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Abstract

Background: Expression of insulin in terminally differentiated non-beta cell types in the pancreas could be important to
treating type-1 diabetes. Previous findings led us to hypothesize involvement of kinase inhibition in induction of insulin
expression in pancreatic alpha cells.

Methodology/Principal Findings: Alpha (aTC1.6) cells and human islets were treated with GW8510 and other small-
molecule inhibitors for up to 5 days. Alpha cells were assessed for gene- and protein-expression levels, cell-cycle status,
promoter occupancy status by chromatin immunoprecipitation (ChIP), and p53-dependent transcriptional activity. GW8510,
a putative CDK2 inhibitor, up-regulated insulin expression in mouse alpha cells and enhanced insulin secretion in
dissociated human islets. Gene-expression profiling and gene-set enrichment analysis of GW8510-treated alpha cells
suggested up-regulation of the p53 pathway. Accordingly, the compound increased p53 transcriptional activity and
expression levels of p53 transcriptional targets. A predicted p53 response element in the promoter region of the mouse Ins2
gene was verified by chromatin immunoprecipitation (ChIP). Further, inhibition of Jun N-terminal kinase (JNK) and p38
kinase activities suppressed insulin induction by GW8510.

Conclusions/Significance: The induction of Ins2 by GW8510 occurred through p53 in a JNK- and p38-dependent manner.
These results implicate p53 activity in modulation of Ins2 expression levels in pancreatic alpha cells, and point to a potential
approach toward using small molecules to generate insulin in an alternative cell type.
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Introduction

Autoimmune attack on pancreatic beta cells in type-1 diabetes

results in insulin deficiency and an inability to maintain glucose

homeostasis [1]. Inducing the production of insulin in other cell

types has the potential to assuage diabetes pathogenesis.

Pancreatic alpha cells are attractive candidates because of their

secretory nature, their developmental proximity to beta cells, and

their location within the islet of Langerhans [2]. Further,

conversion of alpha cells to functional beta cells has already been

demonstrated in mice by ectopic expression of a single

transcription factor, PAX4, in the developing pancreas [3].

Therefore, we hypothesized that small molecule-mediated stimu-

lation of insulin expression in alpha cells is a necessary initial step

for insulin production that does not require viral delivery [4] of

master-regulatory transcription factors, and could lead to an

alternative therapeutic strategy for type-1 diabetes.

Insulin expression is largely restricted to pancreatic beta cells,

but there are low levels of expression in extra-pancreatic tissues,

such as the brain [5,6] and the thymus [7]. Temporal and tissue-

specific regulation of the insulin gene demonstrates complexity

across species [8]. The cis-regulatory 400-base pair region flanking

the transcriptional start site (TSS) is highly regulated, controlled by

both beta cell-specific transcriptional regulators and general

transcription factors with widespread tissue distribution [8]. To

date, most pancreatic endocrine cell research has focused on

rodent cell lines [9]. In contrast to humans, rodents have a two-

gene insulin system, with Ins2 similar to the human insulin gene,

and Ins1 the result of a duplication-transposition of a partially

processed Ins2 mRNA product that lost the second intron [10,11].

Here, we focused on modulation of Ins2 transcription in mouse

alpha cells.

Previously, we reported a high-content screen to identify small-

molecule inducers of insulin expression in alpha cells, and the
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discovery of a putative kinase inhibitor [12]. A more focused

exploration of the effects of other kinase inhibitors on insulin

expression in alpha cells led us to discover that GW8510, a

compound annotated as a CDK2 inhibitor [13], also up-regulates

Ins2 expression. Through further characterization of GW8510’s

effects on alpha cells, we demonstrate involvement of the p53 signal

transduction pathway in the modulation of Ins2 expression levels.

P53 has transcription-factor activity and performs most of its

biological functions through direct regulation of downstream

transcriptional targets [14]. It functions by binding to specific

DNA sequences containing p53 response elements, which results in

either activation or repression of promoter activity of target genes

[15,16]. Integration of upstream signals leads to a variety of cellular

responses to p53 activation, ranging from cell-cycle arrest, to

differentiation, to apoptosis [17,18]. Because of its functional

diversity and its importance in cell-fate decisions, p53 levels and

activity are tightly regulated through positive and negative feedback

[19]. The best characterized negative feedback loop involves an E3

ubiquitin ligase, MDM2 [20], which is up-regulated by increased

p53 levels or transcriptional activity [21]. Many signal-transduction

pathways converge on p53, but result in differential regulation of

downstream targets [22]. Thus, we sought to examine the

mechanism by which GW8510 activates the p53 pathway and up-

regulates Ins2 expression. We determined that p53 binds to the Ins2

promoter in alpha cells, and that GW8510 increases Ins2 expression

by up-regulating p53 transcriptional activity in a JNK- and p38-

dependent manner. These results suggest that modulating these

pathways with small molecules could be part of a feasible strategy

for generating insulin in an alternative cell type.

