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ABSTRACT

An assessment of the equilibrium dynamics of
biomolecular systems, and in particular their most
cooperativefluctuationsaccessibleundernativestate
conditions, is a first step towards understanding
molecular mechanisms relevant to biological func-
tion. We present a web-based system, oGNM that
enables users to calculate online the shape and
dispersion of normal modes of motion for proteins,
oligonucleotides and their complexes, or associated
biological units, using the Gaussian Network Model
(GNM). Computations with the new engine are 5–6
orders of magnitude faster than those using conven-
tional normal mode analyses. Two cases studies
illustrate the utility of oGNM. The first shows that the
thermal fluctuationspredictedfor1250non-homologous
proteins correlate well with X-ray crystallographic
data over a broad range [7.3–15 Å] of inter-residue
interaction cutoff distances and the correlations
improve with increasing observation temperatures.
The second study, focused on 64 oligonucleotides
and oligonucleotide–protein complexes, shows that
good agreement with experiments is achieved by
representing each nucleotide by three GNM nodes
(as opposed to one-node-per-residue in proteins)
along with uniform interaction ranges for all compo-
nents of the complexes. These results open the way to
a rapid assessment of the dynamics of DNA/
RNA-containing complexes. The server can be
accessed at http://ignm.ccbb.pitt.edu/GNM_Online_
Calculation.htm.

INTRODUCTION

An emerging view in structural and molecular biology is
that the conformational mechanisms involved in biomolecular
functions are determined by the intrinsic dynamics of
biomolecules, and the intrinsic dynamics are, in turn, defined
by the overall structural architecture (1). A better understand-
ing of structural dynamics that underlie important biological
functions has been gained in recent years by modeling
biomolecular systems as biomachines. Elastic network (EN)
models and simplified normal mode analyses (NMA), have
proven particularly useful to this aim, as recently reviewed
(2,3). Recently, we have constructed a database (DB) of
protein motions, iGNM (4), by using such an EN model,
the Gaussian Network Model (GNM) (5,6). The dynamics
of 20 058 structures that were accessible in the Protein Data
Bank (PDB) (7) in the fall of 2003 have been collected in the
iGNM DB. The present study builds on this work to introduce
an on-line calculation server, oGNM, for examining the
essential dynamics of the complete set of over 34 000 PDB
structures, as well as that of user-modified and unreleased
structures or models.

Results from the NMAs of proteins can currently be
obtained from a number of online sources. The most detailed
NMA is performed at the atomic level by the Molecular Vibra-
tions Evaluation Server (MoViES; http://ang.cz3.nus.edu.sg/
cgi-bin/prog/norm.pl (8). MoViES calculates the normal
modes and thermal vibrations for relatively small structures
(<4000 heavy atoms), sending the results via email after seven
days. The database of macromolecular movements (MolMovDB;
http://molmovdb.org/) features a web submission interface for
calculating the five lowest frequency modes (9). WEBnm@
(http://www.bioinfo.no/tools/normalmodes) (10) calculates the
slowest fourteen modes and associated deformation
energies. Both systems employ the same Molecular Modeling
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Toolkit (MMTK) package (11) that adopts a residue-level EN
representation. Although both provide the option of generating
and downloading movies of these modes, they are restricted
to the analysis of single domain or single chain proteins,
respectively. Online calculations for larger structures can
be accomplished by elNémo (http://igs-server.cnrs-mrs.fr/
elnemo/index.html) (12). elNémo uses an alternative engine
based upon the Rotation Translation Block (RTB) method (13)
which collapses consecutive residues into rigid blocks, each
representing the nodes in a low resolution EN model. This
server requires minutes, hours or longer to calculate the 100
slowest modes for large structures. Our oGNM server provides
online calculation of normal modes at the residue-level within
a few minutes regardless of biomolecular size.

