming signal for robust
inflammasome-mediated signalling. Cleavage and inactivation of the potent Th2 driver IL-33 by
active caspase-1 blocks Th2 polarisation. Mature IL-1α and IL-1β directly affect lymphoid cells by
promoting differentiation from naïve T-cells into Th17 cells, T-cell survival, or increased antibody
production of B-cells through prolonged T-cell help. After caspase-1-mediated activation, IL-18 binds
IL-18R and thereby initiates the production of IFN-γ eventually inducing enhanced differentiation into
Th1 type immune cells. Abbreviations: antigen presenting cells (APCs), danger-associated molecular
pattern (DAMP), Toll-like receptor (TLR), interleukin 1 receptor 1 (IL-1R1), myeloid differentiation
primary response 88 (MyD88), Myd88 adapter-like (MAL), nuclear factor kappa-light-chain-enhancer
of activated B-cells (NFκB), nucleotide-binding oligomerisation domain, leucine rich repeat and pyrin
domain containing protein 3 (NLRP3). Created with BioRender.com (Toronto, Canada).
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Together, the caspase-1-dependent cytokines have been shown to influence both the humoral
and cellular arms of adaptive responses, and thus may be of relevance for immunogenicity provided
by inflammasome-activating adjuvants. Inflammasomes may be of particular interest for vaccines
targeting cell-mediated immunity [56], as this arm of immune response is the direct place of action for
inflammasome-dependent cytokines.

3. Clinically Relevant NLRP3-Activating Adjuvants

3.1. Aluminium Salt-Based Adjuvants

Aluminium (Al) salts, usually referred to as ‘alum’, were the first reported clinical adjuvants and
were widely used long before the inflammasome was discovered by Jürg Tschopp and colleagues [54].
Chemically, alum is a hydrated sulphate salt of aluminium, originally employed in antigen (Ag)
precipitation and not used as an adjuvant today. However, in the context of vaccine adjuvants, the
typically used salts Al-hydroxide and Al-phosphate are commonly referred to as ‘alum’, often without
making a distinction on the type of salt used. This, in part, is the reason for the ongoing ambiguity in
understanding the MoA of Al-based adjuvants [103]. Al-salts are usually associated with the antigen
through electrostatic attraction, hydrophobic attraction or ligand exchange [104].

In terms of MoA, one of the most studied Al-based adjuvants is Imject, a commercial adjuvant
developed by Thermo Scientific, a formulation comprising Al-hydroxide and Mg-hydroxide. In a
study in 2008, NLRP3 was identified as a sensor for Imject crystal-induced lysosomal damage, in vitro,
albeit requiring LPS-induced priming via TLR4 for robust IL-1β secretion [7].

Three independent studies showed strongly diminished immunogenicity in NLRP3−/− mice
after immunisation with Imject-adjuvanted Ovalbumin (OVA) [6,8,9]. Two studies suggested that
macrophages and mast cells sense both Imject and Alhydrogel (Al-hydroxide, developed by Brenntag,
Germany) [13], inducing the release of host DNA serving as DAMP that mediates the adjuvant
activity [12]. However, a more recent study highlighted differences in the immunostimulatory properties
between Imject, Alhydrogel, and an alum-precipitated Ag, bringing into question the extrapolation
of Imject data to the clinically used Al-adjuvants [105]. A study using human serum albumin (HSA)
as the antigen found that the NLRP3 inflammasome is dispensable for the adjuvant activity of
Al-hydroxide [11]. Later studies confirmed that Al-hydroxide adjuvanticity is independent of NLRP3
and caspase-1 in OVA immunisation models [12–14], with further in vitro studies reporting that
crystalline structures such as Al-hydroxide or uric acid cross-link DC membrane lipids, activating
the spleen tyrosine (Syk) kinase, and mediating adjuvanticity in an inflammasome-independent
fashion [106,107].

Differential results may result from divergent environmental conditions such as the presence of
diverse microbiome patterns, which are known to interact with inflammasomes [108]. In addition, the
use of different Al-hydroxide compositions in varying concentrations may result in altered adaptive
immune responses. Although a divide remains on the ability of Al-hydroxide to activate the NLRP3
inflammasome in vivo, there is growing evidence that the NLRP3 inflammasome is dispensable
for high-level antibody responses induced by Al-hydroxide [15]. In humans, IL-1β blockade using
canakinumab did not reduce antibody responses to Al-hydroxide-adjuvanted meningococcal vaccine
(Menjugate™, GSK, Sienna, Italy) in healthy volunteers [109]. Thus, Al-hydroxide has a questionable
benefit in meningococcal conjugate vaccines and today the licensed quadrivalent meningococcal
conjugate vaccines do not contain Al adjuvants [110].