Results

Using high-content screening, we previously identified a

compound, BRD7389, which induced insulin expression in alpha

cells, and inhibited a wide variety of kinases biochemically [12].

To determine whether selective kinase inhibition could also induce

insulin expression, we treated the mouse pancreatic alpha cell line,

aTC1 clone 6 (aTC1.6), with the putative CDK2 inhibitor

GW8510 for five days, and observed a dose-dependent induction

of Ins2 expression following treatment (Figure 1A). We observed

similar effects when we used aTC1 clone 9 cells, which express

more insulin basally (Figure S1). Transcript levels of glucagon, the

endocrine hormone normally expressed in alpha cells, were

unaffected by the compound. Expression of Pdx1, a beta cell-

specific transcription factor capable of directly activating the Ins2

promoter [23], was significantly induced at 1.65 mM and higher.

An examination of the time course of gene expression revealed

that GW8510 induced Ins2 gene expression to its maximum after

48 hours, while Pdx1 was only up-regulated about two-fold after

96 hours (Figure 1B).

Because BRD7389 treatment enhanced insulin secretion in

dissociated human islet cells [12], we decided to explore the effects

of GW8510 on the same process. Five-day treatment with

GW8510 increased basal insulin secretion at 1.67 mM glucose

as well as glucose-stimulated insulin secretion at 16.7 mM

(Figure 1C). Interestingly, treatment with low levels of staurospor-

ine, a potent broad-range kinase inhibitor [24], also enhanced

insulin secretion in this system. Examination of the total cell

number and the numbers of alpha and beta cells, quantified by

immunofluorescence analysis, revealed that GW8510 treatment

decreased the total number of cells, but did not cause a significant

decline in beta cell numbers (Figure 1D, E). Interestingly, the

number of alpha cells seems to be increased following treatment

with both 3.3 mM GW8510 and staurosporine (Figure 1D, E).

Pancreatic islets are made up of a heterogeneous population of

cells [2], and it is difficult to pinpoint a compound’s effect on a

particular cell type, even in the dissociated islet system. Therefore,

we decided to focus on elucidating the mechanism of GW8510-

induced insulin expression in mouse alpha cells.

Since the induction of Ins2 gene expression precedes Pdx1 in this

case, the initial increase in Ins2 expression is likely to be induced by

a mechanism not involving Pdx1. Furthermore, knock-down of

CDK2 (Figure S2A) only marginally increased Ins2 expression,

while the use of other known CDK2 inhibitors (Figure S2B) had

no effect on Ins2 expression, suggesting that mechanisms other

than CDK2 inhibition are likely to be responsible for up-

regulation of Ins2 by GW8510. Thus, in order to determine a

potential mechanism of insulin induction, we treated mouse alpha

cells with 3.3 mM GW8510 or 0.1% DMSO for five days, and

performed gene-expression profiling of nearly 14,000 transcripts

(see Methods). Following GW8510 treatment, 364 genes were up-

regulated and 347 genes were down-regulated by at least two-fold

over the matched vehicle controls (Figure S3). Gene-set enrich-

ment analysis (GSEA) [25] revealed that gene sets containing p53-

responsive genes were significantly enriched after GW8510

treatment (Table S1). Specifically, microarray measurements

showed that the p53 transcriptional targets Cdkn1a, Mdm2, and

Ccng1 were up-regulated by compound treatment (Figure 2A).

Microarray-detected transcriptional changes in cell cycle-specific

genes and direct p53 transcriptional targets were confirmed on the

same samples by quantitative real-time RT-PCR (Figure 2B).

Seeing as p53-responsive genes were induced following

compound treatment, we sought to determine whether p53

transcriptional activity itself was enhanced. Using a p53-luciferase

reporter-gene assay, we found that 24-hour treatment with 3.3 mM

GW8510 increased reporter activity approximately seven-fold over

DMSO-treated controls (Figure 2C). Quantitative real-time RT-

PCR measurements confirmed that the transcript levels of Cdkn1a,

Mdm2, and Ccng1 were also significantly up-regulated following

treatment with 1.65 mM GW8510 (Figure 2D). In particular,

Cdkn1a and Ccng1 were strongly induced after both three- and five-

day treatments. Mdm2 transcript was only slightly affected by

three-day treatment, but showed significant up-regulation after

five days with 1.65 mM GW8510. This GW8510 concentration

was used in all further studies, because we could detect a full effect

on Ins2 induction without the toxicities observed at 3.3 mM.

Next, we explored downstream effects of p53 activation by

GW8510 on protein levels in alpha cells. The protein product of

Cdkn1a, p21, was increased after as little as eight hours, and

elevated more than ten-fold over basal levels at 48 hours

(Figure 3A, B). Cyclin G protein production was also increased,

but the induction was slower and reached only a two-fold increase

over basal levels by 48 hours of treatment. As with other cyclins,

cyclin G is an unstable protein that is quickly degraded [26], but

we could detect up-regulation of both the full-length protein and

the degradation product. Consistent with our previous assessment

of early Mdm2 expression, MDM2 protein levels were unaffected

after 48 hours of treatment with GW8510.