While a large number of studies have tested and verified the
applicability of EN models to proteins, the optimal model
and parameters for representing nucleotides remains to be
established (14). Two major issues in the application of EN
models to biomolecules are the choice of the particular atoms
for defining the nodes, and the cutoff distance (rc) of inter-
actions that define the connectors/springs between the nodes,
which are carefully considered in building oGNM. In an initial
application of the GNM that accurately described the change
in the fluctuation behavior of tRNAs nucleotides between
the free- and synthetase-bound-forms (15), a single-node-
per-nucleotide, at the phosphorous atom, was used to model
free tRNA, while two-nodes per nucleotide, identified by the
atoms P and O40, were used for tRNA complexed with
synthetase. Because the distance between the P-atoms of base
pair forming nucleotides on adjacent strands varies from 13 to
16 s, a larger cutoff value, rp, was adopted compared to that
(rc ¼ 7 s) commonly used for amino acid nodes (Ca-atoms).
Coarse-graining of nucleotides were found to adequately uncover
the global motions for translation (16,17) and replication
machineries (18). The latter study adopted a three-node-
per-nucleotide model, using the P-, C2- (base) and C40-
(sugar) atoms with the cutoff distances, rp and rc, set to the
same value. Given that the average mass of a nucleotide is
approximately three times that of an amino acid, such a model
may reflect a more consistent EN representation for the entire
network.

The oGNM server offers three major advantages: (i) it is not
limited to relatively small structures, or single domains; (ii) it
returns the results within seconds, i.e. its computational speed
is significantly faster compared to existing servers that may
require minutes, hours or days to obtain the normal modes;
and (iii) it offers a plausible means of elucidating the collective
dynamics of oligonucleotides, or DNA/RNA containing
structures, in addition to proteins, upon suitable selection of
EN model nodes and interaction cutoff distances.

A major utility of such an efficient computational engine is
the possibility of interactively assessing the dynamics of sets of
structures, and notably extracting dynamic features that typify
particular structural or functional families. Recent applications
include the comparison of the motions of fold families such as
motor proteins (19), globins (20) and polymerases (21), the
identification of the highly conserved catalytic triads in
proteases (22), or the elucidation of the correlation between
catalytic sites and key mechanical sites in a series of enzymes
(23). Such analyses suggest that the slow modes provide
information on regions and directions of evolutionary changes

(24) and functional motions (2,3,25). Clearly there is a great
deal of dynamical information/patterns encoded in biomolecu-
lar structures that can be efficiently extracted using the oGNM.

MATERIALS AND METHODS

The Gaussian Network Model (GNM)

The biomolecular structure is modeled as a network of N nodes
identified by the a-carbon atoms of proteins and other selected
atoms of nucleotides (see below). Drawing on the statistical
mechanical theory of polymer networks (26), the fluctuations
of each node are assumed to be isotropic and Gaussian. The
topology of the network is recorded in a N · N Kirchhoff
matrix, G, where the off-diagonal elements are �1 if the nodes
are within a cutoff distance, rc, and zero otherwise (5,6). The
diagonal elements represent the coordination number of each
residue. Assigning a uniform spring constant, g , to all contacts,
the cross-correlations between the fluctuations DRi and DRj of
residues i and j are evaluated as

hDRi ·DRji ¼ ð3kBT/gÞ½G�1	ij 1

where kB is the Boltzmann constant, T is the absolute
temperature and [G�1]ij is the ijth element of the inverse of
G (5,6). Setting j ¼ i in Equation 1, we obtain the mean-square
(ms) fluctuations of residue i, h(DRi)

2i, which may be directly
compared to the corresponding X-ray crystallographic B-factor
Bi ¼ (8p2/3) h(DRi)

2i reported in the PDB, thus providing a
quantitative measure of correlation between computations and
experimental data. GNM yields the distribution of residue
fluctuations; the absolute sizes are found by normalizing the
results with respect to experimental B-factors (Bi

exp), which
permits us to determine g for a given choice of rc.