In addition to the ‘classic’ Al-salt based adjuvants, structurally-modified Al particles are being
assessed for their ability to activate NLRP3. Recently, Sun et al. generated ‘aluminium oxyhydroxide
nanorods’ with a defined surface functionalisation and charge, which enhanced NLRP3 activation
in vitro and increased antibody production in an OVA immunisation model, compared to Al-hydroxide
microparticles [111]. Al (oxy)hydroxide nanoparticles increase the production of uric acid and thereby
enhance NLRP3 activation compared to microparticles, further indicating a relevance of physical
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characteristics for the adjuvanticity of Al particles [112]. In line with this, Orr et al. demonstrated
that, compared to the conventional Al-hydroxide adjuvant (Alhydrogel), consisting of aggregates
of particles in various sizes, newly developed stable nanoparticles (“nanoalum”) provide improved
immunogenicity against lethal influenza challenge in mice [113], dependent on NLRP3, ASC, and IL-18R.

Of note, an earlier study already demonstrated that only positively-charged particulate vaccine
adjuvants such as Al-hydroxide (Alu-Gel-S) or polymer-chitosan nanoparticles (CNPs) activate the
NLRP3 inflammasome [10]. Together, these results indicate that the full potential of Al-salt-based
adjuvants is not yet reached, as physical modification of the size or shape might improve adjuvanticity,
possibly through enhanced activation of the NLRP3 inflammasome.

Al hydroxide is also used in combinatorial adjuvant systems such as AS04 in order to target
multiple pathways [103,114,115]. In the licenced vaccines against the human papillomavirus (HPV,
Cervarix™ GSK, Rixensart, Belgium) and hepatitis B virus (HBV, Fendrix™, GSK, Rixensart, Belgium),
AS04 consists of 3-O-desacyl-4′-monophosphoryl lipid A (MPL-A), an LPS-derivative that activates
TLR4, adsorbed onto Al-hydroxide [115]. Inclusion of MPL-A induces robust TLR4 mediated NFκB
activation, resulting in APC activation, production of the NFκB targets TNF-α and IL-6, and Ag-specific
T-cell activation [115]. Targeting TLR4 via MPL-A improved clinical applications, as AS04-adjuvanted
HPV and HBV vaccines induced higher antibody responses compared to vaccines adjuvanted with
Al-hydroxide alone [22,103,116]. Since TLR priming represents a prerequisite for robust inflammasome
activation in vitro, it may seem plausible that TLR4 priming by MPL-A also enhances inflammasome
activation in vivo. However, whether AS04 provides improved vaccine responses through increased
NLRP3 activation remains to be assessed.

3.2. Saponin-Based Adjuvants

Saponins have been recognised as vaccine-adjuvanting substances for several decades [117].
Their adjuvanticity is based on disrupting the membrane integrity and the induction of danger
signals [114,118]. The most widely used substance from the saponin family is QS-21, a specific triterpene
saponin fraction purified from Quillaja saponaria. Adjuvant systems AS01 and AS02, developed by
GSK, contain QS-21 in combination with the TLR4 agonist MPL-A and liposomes, or MPL-A in an
oil-in-water emulsion, respectively [119]. AS01 especially is of clinical relevance, as part of the malaria
vaccine Mosquirix™ (currently in pilot introduction in Africa, GSK, Rixensart, Belgium) and the
licenced vaccine against herpes zoster, Shingrix™ (GSK, Rixensart, Belgium). Recently, Marty-Roix et al.
clearly demonstrated that clinical grade QS-21 activates the NLRP3 inflammasome in an ASC-, TLR4-,
myeloid differentiation primary response 88 (MyD88)-, and TIR-domain-containing adapter-inducing
interferon-β (TRIF)-dependent manner in murine bone marrow-derived DCs (BMDCs) and suggested
phagocytosis, followed by lysosomal acidification, as a possible mechanism [20]. Furthermore, they
showed that caspase 1/11 double-deficient BMDCs and macrophages exhibit strongly reduced
IL-1β secretion upon stimulation with QS-21. These results raise the question whether QS-21
targets the NLRP3/caspase-1 axis directly or via the non-canonical inflammasome (caspase 11 in
mice, caspase 4/5 in humans), which induces NLRP3-dependent caspase-1 activation by promoting
potassium efflux [120–122]. Importantly, QS-21-mediated NLRP3 activation requires co-stimulation
with MPL-A, indicating that TLR priming is a prerequisite for robust inflammasome activation by
QS21 in vitro [20]. In contrast, in vivo immunization with QS-21-adjuvanted HIV-1 gp120 showed
that QS-21 indeed enhances antibody and T-cell responses in mice but NLRP3 deficiency boosted
these effects, indicating that NLRP3 might decrease QS-21-induced Ag-specific responses in vivo [20].
In human monocyte-derived DCs, cholesterol-dependent endocytosis of QS-21 formulated in liposomes
induced lysosomal membrane permeabilisation and activated DCs in a Syk kinase- and cathepsin
B-dependent manner [21]. This lysosomal destabilization may in parallel induce activation of the NLRP3
inflammasome. A further study demonstrated that immunisation with QS-21 in liposomes leads to an
enrichment of QS-21 in CD169+ resident macrophages in the dLN, which activates caspase-1 and results
in innate cell recruitment, DC activation, and T-cell priming [19]. In contrast to the results of Marty-Roix
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et al. [20], T-cell responses were diminished and antibody responses were unaltered in caspase-1
deficient mice after immunisation with QS-21/liposome formulation [19]. The caspase-1-dependent
adjuvanticity of QS-21 in liposomes was partially mediated through the release of HMGB1 and reliant
on MyD88, indicating that TLR priming is required for robust QS-21-mediated immunogenicity in vivo.
This study also used caspase-1/11 double-deficient mice, which do not allow to distinguish between
canonical and non-canonical NLRP3 activation. However, membrane permeabilization and DAMP
release as proposed mechanisms indicate canonical NLRP3 activation. Taken together, QS-21 is a potent
activator of the NLRP3 inflammasome, although it requires additional immunostimulatory substances
to exhibit its full adjuvanting potential. Hence, adjuvant systems such as AS01, in which QS-21 and
MPL-A synergistically activate de novo pathways and induce robust antibody and T-cell responses,
represent a sophisticated approach to improve the immunogenicity of modern vaccines [123–125].