Cellular p53 activity is regulated at the post-translational level

by combinations of modifications, such as phosphorylation and

acetylation. For example, Ser392 phosphorylation has been

reported to increase p53 DNA-binding capacity and transcrip-

tional activity [27,28]. Furthermore, p53 acetylation promotes p53

stability and accumulation [29]. Since we observed an increase in

p53 activity after treatment with GW8510, we decide to examine

p53 post-translational modification status. We observed that two-

to five-day treatment with 1.65 mM GW8510 increased Ser392

phosphorylation in alpha cells, indicating a higher transactivation

p53 Activates Mouse Insulin Promoter

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e28808



capacity of p53 following compound treatment (Figure 3C,D). We

also detected an up-regulation of K379 acetylation (Figure 3C, D),

which is also consistent with increased p53 activity. MDM2, a

direct p53 transcriptional target, is an E3 ubiquitin ligase that

regulates p53 stability by targeting it for degradation through a

negative feedback mechanism [20]. Akt-mediated phosphorylation

Figure 1. Effects of GW8510 treatment on mouse alpha cells and dissociated human islet cells. Pancreatic gene expression was measured
by quantitative real-time RT-PCR (qPCR) following a (A) 5-day dose-response and (B) time-course with 1.65 mM GW8510. (C) Insulin secretion
measurements in dissociated human islets following 5-day compound treatment at indicated concentrations. (D) Immunofluorescence analysis
quantification of total cell numbers, measured by nuclear count, and numbers of alpha and beta cells, measured by glucagon and insulin staining,
respectively, following compound treatment. (E) Representative images shown. All data represent the mean6SD of at least three experiments;
*p,0.05, **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0028808.g001
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of MDM2 on Ser166 increases its nuclear localization and

interaction with p300, which in turn, enhances p53 ubiquitination

and degradation [30,31]. Treatment with GW8510 caused a

decrease in Ser166 phosphorylation (Figure 3C, D), presumably

preventing p53 ubiquitination and enhancing p53 stability. Hence,

the post-translational modification states of p53 and MDM2 are

consistent with enhanced cellular p53 activity, and, therefore, with

previous results indicating up-regulation of p53 transcriptional

targets following compound treatment.

Because GW8510 is reported to inhibit CDK2 [13] and has

been shown here to enhance p53 activity, we examined the cell-

cycle profile of alpha cells following compound treatment. CDK2

inhibition leads to an arrest in G1/S, while p53 over-expression

and activation can induce either a G1/S or a G2/M cell-cycle

arrest [32]. In light of our results showing elevated p21, cyclin G,

and MDM2 levels, we anticipated that compound treatment

would produce a cell-cycle phenotype. Indeed, FACS analysis

following three-day treatment with GW8510 showed an enrich-

Figure 2. Involvement of the p53 pathway and quantification of p53 transcriptional activity and expression levels of p53 target
genes following GW8510 treatment of alpha cells. (A) Heat-map display of one of the enriched gene sets (INGA_p53_TARGETS) in gene-
expression profiling of alpha cells treated with 3.3 mM GW8510 for five days. Relative expression values in three biological replicates are plotted by
color. Red, high expression levels, blue, low expression levels. (B) Reproducibility of gene-expression changes following GW8510 treatment, measured
by microarray and qPCR. (C) Cellular p53 activity measured using a dual-luciferase reporter system. Activity of the firefly luciferase p53-reporter
construct was normalized to constitutively active co-transfected Renilla luciferase, and to positive and negative controls. (D) qPCR measurement of
transcript levels of direct p53 targets following 3- and 5-day treatments with 1.65 mM GW8510. Data represent the mean6SD of at least three
experiments; **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0028808.g002
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ment of the G2/M population, from 17 to 33% (Figure 4A, B).

This result suggested a G2/M arrest following induction of p53

activity, as opposed to G1/S arrest, which should result in

enrichment of the G0/G1 population. We observed a decrease in

the number of mitotic nuclei following treatment with GW8510

(Figure S4A), suggesting a delayed entry into mitosis. In contrast,

the DNA-damaging agents doxorubicin and etoposide caused an

increase in the number of mitotic nuclei (Figure S4A), consistent

with previous observations that DNA damage delays exit from

mitosis [33]. We also observed that GW8510 had no effect on

phosphorylation of either ATR (Figure S4B) or ATM (Figure S5)

protein kinases, which are activated following DNA damage [34].

In contrast, doxorubicin and etoposide increased ATR phosphor-

ylation (Figure S4B) and activated the ATM-CHK2-p53 pathway

(Figure S5). Accordingly, these DNA damaging agents did not

induce insulin expression in alpha cells (Figure S6). We sought

further evidence of a G2/M arrest by immunofluorescence

analysis for Ser10 phosphorylation of histone H3, a marker of

mitosis [35]. GW8510 treatment decreased the proportion of

mitotic cells in a concentration-dependent manner (Figure 4C, D).