The equilibrium dynamics of the structure results from the
superposition of N � 1 nonzero modes found by the eigenvalue
decomposition of G. The elements of the kth eigenvector, uk,
describe the displacements of the residues along the kth mode
coordinate, and the kth eigenvalue, lk, scales with the fre-
quency of the kth mode, where 1< k<N� 1. The contribution
of the kth mode to the ms fluctuations of residue i is

½ðDRiÞ2	k ¼
3kBT

g
1

lk
ukuT

k

� �
ii

2

where (ukuk
T)ii designates the ith diagonal element of the

matrix enclosed in parenthesis.

Improved calculation engines

The original implementation of GNM utilized the singular
value decomposition (SVD) routine for the complete eigen-
value decomposition of G. Although sufficiently accurate and
robust for small proteins, this algorithm becomes prohibitive
for very large structures because its computational time scales
with N3. Rather than calculating the full eigenvalue spectrum,
we employ the blocked Lanczos algorithm as implemented in
the BLZPACK software (Marques, 1995) to extract only the
low frequency modes in oGNM.

For a rapid evaluation of Bi
GNM, instead of eigenvalues-

decomposing G into all modes and then adding up all the
non-trivial eigenmodes, we introduce a small perturbation
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of the order of 10�4 in one element of G, which permits us to
readily invert the matrix. We then subtract the zero mode from
this inverse to obtain the correlation matrix (C), which is
verified to be almost identical to the one derived from the
conventional SVD approach. Bi

GNM is obtained from the diago-
nal elements of C. Fast extraction of the dominant mode is
ensured in this perturbation technique via the Power method,
hence the term PowerB for referring to this algorithm (for
details see Supplementary Data). Incorporating both
BLZPACK and PowerB ensures a dramatic decrease in
computing time compared to SVD (see Results).

Selection of a non-homologous set of protein structures

A representative set of non-homologous proteins was retrieved
from the PDB-REPRDB (27) for identifying optimal parame-
ters. To this aim, we eliminated membrane proteins, and small
proteins (N < 40); we retained structures having no chain
discontinuities (gaps) and resolved by X-ray crystallography

with a resolution <2.4 �
ss and R-factor <0.3. We grouped the

resulting set of PDB structures into families, such that
members within each family would have sequence identity
<30% and structural Ca RMSD > 10 �

ss with respect to
members in other families. We further removed proteins
where individual chains reside in different chain families,
and discarded the structures containing more than 5 nt, those
that did not report temperature factors (Bexp), or led to the
‘eigenvalue error’ due to incomplete or inaccurate atomic
coordinates (4), or contained Ca-atoms that were assigned
multiple positions as solved by X-ray crystallography. This
resulted in 1250 families, the PDB identifiers of which are
listed in Table 1, Supplementary Data.

Selection of nucleotide-containing structures to test
competing models

We extracted a representative set of 64 structures from the
2742 structures available in the nucleic acid database (NDB)
(28). Each structure contained at least 70 RNA nucleotides and
had experimental B-factors reported for all heavy atoms.
Additionally, the number of ribosomal RNA complexes was
limited to the four 30S rRNA and seven 50S rRNA structures
with the highest resolution. Three models and a broad range of
rp values were considered to assess the model and parameters
that best reproduce experimental fluctuation spectra: (i) one-
node-per-nucleotide centered on the P-atom (M1), (ii) two-
nodes-per- nucleotide at P- and sugar O40-atoms (M2) and
(iii) three-nodes-per-nucleotide at P-, sugar C40- and base
C2-atoms (M3). The cutoff distances for amino acid-nucleotide
contacts were set to the average, (rc+rp)/2.

RESULTS

Generation of output files

Any file smaller than 10 MB can be submitted in PDB format
to the oGNM website to generate output files. The Kirchhoff
matrix is constructed by default using the Ca atoms (for amino
acids) and P-atoms (for nucleotides) as the network nodes with

respective cutoff distances of rc ¼10 �
ss and for rp ¼19 �

ss; and
the cutoff distance for Ca-P interactions is fixed at the average
of rc and rp, although the user is also allowed to change the

cutoff distances. The current version of oGNM computes
GNM dynamics for structures up to 12 000 nodes. In the
case of NMR structures, calculations are performed for the
first reported model only; however, the user may manually edit
such files and submit any NMR model for calculation.