Quil A, which is a mixture of saponins extracted from Quillaja saponaria, is a more heterogenous
saponin adjuvant and is part of the immunostimulating complex-based adjuvants ISCOM and
ISCOMATRIX (IMX) [24,126]. Besides Quil A, these formulations contain phospholipids and
cholesterol, forming spherical, cage-like structures 40 nm in diameter. Vaccines formulated with these
adjuvants provide long-lasting antibody responses, a balanced Th1/Th2 response, and generation of
cytotoxic T-cells [127–129]. In 2011, Duewell et al. demonstrated that OVA, adjuvanted with IMX,
induces high levels of IL-1β, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and
IL-12p40 as well as low levels of IL-4 and IL-5 in the dLNs, which indicates early inflammasome
activation and a mixed Th1/Th2 type response [24]. Furthermore, the authors verified caspase-1
dependency of OVA/ISCOM-induced IL-1β secretion in vitro. However, a later study assessed
inflammasome activating characteristics of IMX and highlighted substantial differences between
in vitro and in vivo mechanisms of vaccine adjuvants [25]. Wilson et al. observed IMX-induced IL-1β
production in dLN in vivo and robust NLRP3-, ASC-, and caspase-1/11-dependent IL-1β secretion
in LPS-primed thioglycollate-induced peritoneal macrophages in vitro, suggesting dependence on
lysosomal destabilisation [25]. In contrast, the innate NK cell response to IMX was dependent on
IL-18R but independent of NLRP3 and IL-1R1 in vivo. In line, the IL-18 pathway was crucial for
IMX-OVA-induced adaptive immunity, as IL-18−/− and IL-18R−/− mice showed strongly diminished
levels of Ag-specific CD8 T-cells and IgG2c antibodies, while deficiency in IL-1R1 or NLRP3 had no
effect on adaptive immune responses. Interestingly, TNF-α provided a physiological inflammasome
priming signal, which might substitute for the lack of a TLR agonist in IMX. Together, this study
demonstrated inflammasome-dependent and -independent IMX-induced mechanisms and raised
the question of how IL-18 contributes to IMX-induced immunity in an NLRP3-independent fashion.
Potentially, constitutively expressed IL-18 could be released via APC cell death at the site of injection,
or alternatively other proteases such as caspase-8, able to process IL-18 [130], could substitute for
inflammasome/caspase-1-mediated maturation of pro-IL-18 [25].