The increase in the G2/M population, and the decrease in the

number M-phase cells, indicate enrichment of G2, as would

happen following a G2/M arrest.

Since p53 is a transcription factor, the trans-activation capacity

of which seems to be enhanced following treatment with GW8510,

we sought to determine whether p53 could directly trans-activate

Ins2. We mined a database for genome-scale computational

discovery of conserved regulatory elements, cisRED, in the mouse

genome, which contains conserved sequence motifs in promoters

of about 17,500 genes [36]. Interestingly, cisRED analysis

predicted a p53 response element in the promoter region of the

Ins2 gene, with a discovery p-value of 0.02 (Figure 5A, Table S2).

This analysis also predicted known response elements in p53 target

genes, such as Cdkn1a and Ccng1, with discovery p-values of 0.06

and 0.004, respectively. It should also be noted that no such

response element is predicted for Ins1, and no Ins1 up-regulation

was, in fact, detected by microarray or real time RT-PCR (data

not shown).

Figure 3. GW8510 treatment effects on protein levels of p53 transcriptional targets and on post-translational modification status
of p53 and MDM2. (A) Western blot analysis and (B) quantification of protein levels of direct p53 targets following a two-day time-course with
1.65 mM GW8510. (C) Western blot analysis and (D) quantification of total protein and post-translational modification levels following 2–5 days of
treatment with 1.65 mM GW8510. Data represent the mean 6 SD of 3 biological replicates; *p,0.01, **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0028808.g003
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We verified the presence of p53-response elements in the Ins2

gene by using a covalent chromatin-capture protocol with

recombinant tagged p53 in mouse alpha cells. This method

employs covalent bond formation between the tag and the ligand

immobilized on beads, and has the advantage of being more

efficient and robust than conventional antibody-based ChIP. The

affinity tag in this system, haloalkane dehalogenase, is a derivative

of a bacterial hydrolase that allows covalent site-specific tethering

to resin (see Methods). Since the resin contains immobilized

synthetic ligands, the excess of free ligand can block the

interaction between the tagged protein and the resin. Thus,

addition of blocking ligand to half of the reaction allows

quantification of enrichment over the corresponding control

[37]. PCR analysis following p53 ChIP revealed the presence of

predicted response elements in promoter regions of known p53

transcriptional targets, Cdkn1a and Ccng1, as well as Ins2

(Figure 5B, C). Electrophoretic analysis and quantification of

PCR products demonstrated that 1.34% of total input DNA is

Figure 4. Cell-cycle effects of GW8510 treatment. (A) FACS-generated histograms of propidium iodide stained cells treated with either vehicle
control or GW8510 for 3 days. (B) Quantification of cell-cycle distributions from gated cellular populations in A expressed as percentage of the total
cellular population. Data represent the mean 6 SD of two biological replicates. (C) and (D) M-phase immunofluorescence analysis and quantification
using histone H3 phospho-Ser10 as a mitosis marker. Total cells were counted using Hoechst nuclear stain. Representative images are shown for
Hoechst, histone H3 phospho-Ser10, and overlay at indicated GW8510 concentrations. Values are expressed as fold over vehicle-treated controls.
Data represent the mean 6 SD of at least 3 biological replicates; ***p,0.001.
doi:10.1371/journal.pone.0028808.g004

p53 Activates Mouse Insulin Promoter

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e28808



pulled down by p53 at the Cdkn1a promoter and 0.15% at the

Ins2 promoter (Figure S7).

We then determined whether up-regulation of p53 transcrip-

tional activity was related to Ins2 induction by GW8510, and

whether modulation of p53 levels or activity would have an impact

on induction of Ins2 expression. P53 levels in alpha cells were

manipulated by overexpression or by siRNA-mediated knock-

down (Figure 6A). Knock-down of p53 decreased the induction of

Ins2 by GW8510 by 75%, while p53 overexpression resulted in a

three-fold increase in Ins2 induction following three-day treatment

with 1.65 mM GW8510 (Figure 6B). We also modulated p53

activity using chemical probes that either target p53 directly or act

upstream in the signal transduction pathways leading to p53

activation. Pifithrin-a, a reversible inhibitor of p53-mediated

apoptosis and p53-dependent transcription [38], suppressed

GW8510-induced Ins2 expression by 80% (Figure 6C). Pifithrin-

Figure 5. Evaluation of p53 response elements. (A) cisRED prediction of p53 response elements in promoter regions of indicated mouse genes.
Discovery p-value is plotted against experimentally determined fold change in gene expression. Selected genes are highlighted. (B) ChIP-PCR analysis
of predicted p53-response elements in promoter regions of Ins2, Cdkn1a and Ccng1. Cells were either untransfected (‘‘control’’) or transfected with
recombinant tagged p53 (‘‘p53-HaloTag’’), and p53-bound DNA immunoprecipitated. PCR was then performed on Ins2, Cdkn1a, or Ccng1 regions
containing predicted p53-response elements. The presence of blocking ligand helps determine the specificity of the interaction. (C) Fold enrichment
of promoter binding is calculated over the corresponding blocking ligand control in the p53-HaloTag condition.
doi:10.1371/journal.pone.0028808.g005
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m, which inhibits p53 mitochondrial signalling pathway without

having an effect on p53 transcriptional trans-activation capacity

[39], had no effect on induction of Ins2 by GW8510 (Figure 6C).