The output files released by oGNM include (i) the compar-
ison of computed and experimental B-factors displayed as
square fluctuation profiles versus residue index as in Figure 1c
and color-coded ribbon diagrams, (ii) the shapes of the 20
lowest frequency (uk, k ¼ 1, 20) modes (i.e. the square
displacements of the individual residues induced by mode k),
presented as mobility distribution curves and color-coded
ribbon diagrams (Figure 1a and b), (iii) the cross-correlations
between residue fluctuations (Figure 1d), and (iv) the structural
regions/domains subject to anticorrelated motions in selected
modes, shown in two-colored (e.g. blue and red) ribbon
diagrams. A detailed description of the output files, their
formats and significances is provided in previous work (4).
The ms fluctuations of residues are obtained using the PowerB
method, which also yields the correlation coefficient between
Bexp and BGNM, and the value of the effective spring constant, g .
The cross-correlation map gives the normalized correlation

Cij ¼ hDRi·DRji=½hðDRiÞ2ihðDRjÞ2i	1=2
3

between the fluctuations of residues i and j. The correlations
vary between �1 to 1, and they are presented by color-coded
maps as illustrated in Figure 1d. A value of �1 refers to a
perfect anti-correlation between residue fluctuations, i.e. the
motions of residues i and j are coupled but in opposite direc-
tions (colored dark blue), while +1 indicates the perfect
concerted motion in the same direction (dark red). Cij ¼ 0
for uncorrelated (or perpendicular) fluctuations. Currently,
cross-correlation maps are reported for submitted structures
containing less than 500 nodes.

Visualization of results

An interactive 2D Java applet plot viewer is used for visual-
ization of the slow mode shapes and eigenvectors. Users are
able to load selected modes and compare them with each other.
oGNM supports 3D visualization of modes using Chime
plug-in (MDL Information Systems, Inc. www.mdlchime.
com), as in iGNM, and Jmol (http://jmol.sourceforge.net/),
an open source molecule viewer written in Java. Since Jmol is
a cross-platform applet running under the Java Virtual Machine
(JVM) 1.1 included in most popular browsers, it is deployed
easily without requiring the downloading or installation of
additional software. Chime is not available for all the
operating systems. However, both engines are built upon
the Rasmol scripting language allowing users to manipulate
the color-coded structures in similar ways. The default
visualization scheme uses a ribbon diagram representation.
A comparison of these two 3D visualization engines for the
protein/DNA complex, DnaA/DNA (PDB ID: 1j1v) slowest
mode is provided in panels Figure 1a and b.

Improved algorithms afford real-time online
calculations

A small set of 13 proteins structures ranging in size from 159
to 8592 residues was used to benchmark the accuracy and
efficiency of PowerB and BLZPACK implemented in
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oGNM for accelerating the computations. Figure 2 shows the
computing time versus the number of nodes (N) for both
methods as well as the SVD method to calculate all GNM
modes and Bi

GNM. The SVD computing times exhibit a power
law of the form t / N3.3. The PowerB method (blue diamonds)
yields t / N2.04, and BLZPACK (red squares), t / N0.49. The
reduction in computing time is especially remarkable in the
case of large structures. For example, the SVD calculation for
the 5748 residue PDB structure of carbamoyl phosphate
synthetase (PDB ID: 1c30), requires 15.6 h, as opposed to only
6.6 minutes using PowerB to obtain the summation of N � 1
modes, and 4.76 s using BLZPACK to extract the slowest 100
modes. In addition, the correlation coefficient between the
values of Bi

GNM obtained by PowerB and by SVD methods

is unity for all proteins, showing that the PowerB approxima-
tion identically reproduces the results found by SVD.