Recently, Cibulski et al. assessed adjuvant characteristics of alternative saponin formulations and
replaced Quil A in ISCOM and IMX by fractions extracted from Quillaja brasiliensis to generate Quillaja
brasiliensis fraction 90 (QB-90) and ISCOMATRIX-like Quillaja brasiliensis fraction 90 (IMXQB-90),
respectively [128,131]. Inoculation of mice with QB-90 or IMXQB-90 induced antibody production,
recruitment and activation of myeloid and lymphoid cells in spleen and dLN, and production
of the Th1-type cytokines IFN-γ and TNF-α. In BMDCs, both saponin formulations induced
caspase-1-dependent IL-1β production in vitro, which is in line with the above-mentioned studies of
IMX. However, whether the inflammasome mediates the potential adjuvanticity of QB-90 or IMXQB-90
in vivo, remains elusive.

In summary, the literature clearly demonstrates that saponin-based adjuvants activate the NLRP3
inflammasome pathway to initiate an early IL-1β- or IL-18-mediated innate immune response, but the
impact of this mechanism on adjuvanticity remains a matter of debate. Of note, saponins are usually
used in combination with other components such as TLR agonist or liposomes, and the observed
innate activation is likely a result of additive and/or synergistic effects of the individual components.
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3.3. Emulsion-Based Adjuvants

In the context of adjuvants, emulsions commonly include water-in-oil (W/O) and oil-in-water
(O/W) emulsions such as the prototypes Montanide 720 and MF59, respectively [4,132,133]. Double
emulsions such as water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O), able to induce
biphasic responses, have also been developed for veterinary applications [134,135]. Modern clinically
relevant O/W emulsions, such as MF59 and AS03 - which additionally contains α-tocopherol (vitamin
E)-use the fully metabolisable lipid squalene, produced during cholesterol synthesis in humans [103,136].
They have been used in vaccines against pandemic influenza H1N1 and avian influenza H5N1 [103,119]
and in vaccine development for age-specific groups such as the children and elderly [137,138]. MF59
and AS03 have been shown to recruit CD11b+/MHC-II+ cells and induce IL-12(p40)/IL-5 expression
(MF59) or to recruit monocytes/granulocytes and induce C-C motif chemokine 2 (CCL2), CCL3, IL-6,
CSF3, and C-X-C motif chemokine ligand 1 (CXCL1) (AS03) [16,114,139,140]. Among other cytokines
and pro-inflammatory mediators, expression of the inflammasome related genes caspase-1, IL-1β,
and IL-1R1 are strongly induced by MF59 [16]. Furthermore, MF59 adjuvanticity depends on the
TLR adaptor molecule MyD88 [15], and induces the release of ATP, which can activate the NLRP3
inflammasome via the P2X7 receptor [17]. Nevertheless, two independent studies demonstrated that
NLRP3 is not required for the adjuvanticity of MF59, despite of the necessity for ASC, which also
functions as inflammasome adaptor molecule [15,18]. There are no publications addressing NLRP3
inflammasome activation by the adjuvant system AS03; this might be due to the lack of appropriate
TLR-mediated priming by these emulsions, since GLA-SE, a combination of the synthetic TLR4 agonist
GLA and squalene oil-in-water emulsion, mediates adjuvanticity through NLRP3 activation and TLR4
signalling, inducing robust Th1 and B-cell responses [23]. In contrast, squalene oil-in-water emulsion
alone induced considerably lower adjuvanticity when compared to GLA-SE [23,94]. Interestingly,
besides caspase-1, GLA-SE-mediated adjuvanticity is also dependent on caspase-11, the non-canonical
inflammasome [23]. Altogether, the studies above indicate that squalene oil-in-water emulsion might
be an inducer of canonical and non-canonical NLRP3 inflammasome activation, if supplemented with
a TLR agonist.

3.4. TLR Agonists as Adjuvants

TLRs represent a prominent vaccine adjuvant target due to their potent activation of MyD88
and TRIF-mediated activation of NFκB and interferon-regulatory factors. Thereby, TLR-agonists can
provide the “first step” priming signal for robust NLRP3 inflammasome activation. LPS-analogues,
and thus TLR4 agonists, such as MPL-A or GLA, have been used in the above mentioned combinatorial
vaccine adjuvants AS01, AS02, AS04, and GLA-SE to enhance adjuvanticity of QS-21, Al particles, and
squalene O/W emulsion. Of note, in addition to TLR4, the non-canonical inflammasome represents
an intracellular sensor of LPS in vivo [141], which has not yet been confirmed for MPL-A. MPL-A
alone does not induce caspase-1 activation and IL-1β secretion in vitro [20,21,142]. This is in line with
LPS, which only provides transcriptional upregulation of pro-IL-1β and NLRP3 through priming
and requires a second inflammasome stimulus for robust caspase-1 activation, in vitro [7,57,143].
In contrast, LPS alone is sufficient for IL-β secretion in vivo [141,144], which might also indicate that
MPL-A is a potential inducer of IL-1β secretion in vivo. Interestingly, immunisation with the synthetic
TLR4 agonist GLA induced the production of small amounts of IL-1β in vivo [23]. However, there
are mechanistic differences between LPS and MPL-A, since LPS induced signalling is predominantly
transmitted via MyD88, whereas MPL-A is a TRIF-biased agonist of TLR4, which might explain
its reduced toxicity [145]. Taken together, MPL-A has an immunostimulatory effect and enhances
adjuvanticity of combinatorial adjuvants, but it remains unclear whether it triggers the same pathway
as LPS in vivo.