We examined pathways upstream of p53, and observed that both

SP600125, a JNK1/2/3 inhibitor [40], and SB202190, a p38

kinase inhibitor [41], almost entirely suppressed Ins2 induction by

GW8510 (Figure 6C). In contrast, the ERK inhibitor PD-09859

[42] reduced GW8510-induced expression by only 20%

(Figure 6C). We confirmed that siRNA-mediated silencing of

JNK and p38 also reduced GW8510-induced insulin expression

(Figure S8). This chemical epistasis analysis indicates that

GW8510 does not likely act at the level of p53 directly, but rather

upstream of p53, in signalling pathways involving JNK and p38

(Figure 6D).

Discussion

Small molecule-mediated alterations in cell state are important

in diseases of cellular deficiency such as type-1 diabetes. An

increase in insulin expression in other pancreatic cell types could

be a valuable part of a strategy to increase beta-cell mass. We

report induction of insulin expression in murine pancreatic alpha

cells with GW8510, a small molecule annotated as a CDK2

inhibitor. We previously described a putative kinase inhibitor,

BRD7389, able to modulate insulin levels in mouse alpha cells

[12], but have found that GW8510 more strongly increases Ins2

mRNA levels. Interestingly, both compounds enhanced insulin

secretion in dissociated human islets. We show that in the donor

tested, treatment with GW8510 and a general kinase inhibitor,

staurosporine, potentiated both basal and the glucose-stimulated

insulin secretion. In addition, a previous report indicates that

wortmannin, a phosphatidylinositol 3-kinase inhibitor, augmented

insulin secretion at 15 mM glucose [43]. Currently available

methodology does not enable us to distinguish between the effects

on insulin release from beta cells, which represent the majority of

the islet endocrine cell population, and potential contributions

from other islet cell types. However, these findings justify further

exploration of kinase inhibition on endocrine-cell composition of

pancreatic islets, generation of insulin in non-beta cell types, and

beta-cell function.

We then explored the mechanism of GW8510-induced insulin

expression in mouse alpha cells. The canonical regulator of insulin

expression, Pdx1, was not implicated in the initial burst of Ins2

induction. In an attempt to identify the underlying mechanism of

Figure 6. Effects of manipulation of p53 levels and activity on induction of Ins2 by GW8510 treatments. (A) Experimental knockdown
and over-expression of p53 in alpha cells and (B) its effects on Ins2 induction by 3-day treatment with 1.65 mM GW8510. (C) Co-treatment with small
molecule inhibitors of p53 and upstream targets in the p53 signalling pathway and their effect on Ins2 induction following treatment with GW8510.
(D) Proposed model for GW8510-mediated induction of insulin expression via activation of p53 transcriptional activity. All data represent the
mean6SD of at least three experiments; *p,0.05, **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0028808.g006
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action, we examined the effects of GW8510 on the alpha-cell

transcriptome, which revealed involvement of p53 pathway

activation in the observed phenotype. Furthermore, we validated

a cisRED-predicted p53 response element in the Ins2 promoter

region. Following identification of p53 as a direct transcriptional

regulator of Ins2 expression, we demonstrated that increasing p53

levels and activity enhances compound-mediated insulin induc-

tion, while decreasing p53 suppresses these effects.

P53 is present at low levels in normal tissues, including the

pancreas. However, a comparison of expression levels across

rodent pancreatic cell types revealed an enrichment of p53

expression in alpha and beta cells compared to intact pancreatic

islets or to whole pancreas preparations [44]. We observed high

p53 protein levels in the alpha cell line, aTC1.6 (Figure 2C),

indicating that modulating p53 activity in alpha cells could be a

feasible strategy to induce insulin expression. Furthermore,

treatment of NIH3T3 mouse embryonic fibroblasts with

GW8510 enhanced expression of the canonical p53 transcriptional

targets, e.g. Cdkn1a and Ccng1, but did not show an effect on Ins2

mRNA levels (Figure S9). Hence, the p53-dependent insulin

induction by GW8510, observed in pancreatic alpha cells, depends

on the phenotypic cellular context and does not occur in a non-

pancreatic cell type.