Cutoff distance has little effect on GNM dynamics
of proteins

A representative protein from each of the 1250 non-
homologous families (Supplementary Data, Table 1) was
examined to assess the effects of cutoff distance, rc, and X-ray
diffraction temperatures (XDT) on the correlation coefficient,
rB, between Bi

GNM and Bi
exp. Supplementary Figure S1

presents results for seven discrete values of rc and evaluations
for subsets grouped into three experimental XDT ranges.
At rc ¼ 7.3 s, the force/spring constant averaged over all
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Figure 1. Visualization of oGNM dynamics results for protein–DNA complex (PDB file: 1j1v). (a) Color-coded ribbon diagram illustrating the mobilities in the
lowest frequency GNM mode using Jmol. The structure is colored from blue, white, to red in the order of increasing mobility. (b) Chime representation of the lowest
mode for 1J1V; the structure is now colored from blue, green orange, to red. (c) Comparison of experimental and theoretical Bi factors with each chain shown as a
different curve. In this example the correlation coefficient between computed and experimental data are 0.642. (d) Cross-correlation map, Cij, between residue
fluctuations, plotted as a function of residue indices i (abscissa) and j (ordinate). The pairs subject to fully correlated motions (Cij ¼ +1) are colored dark red; those
undergoing anti-correlated motions (i.e. Cij< 0) are colored blue, and moderately correlated and uncorrelated (Cij� 0) regions are yellow and cyan, respectively. Note
that the residue numbers in (d) refer to the index of EN nodes, 1–94 for the protein and 95–118 for the DNA double strands. The mapping of these indices to PDB file
residue numbers can be found in the output files delivered by oGNM.
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structures is found to be kBT/g ¼ 1.10 ± 0.50 s
2 in close

agreement with the result of kBT/g ¼ 0.87 ± 0.46 s
2 previously

tained by Phillips and coworkers for a set of 113 monomeric
proteins (29). This spring constant provides a measure of a
generic ‘stiffness’ that controls residue fluctuations in folded
proteins. The results indicate that the Bi

GNM calculations are
rather insensitive to rc over the range 7.3 < rc < 15 s.
Although the ms fluctuations of residues scale with their
inverse coordination numbers to a first approximation, the
correlation is significantly improved (>15%) upon considering
the contributions due to couplings from all residues, as is done
by GNM. Comparing the different XDT subsets shows a trend
for improved correlation with experiments in the cases of
higher XDTs, indicating that the GNM results agree better
with experiments when the structures are subject to less con-
strained (or larger) fluctuations.

A better EN model for nucleotides

As noted in the introduction section, few existing NMA web
servers include a representation for oligonucleotides in their
underlying EN model. Although pure oligonucleotide (DNA/
RNA) structures and protein–oligonucleotide complexes
account for only a small fraction (�0.5%) of all the structures
deposited in the PDB, these structures are involved in some
of the most important subcellular functions, such as gene
replication, storage and repair, indicating the necessity to
properly model the DNA and RNA components’ dynamics
in EN calculations.

We examined the hrBi values averaged over a represen-
tative set of 64 oligonucleotide/protein–oligonucleotide

complexes (Supplementary Data, Table 2) for different models.
In general, we expect the predictions for larger structures, or
the most collective modes, to be more accurate due to central
limit theorem. The slowest modes are, in fact, closely pre-
served for large structures in coarse-grained representations
(25,30,31). The choice of models becomes more consequential
in smaller structures. Figure 3a plots the average correlation
coefficients hrBi for all nodes in the examined structures as a
function of nucleotide–nucleotide contact cutoff distance, rp.
Results are presented for three models M1, M2 and M3,
containing 1-, 2- and 3-nodes per nucleotide, respectively. Two
cutoff distances for contacts between amino acids are consid-
ered, rc ¼ 7.3 s (dashed) and 15.0 s (solid). For rc ¼ 7.3 s, the
highest mean correlations occur at a cutoff value of rp ¼ 7 s