Among others, adjuvants targeting TLR3 (dsRNA analogues such as poly(I:C)), TLR5 (flagellin),
TLR7/TLR8 (imidazoquinolines such as Imiquimod), or TLR9 (CpG oligodeoxynucleotide) have been
assessed for adjuvanticity [3]. Polyinosinic:polycytidylic acid (Poly-IC) can generate a comprehensive
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immune response, which is suited for anti-viral and tumour vaccines as it activates APCs and induces
memory T and B-cell production [146]. Flagellin may also provide excellent adjuvanticity as it induces
cellular and humoral immune responses through activation of two signalling pathways via TLR5
and NLRC4 [62]. Similarly, TLR7/8 agonists, such as Imiquimod have been shown to activate APCs,
induce humoral and cellular immunity, and especially enhance Th1 responses [147]. Despite safety
concerns regarding the production of autoreactive antibodies, TLR9 agonists have been shown to
induce robust immune responses to the vaccine antigen with no apparent adverse reactions [3,148],
and have been clinically evaluated with a number of infectious disease and cancer vaccines [149].
This includes CpG-adjuvanted vaccines against anthrax, hepatitis B, malaria, and influenza [149].
Clinical trials using CpG in vaccines against anthrax [150,151] and HBV [152] have been especially
promising as they demonstrated rapid and persistent production of protective antibodies, even in
immunocompromised HIV-infected individuals [153,154]. Recently, Kim et al. showed that in vitro,
CpG induces the expression of NLRP3, ASC, caspase-1, and IL-1β in a TLR9-dependent fashion,
suggesting that the NLRP3 inflammasome could be involved in the mechanism of CpG-adjuvanted
vaccines [26].

In summary, TLR agonists can enhance immunogenicity through the activation of different PRRs,
eventually initiating activation of NFκB signalling, which induces a pro-inflammatory signalling
cascade and may provide a priming signal for NLRP3 inflammasome activation in combinatorial
adjuvants. However, in case of the TLR5 agonist flagellin, NLRC4 inflammasome activation is provided
by the same single adjuvant.

4. Experimental Adjuvants That Activate Inflammasomes

In addition to the above inflammasome-activating adjuvants, of which the majority are commonly
used in clinical applications, other substances have been assessed for inflammasome-mediated
adjuvanticity. These include compounds that have been shown to activate NLRP3, NLRC4, AIM2,
pyrin, and the non-canonical inflammasome.

4.1. NLRP3 Inflammasome

Chitosan is a biocompatible and biodegradable cationic polymer obtained from chitin [56]. It has
a good safety profile and has been shown to promote adjuvanticity through induction of Ag-specific
IgG1/IgG2a and Th1/Th2/Th17 responses [155]. Chitosan activates NLRP3-dependent IL-1β secretion
in BMDCs, bone marrow-derived macrophages (BMDMs), and human peripheral blood mononuclear
cells [33,34,36]. In addition to the NLRP3 inflammasome pathway, chitosan also activates the cyclic
GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway to promote cellular
immunity [34]. In combination with CpG, chitosan-promoted Ag-specific Th1, Th17, and IgG2
responses were strongly dependent on the NLRP3 inflammasome in vivo [36]. Adjuvant characteristics
of chitosan have also been assessed in combination with Al-salts. Chitosan-aluminium sulphate
nano-particles, as well as conventional chitosan particles, induced IL-1β production in BMDCs in an
NLRP3- and ASC- dependent manner [35].