Consistent with previous observations in a variety of cell lines

[45], we found that p53 binds to response elements in promoters of

its target genes under basal conditions (Figure 5). DNA binding

itself, however, does not cause expression of p53 targets [45];

execution of the p53 transcriptional program depends on the

necessary set of post-translational modifications and interactions

with appropriate co-regulators. Increasing p53 levels by overex-

pression, or stimulating its activity with inhibitors of p53-MDM2

interaction, did not achieve the same effect (data not shown),

suggesting that intervention upstream of p53 is necessary for the

observed phenotype.

GW8510 does not appear to act at the level of p53 directly, but

acts upstream of p53 to target JNK- and p38-dependent signal-

transduction pathways. Chemical (Figure 6C) or genetic (Figure

S8) inhibition of either JNK or p38 activity interfered with

induction of Ins2 by GW8510. JNK and p38 kinases directly

phosphorylate and trans-activate p53 under stress conditions [46],

including genotoxic stress and DNA damage [47]. However,

treatment with the DNA damaging agents doxorubicin and

etoposide did not induce insulin expression in alpha cells (Figure

S6), suggesting that GW8510 does not function by inducing DNA

damage. The suppression of GW8510’s effects by JNK and p38

kinase inhibitors indicates that GW8510 acts upstream of these

two kinases, and that both signal-transduction pathways are

required to achieve the p53 post-translational modification

necessary for transcriptional activation.

Historically, p53-mediated transcription of target genes has

been thought to occur through sequence-specific binding of the

p53 tetramer to the consensus response element, composed of two

decamer half-sites separated by a 0–13 bp spacer region [48]. The

breadth of p53 transcriptional targets has been recently expanded

following identification of functional non-canonical response

elements, like the L and the K sites [49]. The predicted 11-bp

p53 half-site response element is located 1,267 bps upstream of

TSS for the mouse Ins2 gene, well outside the cis-regulatory

promoter-proximal region, which extends ,300 bp upstream and

100 bp downstream of the TSS [8]. The compact nature of the

promoter and the combinatorial complexity of transcription factor

regulatory elements allow tight positional and temporal control of

insulin expression in beta cells [8]. However, more distal

regulatory sequences may perhaps be utilized to induce ectopic

insulin expression in a non-beta cell type. Additionally, a distal

regulatory element may be in spatial proximity with the target

gene or other regulatory factors at the proximal promoter region

through looped chromatin conformation [50]. A detailed explo-

ration of looped genomic interactions at the insulin promoter may

yield further insights into regulation of insulin expression in

pancreatic beta cells and the potential for up-regulating insulin

expression in a non-beta cell type.

These results show that small-molecule activation of p53 in a

JNK- and p38-dependent manner can regulate Ins2 gene

expression in mouse alpha cells. The cisRED database also

predicts an identical response element located 1,444 bp upstream

of the rat Ins2 TSS (Table S5), indicating similarity in the

regulation of mouse and rat Ins2 genes. In contrast, there is .65%

identity in the main regulatory region of the insulin promoters of

humans and non-primate mammals (2300 to +1), and quickly

drops to ,40% identity in the first 600 bp upstream of the TSS

[8]. Nevertheless, the database also predicts a sequence ortholo-

gous to the p53 response element in the human insulin gene,

located 202 bp downstream of the TSS (Table S5). Evaluation of

this prediction will help determine whether modulation of p53

activity could also be used to alter insulin expression in human

endocrine cell types.

Materials and Methods

Reagents
All chemicals were obtained from Sigma Aldrich. Mouse

pancreatic alpha cell line aTC1 (clones 6 and 9) was purchased

from the American Type Culture Collection. Primers were bought

from Origene and Eurofins MWG Operon. Trp53, cdk2, p38 and

JNK siRNA constructs were purchased from Applied Biosciences,

mouse p53 vector was obtained from Origene (MC205636), and

p53-luciferase reporter constructs were bought from SABios-

ciences. Antibodies used in this study were purchased from Cell

Signaling for p53 (2524), p53 phospho-S392 (9281), p53 acetyl-

K379 (2570), mdm2 phospho-S116 (3521), and histone H3

phospho-Ser10 (9706), Santa Cruz for p21 (sc-6246), cyclin G1/

G2 (sc-851), and mdm2 (sc-56155), and Sigma for b-actin (A1978).

Fluorescently-labelled secondary antibodies were purchased from

Jackson ImmunoResearch, and poly-HRP conjugated antibodies

were purchased from Thermo Scientific Pierce.

Cell culture and compound treatments
aTC1 cells were grown in DMEM containing 1 g/L glucose,

supplemented with 10% FBS, 50 U/mL penicillin and 50 U/mL

streptomycin. Pancreatic islets from one donor (Age: 47 BMI: 23,

purity: 85%, viability: 99%) were dissociated and cultured as

previously described [12]. For compound treatments, cells were

plated in 6-well plates for Western blot and FACS analysis, 24-well

plates for gene-expression analysis and 96-well plates for

immunofluorescence analysis. Cells were allowed to adhere

overnight before addition of compound, and for 5-day treatments,

media was changed and new compound added on day 3. All

compound treatments were performed in 0.1% final DMSO

concentration.