for models M2 (squares) and M3 (triangles), comparable to
that (rc) used for amino acids. For model M1 (circles) the mean
correlation peaks around 11 s, consistent with the necessity to
consider longer ranges of interaction when adopting a sparser
(P-atoms only) representation of nucleotide so as to account
for the interactions between the base paired nucleotides.
Calculations reveal that hrBi rapidly deteriorates for larger
values of rp. One can see that by increasing the value of rc

to 15 s, (solid curves) the mean correlations shift to higher rp

values in general and remain above 0.50 for a range of rp. The
results for rc ¼ 15s indeed reveal the greater robustness of the
models obtained upon including more, long-range neighbors; a
feature that may be desirable for structures with greater uncer-
tainty (i.e. lower resolution). Sparser distribution of nodes
is observed to require a greater cutoff value, again, to best
describe the system. Additionally, the fact that the highest hrBi
values for each model are similar, suggests that any of these

Figure 2. Relationship between computational time and structure size for different algorithms used in the GNM analysis. The computational times (seconds) are
plotted on a log-log scale against the number N of residues for 13 test proteins. The amount of time required to calculate all the GNM modes and theoretical B-factors
(BGNM) by the standard SVD approach (black circles) scales as tSVD ¼ 2.2 · 10�8 N3.30. The PowerB calculation (blue diamonds) scales as tPower ¼ 7.2 · 10�6 N2.04.
The computation of the 101 slowest modes using BLZPACK (red squares) exhibits a power law of tBLZP¼ 5.9 · 10�2 N0.49. Using the latter two methods sequentially
results in a dramatic decrease in computing time without loss of accuracy. The improvement is especially significant for large structures (N > 2000), permitting us to
release on-line results in oGNM.
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nucleotide models can produce equally valid results provided
that the associated optimal cutoff values are chosen in each
case, i.e. (rc, rp) � (7, 7), (10, 15) and (15, 19) Å, respectively,
for 3-, 2- and 1-node representations.

The mean correlation hrB
0i between experimental and

theoretical data for the nucleotide nodes only is plotted in
Figure 3b for the same two rc values as above. Here one
can gain insight about how well the dynamics of the nucleotide
portion of the complexes are predicted. Each set of curves
(solid and dashed) demonstrate the same relationship between

different models. M1 (circles) is relatively insensitive to rc

values (compare the corresponding dashed and solid curves)
but requires rp >19 �

ss, to achieve best correlation with experi-
ments. All of the models display a more uniform correlation
coefficient for large rp, unlike the decline displayed in panel a.

The fact that these values of hrB
0i for rp > 23�ss are higher than

those observed in the entire complexes indicates a bias towards
modeling the fluctuations of nucleotides to the neglect of
protein components. This suggests selecting a smaller value
of rp that is more commensurate with the protein cutoff value
(rc) and thus near the peak of hrBi in panel a. In fact, the
highest hrB

0i value for each of the protein cutoffs studied

always occurred for model M3 at rp ¼ 7�ss. However, as in
panel a, inspection of the curves suggests ranges for rc and rp

where each model is optimal.
Since the average mass of a nucleotide is approximately

three times that of an amino acid, using the three-nodes-per-
nucleotide model (M3) with a universal cutoff of �7 �

ss creates
a more consistent EN because each node has the same effective
mass. Because the number of interactions per node increases as
the cutoff distances increases, the sparseness of the Kirchhoff
matrix decreases with increasing cutoff distance. In general
sparser matrices are more computationally tractable, support-

ing the adoption of M3 with rc ¼ rp ¼ 7 �
ss by default. This

guideline would be especially useful in systems where the
number of nucleotides is similar to or much less than the
number of amino acids since it would treat each node equiva-
lently. In systems that are dominated by nucleotides, such as
the ribosome structures, it may be preferable to use less nodes
and a larger value of rp to predict the dynamics using less
computer memory.