The synthetic adjuvant trehalose-6,6′-dibehenate (TDB, an analogue of mycobacterial cord factor
trehalose-6,6′-dimycolate (TDM)) [156], promotes Syk and CARD9-dependent activation of innate
immunity through the C-type lectin Mincle, which mediates adjuvanticity via induction of robust Th1
and Th17 responses [157–159]. Importantly, TDB initiates NLRP3-dependent caspase-1 processing
and IL-1β secretion in BMDCs, which relied on potassium efflux, lysosomal rupture, and ROS
production [30]. Furthermore, TDB-induced recruitment of neutrophils was strongly impaired in
NLRP3−/−mice [30]. A further in vivo study, which used TDB formulated into liposomes, demonstrated
that TDB induces MyD88- and IL-1R1-dependent Th1/Th17 responses independent of IL-18 and IL-33
signalling [29], further supporting the NLRP3 inflammasome as an essential mediator that contributes
to TDB-induced adjuvanticity.
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Calcium phosphate nanoparticles (CaP-NPs) have been demonstrated as a promising adjuvant
candidate due to their ability to induce balanced Th1 and Th2 immune responses as well as their
high degree of biocompatibility and biodegradability [160]. Initially, He et al. showed in a herpes
simplex virus type 2 (HSV-2) challenge model that CaP-NPs induce higher titres of IgG, lower titres
of IgE, and improved protection against HSV-2 compared to Al-hydroxide [161,162]. A later study
demonstrated that CaP crystals induce NLRP3-, ASC-, and caspase-1-dependent secretion of IL-1β
in vitro [28]. However, antibody responses after immunisation with another form of calcium phosphate
- hydroxyapatite - particles were shown to be independent of NLRP3, ASC and caspase-1, indicating
that CaP particles might provide NLRP3 inflammasome-independent adjuvanticity in vivo [27].

Biodegradable and non-degradable nano- and microparticles, have been used for Ag delivery and
as immunopotentiators [56,163]. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles
have been studied as vehicles for antigens (e.g., Hepatitis B surface antigen (HBsAg), tetanus toxoid,
HIV gp120) and TLR-agonist adjuvants, and have been reported to induce humoral immunity through
the induction of Ag-specific IgG1 and IgE [56,164,165]. Sharp et al. showed that PLGA induces NLRP3-
and caspase-1-dependent IL-1β release in vitro [31]. In vivo, PLGA induced IL-6 secretion and innate
immune cell recruitment in an NLRP3-dependent manner, but the production of Ag-specific antibodies
was independent of the NLRP3 inflammasome [31], putting the relevance of NLPR3 in PLGA-mediated
adjuvanticity into question.

Biocompatible silica particles induced NLRP3-dependent IL-1β and HMGB release in human lung
epithelial cells [38]. Furthermore, depending on the size, silica particles induced caspase-1-dependent
IL-1β secretion in BMDMs, and IL-1β-mediated lung inflammation in mice [37]. Interestingly,
Kuroda et al. suggested that silica-induced lysosomal damage also activates the NLRP3-independent
PGE2-inducing pathway, at least in addition to the NLRP3 inflammasome pathway [166].

Moreover, gold nanoparticles, which have been used in cancer vaccines [56,167,168], might also
activate the inflammasome, as particles with a distinct size and shape have been shown to induce
IL-1β and IL-18 secretion in BMDCs [39].

Taken together, the general role of NLRP3 in particle-induced (including particulate Al-adjuvants)
immune responses, and especially regarding adjuvanticity in vivo, remains elusive.

Vaults, which are large cytoplasmic ribonucleoprotein particles that contain three proteins and a
small untranslated RNA [32,169,170], have been shown to display self-adjuvanting properties [171–173].
Zhu et al. engineered vaults that contain the immunogenic Chlamydia trachomatis epitope PmpG-1
and showed that PmpG-1-vaults induce NLRP3-, ASC-, and caspase-1-dependent IL-1β secretion
in human monocytic (THP-1) cells, and PmpG-1 responsive CD4+ T-cells after immunisation in
mice [32]. However, whether adjuvanting vaults promote NLRP3-mediated adjuvanticity in vivo,
remains unclear.

4.2. NLRC4 Inflammasome

The NLRC4 inflammasome is, in addition to the transmembrane receptor TLR5, an intracellular
sensor of bacterial flagellin [55]. Flagellin has been positively evaluated as a broad-spectrum vaccine
adjuvant capable of inducing potent systemic and mucosal adaptive immune responses [62,174].
In humans it has been shown to provide robust antigen-specific humoral immunity to influenza
vaccines and is well tolerated [175,176]. In contrast to NLRP3, which is activated through numerous
different stimuli that induce cellular stress, NLRC4 specifically senses flagellin via NLR family, apoptosis
inhibitory protein 5 (NAIP5) and NAIP6. This raises the question of whether NLRC4 or TLR5 (or
both) are required for robust flagellin-induced adjuvanticity rather than flagellin-mediated NLRC4
activation in general. Using Naip5−/− and TLR5−/− mice on a C57/BL6 background, López-Yglesias et
al. demonstrated that IgG2c responses against flagellin are TLR5- and NAIP5-dependent, whereas
the dominant IgG1 responses were only partially dependent. Flagellin-specific IgG1 response was
also mediated by a TLR5-, NAIP5-, and MyD88-independent pathway. Interestingly, flagellin induced
a codominant IgG1 and IgG2a response in A/J mice. After immunisation with flagellin-adjuvanted
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OVA, mice only developed robust OVA-specific IgG1 responses, which were MyD88-dependent
and independent of TLR5, NAIP5, and caspase-1. However, deficiency in both TLR5 and caspase-1
led to reduced IgG1 responses [41]. These results indicate that flagellin-induced adjuvanticity is
mediated through a third TLR5- and NLRC4-independent pathway but requires at least one of the
specific sensors TLR5 or NLRC4 to display its full potential. This is in line with another study
that showed equal OVA- and flagellin-specific IgG1 responses between WT, TLR5−/−, and NLRC4−/−