Gene expression measurements
Following compound treatment, cells were lysed and RNA

isolated using the RNeasy Plus Mini kit (Qiagen) according to the

manufacturer’s protocol. 500 ng of RNA was reversed transcribed

using High Capacity RNA-to-cDNA Master Mix (Applied

Biosystems). Quantitative PCR was performed with SYBR Green

PCR Master Mix (Applied Biosystems) on an Applied Biosystems
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7900HT real-time PCR machine using the primers listed in Table

S3. Microarray analysis was performed by the Broad Institute

Genetic Analysis Platform on 500 ng of total RNA using GeneChip

Mouse Genome 430A arrays from Affymetrix, measuring about

22,000 transcripts for approximately 14,000 genes. All data is

MIAME compliant, with the raw data deposited in Gene

Expression Omnibus (GEO), accession number GSE31102.

Western blot analysis
Cell extracts were generated by lysing cells in modified RIPA

buffer containing 1% NP-40, 0.1% sodium deoxycholate,

150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.5 supplemented

with protease inhibitors (Roche) and phosphatase inhibitors (1%

v/v cocktail 1, 0.5% v/v cocktail 2, 1% v/v cocktail 3, Sigma).

Protein concentrations were measured using BCA Protein Assay

Kit (Thermo Scientific Pierce), and 20 mg of each sample were run

on E-Page 48 gels (Invitrogen) and transferred to PVDF

membranes using an iBlot (Invitrogen). Membranes were probed

with 1:500 dilutions of primary antibodies from Cell Signaling,

1:100 dilutions of primary antibodies from Santa Cruz, and

1:1000 dilutions of secondary poly-HRP conjugated antibodies

(Thermo Scientific Pierce). Blots were imaged on an Image Station

4000MM PRO (Kodak/Carestream), and band intensities were

quantified using ImageJ software.

Immunofluorescence measurements
15,000 aTC1 cells per well were plated in 50 mL media in black

optical-bottom tissue culture-treated 96-well plates (Corning).

Following compound treatment, cells were fixed with 4%

paraformaldehyde for 20 minutes at room temperature. Cells

were permeabilized in PBS supplemented with 0.3% Triton X-100

for 20 minutes at room temperature and blocked with 3% BSA in

PBS supplemented with 0.1% Tween-20 (PBSTB3) for 30 min-

utes. Cells were then incubated in 1:250 dilution of primary

antibody in PBSTB3 overnight at 4uC. Following three washes

with PBS, cells were incubated in secondary antibody and 10 mg/

mL Hoechst 33342 in PBSTB3 for 1 h at room temperature in the

dark. Following three washes with PBS, cells were imaged using an

ImageXpress Micro automated microscope (Molecular Devices).

Image analysis and quantification was performed using the ‘‘Cell

Scoring’’ module of MetaXpress software (Molecular Devices).

Transfections
siRNA transfections were performed as outlined in the

Lipofectamine RNAiMax manufacturer’s protocol (Invitrogen).

30 pmol total siRNA was transfected per well of a 24-well plate,

using a combination of three siRNA constructs, 10 pmol each.

Lipofectamine 2000 was used for vector transfections according to

manufacturer’s protocol (Invitrogen). 0.8 mg of DNA was trans-

fected per well of a 24-well plate. Antibiotic-free DMEM

supplemented with 10% FBS was used for all transfections, and

was changed to the usual media 24 hours later. Indicated

compound treatments were started during the media change.

FACS analysis
Suspensions of aTC1 cells from a well of a 6-well plate (500 ml

in PBS) were fixed in 5 mL of cold ethanol and left at 4uC
overnight. Cells were washed twice and resuspended in 800 mL of

PBS containing 1% BSA. Cells were stained by addition of 50 mL

of 1 mg/mL propidium iodide solution (Invitrogen) and 100 mL

of 10 mg/mL RNase A solution (Sigma), and incubated at 37uC
for 30 minutes. Samples were analyzed on the BD LSRII flow

cytometer.

Reporter-gene assay
p53-luciferase constructs were resuspended in Opti-MEM and

reverse-transfected into aTC1 cells using SureFECT transfection

reagent according to manufacturer’s protocol (SABiosciences).

24 hours following transfection, media was changed to DMEM

containing 0.5% FBS and either 0.1% DMSO or the compound of

interest. Dual-GLO luciferase assay was performed 24 hours after

compound addition according to manufacturer’s protocol (Pro-

mega). Firefly and Renilla luminescence signal were read

consecutively on an EnVision Multilabel Plate Reader (PerkinEl-

mer). Reporter signal in each experimental condition was

normalized to the Renilla transfection control, and subsequently

to positive- and negative-control reporter wells.