Direct computation of biological units’ dynamics

Another important feature of oGNM is the possibility of per-
forming the computations for the ‘biological units’ (32) (http://
pqs.ebi.ac.uk) rather than the structures deposited in the PDB
about 1/6 of which are different from known biologically
active (e.g. multimeric) form. For example, users interested in
the dynamics of 1 hho (hemoglobin) can perform the compu-
tations for (physiologically active) tetrameric form, instead
of the dimer reported in the PDB, by selecting in oGNM
the option of performing the analysis for the biological
unit. The latter type of computations is visualized using
Chime, rather than JMol.

CONCLUSIONS

Since the original proposition of the GNM for estimating
protein dynamics (5,6), several studies by many groups led
to a deeper understanding of the utility and limits of the appli-
cability of the GNM, and more recently to the construction
of a DB of GNM dynamics for known structures, iGNM, (4).
The present study builds on this accumulated work to address
the following issues: (i) the extension of the methodology to
nucleotide-containing structures, (ii) the establishment of
guidelines for the use of such models and the parameters
necessary for rapid and accurate assessments of these struc-
tures, and (iii) the introduction of an efficient on-line server,
oGNM, that can routinely update the iGNM DB and allow

Figure 3. Correlation coefficient between experiments and theory for GNMs
with different EN nucleotide representations. Results from 3 nt models
are shown: M1 (circles) has one-node-per-nucleotide, M2 (squares) has
two-nodes-per-nucleotide and M3 (triangles) has three-nodes-per-nucleotide.
(a) The average correlation coefficient <rB> of all nodes between Bi

exp and
Bi

GNM for a representative set of 64 structures (pure oligonucleotides or
oligonucleotide–protein complexes; see Supplementary Table 2) as a function
of nucleotide cutoff distance, rp. In these figures the dashed lines and hollow
symbols use rc¼ 7.3s for the amino acid contact cutoff distance while the solid
lines and filled symbols use rc ¼ 15 s. For all curves the cutoff distance for
contacts between nucleotides and amino acids is (rp + rc)/2. For small values of
rp (less than 7 s) many structures have multiple zero eigenvalues implying
multiple disjoint regions of the protein and are thus non-physical models for
these structures. (b) The average correlation coefficient hr0Bi between Bi

exp and
Bi

GNM for the nucleotide nodes alone, within the same set of 64 structures as a
function of rp. M3 yields the optimal correlations in both cases at rp ¼ 7 s,
matching the value for the amino acid cutoff distance.
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users to perform computations for query proteins or models
not deposited in the PDB.

A major observation here is the possibility of obtaining
good correlation with experimental results for nucleotides,
or nucleotide-containing complexes, for a wide range of cutoff
distances, provided that an appropriate model is adopted for
mapping nucleotides into an EN representation. This extends
the applicability of the GNM and other EN models to
nucleotide-containing structures in general. The use of M3
ensures a representation of the DNA/RNA components of
the structures that is commensurate with that of the protein
component, as implied by the optimal inter-nucleotide
interaction cutoff distance, rp, that is almost identical to the
cutoff distance, rc, between amino acids.

With the growing number of studies demonstrating the
usefulness of the GNM and EN methods, an efficient online
calculation engine, such as oGNM is expected to be a useful
resource for biologists interested in a rapid assessment of
potential mechanisms of action and key residues in their
structure of interest, including both proteins, oligonucleotides,
or their complexes. Structural coordinates deposited in the
PDB often refer to structures crystallized in a multimeric state,
or in forms that are not necessarily the biologically functional
forms. The iGNM DB reports results only for the structures
deposited in the PDB, regardless of their biologically
functional forms. Because the web server presented in this
paper performs calculations on uploaded structures or biologi-
cal units of interest, one promising application is to obtain
results for complex structures when additional biological
information becomes available, thus permitting to investigate
the effect of oligomerization or ligand-binding on the
dynamics of biomolecular assemblies or complexes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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