mice, but strongly diminished antigen specific responses in TLR5/NLRC4 double-deficient mice [44].
Interestingly, flagellin could be a promising alternative to NLRP3-activating adjuvants in vaccines
for immunocompromised patients, as it properly induces inflammasome activation in DCs from HIV
patients that harbour intrinsic NLRP3 defects [177]. Flagellin has also been assessed for adjuvanticity
after administration of a recombinant modified vaccinia virus Ankara (rMVA) vaccine encoding the
flagellin gene. Immunisation with rMVA-flagellin induced enhanced secretion of mucosal IL-1β and
TNF-α, resulting in elevated T-cell and antibody responses, which were diminished in NLRC4−/−

mice [43]. Similarly, incorporating flagellin into the replicon of an alphavirus enhanced IgG1 and
IgG2a/c titres, indicating an enhancement of Th1 and Th2 type responses. The adjuvanticity of the
flagellin-expressing alphavirus was partially dependent on TLR5 [40]. In addition to virus-based
delivery, flagellin has also been administered as a DNA-plasmid encoding the flagellin gene. After
co-immunisation with a second OVA-encoding plasmid, mice showed Ag-specific antibody responses
and MHC Class I-dependent cellular immune responses [42]. Of note, adjuvant delivery via DNA
molecules might also activate the AIM2 inflammasome.

4.3. AIM2 Inflammasome

The AIM2 inflammasome is a sensor that detects intracellular DNA, which can originate from
intracellular pathogens (PAMPs), or endogenous affected cells (DAMPs) that have lost nuclear envelope
integrity [178]. Thus, it is not very surprising that AIM2 has been identified as a sensor of DNA vaccines,
in which the Ag is produced in vivo by the endogenous transfected cells [46]. Here, the DNA plasmid
itself represents an intrinsic adjuvant, which enhances immunogenicity towards the vaccine-encoded
immunogens [46]. However, DNA vaccines have also been used in combination with established
adjuvants such as Al-salts or CpG oligonucleotides [179]. Today, there are no DNA vaccines approved
for use in humans but clinical trials using DNA vaccines against HIV and Hepatitis B have demonstrated
potential immunogenicity [179]. DNA vaccine-induced humoral and cellular Ag-specific adaptive
responses rely on the AIM2 inflammasome, but surprisingly not on IL-1R1 and IL-18R [46]. Interestingly,
IFN-α/β were reduced in Aim2-deficient mice after DNA vaccination, which might indicate that DNA
vaccines induce IFN-α/β signalling, thereby promoting dispensability of IL-1/IL-18 signalling [46].
Recently, two studies demonstrated that DNA vaccines encoding the Aim2 gene itself might be a
promising approach to enhance immunogenicity [45,47].

4.4. Pyrin Inflammasome

The pyrin inflammasome senses inactivating modifications of the Rho GTPase (RhoA), which
regulates cytoskeletal remodelling and is a frequently used pathogen entry route. Therefore, pyrin
can indirectly sense so-called “homeostasis altering molecular processes” (HAMPs), which does
not rely on the detection of conserved molecules and thus facilitates sensing of evolutionary novel
infections [180,181]. Cholera toxin B (CTB) from Vibrio cholerae can be administered as a vaccine adjuvant
in various forms such as Ag-fusion-protein, co-administered with an Ag, chemically coupled to an Ag,
or as a DNA vaccine [182]. Cholera toxin has been shown to induce caspase-1 and IL-1R1-dependent
Th17 responses in human monocytes, which upregulated expression of the inflammasome-related
genes Nlrp1, Nlrp3, and Nlrc4 [48]. However, another study showed that NLRP3 activation differs
between different strain biotypes of toxins secreted from Vibrio cholerae [50]. Recently, Orimo et al.
showed that CTB induces IL-1β production in peritoneal macrophages through the NLRP3 and pyrin
inflammasome [49]. Here, protein kinase A has been suggested to mediate RhoA phosphorylation in
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CTB-induced macrophages, which results in pyrin inflammasome-mediated IL-1β production [49].
Thus, the pyrin inflammasome may contribute to adjuvanticity of CTB.