Chromatin immunoprecipitation
Mouse p53 was amplified using the following primers:

Fw 59-AAAAGCGATCGCCACTGCCATGGAGGAGTCA-

CAGTC-39

Rv 59-AAAAGTTTAAACTCAGTCTGAGTCAGGCCCCA-

39

The insert was cloned into the pFN22K Halotag cmvd1 flexi

vector using PmeI/SgfI restriction sites. Transfections were

performed in 10-cm dishes overnight. Media was changed after

24 hours, and cells were fixed in 1% formaldehyde 48 hours after

transfection. Samples were lysed in HaloCHIP lysis buffer and

sonicated on ice using Branson Sonifier 250 Analog at 2.5 output

with 6 cycles of alternating 10 seconds on and 10 seconds off.

HaloCHIP system protocol (Promega) was performed on cell

lysates according to manufacturer’s instructions. Blocking ligand

was added to half the sample. Primers for PCR analysis of putative

p53 response elements are listed in Table S4.

Supporting Information

Figure S1 Effects of GW8510 on insulin expression in
alphaTC1, clone 9 cell line. Cells were treated for three days

with the indicated concentration of GW8510, and mRNA

collected for assessment of insulin expression by quantitative

PCR. Gene expression was normalized to actin expression. Data

represent the mean 6 SD of three biological replicates; * p,0.05.

(TIF)

Figure S2 Effects of reduction in cdk2 levels or activity
on insulin expression in mouse alpha cells. (A) siRNA-

mediated silencing of cdk2 induces insulin gene expression

approximately two-fold. Scrambled siRNA was used as a control.

(B) Ins2 gene expression changes following a 2-day treatment of

aTC1 cells with cdk2 inhibitors at indicated concentrations. Data

represent the mean 6 SD of three biological replicates.

(TIF)

Figure S3 Volcano plot of microarray measurements in
alpha cells following five-day treatment with 3.3 mM
GW8510. Fold change is calculated over matched DMSO

controls (n = 3) and plotted against the p-value. Genes down-

regulated and up-regulated following GW8510 treatment at least

2-fold with p,0.01 are counted.

(TIF)

Figure S4 Assessment of cell-cycle and ATR activation
following treatment with GW8510 and known DNA-
damaging agents. (A) Percent mitotic nuclei induced by the

indicated concentrations of each compound. (B) Phosphorylation

of ATR was assessed by immunofluorescence, with the nuclear

intensity of p-ATR staining, overlapping with Hoechst nuclear

dye, quantified using MetaXpress (Molecular Devices). Data
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represent the mean6SD of at least three experiments; **p,0.05,

**p,0.01 and ***p,0.001.

(TIF)

Figure S5 Assessment of induction of the ATM pathway
by GW8510. Nuclear intensities of (A) phosphorylated ATM, (B)

phosphorylated CHK2, and (C) phosphorylated p53 were assessed

by immunofluorescence and analysis using MetaXpress software

(Molecular Devices). Representative images are shown in (D).

Data represent the mean6SD of at least three experiments;

**p,0.05, **p,0.01 and ***p,0.001.

(TIF)

Figure S6 Ins2 gene expression changes following a 2-
day treatment of aTC1 cells with DNA-damaging agents.
Cells were treated with (A) doxorubicin, (B) etoposide, (C)

thymidine, and (D) ethidium bromide, at indicated concentrations.

Data represent the mean6SD of three biological replicates.

(TIF)

Figure S7 PCR analysis and quantification following
halo-tag p53 ChIP of predicted p53-response elements in
promoter regions of (A) a known p53 transcriptional
target, Cdkn1a, and (B) the novel target, Ins2. Percent

input at each predicted response element is calculated from the

standard input curve.

(TIF)

Figure S8 Knock-down of JNK and p38 inhibit induction
of Ins2 by GW8510. Alpha cells were transfected with the

indicated siRNAs for one day, followed by three-day treatment

with 1.65 mM GW8510. mRNA was collected for analysis of Ins2

gene expression by quantitative PCR, using actin as a normali-

zation control.

(TIF)

Figure S9 Effects of GW8510 on NIH3T3 cells. Gene

expression changes in NIH3T3 mouse embryonic fibroblasts

following a 3-day treatment of aTC1 cells GW8510 at indicated

concentrations. Data represent the mean6SD of three biological

replicates; *p,0.05, **p,0.01 and ***p,0.001.

(TIF)

Table S1 p53-pathway related GSEA gene sets found to
be enriched following 5-day treatment of alpha cells with
GW8510.

(DOC)

Table S2 CisRED prediction of p53 response elements
(group 200034) in promoter regions of selected genes
from the Mouse 4.0 database.

(DOC)

Table S3 Quantitative real-time PCR primers for
indicated mouse genes.

(DOC)

Table S4 Primers used for PCR analysis of putative p53
response elements predicted by CisRED.

(DOC)

Table S5 Species comparisons of orthologous sequenc-
es of the p53 response element predicted in mouse Ins2
promoter region by CisRED.

(DOC)
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