4.5. Non-Canonical Inflammasome

The non-canonical inflammasome is represented by murine caspase-11 and human caspase-4/5,
which sense intracellular LPS [141,183]. Importantly, Zanoni et al. identified oxPAPC as a further
ligand of caspase-11 [52]. oxPAPC “hyperactivates” living DCs via caspase-11, independent of TLR4 in
an CD14-dependent manner, which results in non-canonical NLRP3 inflammasome activation [52,53].
In contrast to LPS, oxPAPC binds caspase-11 via a different domain, which induces IL-1β/IL-18 release
but not pyroptosis. Of note, GSDMD is the regulator that mediates oxPAPC-induced IL-1 secretion
from living cells [51]. It is currently unknown why GSDMD does not induce pyroptosis downstream
of oxPAPC. The mechanism may involve active repair of GSDMD pores in living cells, but this
remains to be tested [184]. This mechanism of hyperactivated APCs, which induces strong innate
immune responses in absence of pyroptotic cell death might also activate adaptive immunity through
long-lasting pro-inflammatory signalling. Indeed, using an OVA immunisation model, Zanoni et
al. demonstrated that oxPAPC potentiates adaptive immune responses in a caspase-11-dependent
manner [52]. Thus, oxPAPC is a promising candidate for future vaccine adjuvants, which may provide
superior immunogenicity over conventional adjuvants such as Al salts, through hyperactivation and
the lack of pyroptosis.

5. Conclusions

This review of the available literature highlights the complexities of evaluating and ascertaining
the MoA of vaccine adjuvants. Adjuvants include a broad spectrum of compounds, often used in
non-identical formulations between different laboratories, adding to the diversity of observations
in their MoA. Frequently, in vivo experiments revealed substantial discrepancies in the observed
MoA compared to previous in vitro analyses. Although in vitro studies are well suited to identifying
adjuvant targets and generating hypotheses, we conclude that robust in vivo studies using clearly
defined adjuvant formulations are indispensable for generating reliable data of adjuvant mechanisms
of action. For in vivo studies, it is also important to include readouts of cell-based immunity,
in addition to measurements of antibody production, as T-cells are the direct place of action for
inflammasome-dependent cytokines. It must be noted however, that, although murine models
represent an essential element in the pre-clinical development of novel vaccines, translatability to
the clinic is often limited, due to the many differences on the physiological, cellular and molecular
level between the species [185]. In this context it is of paramount importance to thoroughly evaluate
safety profiles of new inflammasome activating adjuvants, since inappropriately strong inflammasome
activation may induce IL-1β mediated inflammatory symptoms, as seen in auto-inflammatory diseases
such as Familial Mediterranean fever or cryopyrin-associated periodic syndromes [186].

Depending on the specific adjuvant, inflammasomes can contribute to immunogenicity as an
important bridge between innate and adaptive immunity. In particular, the NLRP3 inflammasome
is involved in the MoA of established vaccine adjuvants, although the precise impact of NLRP3
activation on their adjuvanticity requires further evaluation. The combination of NLRP3-activating
substances with various TLR agonists, which provide a robust priming signal through upregulation of
pro-inflammatory genes, facilitate greatly enhanced innate immune responses and higher adaptive
responses, resulting in robust and persistent protection from the addressed pathogen. Therefore,
combinatorial NLPR3-activating vaccine adjuvants are a promising approach in advancing clinical
vaccines. Other inflammasome such as NLRC4 also represent a promising target of vaccine adjuvants
as they also induce caspase-1-mediated secretion of IL-1-family cytokines but require a more specific
and tangible trigger with a potentially clearer MoA.

A drawback of inflammasome-activating adjuvants might be the induction of caspase-1-mediated
pyroptosis, which although pro-inflammatory may also terminate immunostimulation as dying
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immune cells cannot provide persistent inflammatory signalling. Here, oxPAPC, an activator of the
non-canonical inflammasome, may be capable of circumventing this issue as it induces the release of
pro-inflammatory cytokines in absence of pyroptosis. Thus, oxPAPC-induced hyperactivation of APCs
could be a promising concept for future vaccines.

In summary, inflammasomes have emerged as highly relevant mediators of the MoA of a number
of vaccine adjuvants, and their engagement should be actively considered during “intelligent” vaccine
design and the development and evaluation of novel immunostimulatory compounds for combating
current and emerging pathogens.
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