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Abstract

The autoencoder algorithm is a simple but powerful unsupervised method for training neural
networks. Autoencoder networks can learn sparse distributed codes similar to those seen in
cortical sensory areas such as visual area V1, but they can also be stacked to learn increas-
ingly abstract representations. Several computational neuroscience models of sensory
areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder
variants, and autoencoders have seen extensive use in the machine learning community.
Despite their power and versatility, autoencoders have been difficult to implement in a bio-
logically realistic fashion. The challenges include their need to calculate differences
between two neuronal activities and their requirement for learning rules which lead to identi-
cal changes at feedforward and feedback connections. Here, we study a biologically realis-
tic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity
that closely matches that observed in cortical sensory areas. Our choice of synaptic plastic-
ity rules is inspired by recent experimental and theoretical results suggesting that learning
at feedback connections may have a different form from learning at feedforward connec-
tions, and our results depend critically on this novel choice of plasticity rules. Specifically,
we propose that plasticity rules at feedforward versus feedback connections are temporally
opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric com-
bined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows
a learning rule that approximately minimizes an autoencoder loss function. When trained
with whitened natural image patches, the learned synaptic weights resemble the receptive
fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful
autoencoder learning algorithm could be within the reach of real biological networks.

Author Summary

In the brain areas responsible for sensory processing, neurons learn over time to respond
to specific features in the external world. Here, we propose a new, biologically plausible
model for how groups of neurons can learn which specific features to respond to. Our
work connects theoretical arguments about the optimal forms of neuronal representations
with experimental results showing how synaptic connections change in response to
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neuronal activity. Specifically, we show that biologically realistic neurons can implement
an algorithm known as autoencoder learning, in which the neurons learn to form repre-
sentations that can be used to reconstruct their inputs. Autoencoder networks can success-
fully model neuronal responses in early sensory areas, and they are also frequently used in
machine learning for training deep neural networks. Despite their power and utility, auto-
encoder networks have not been previously implemented in a fully biological fashion. To
perform the autoencoder algorithm, neurons must modify their incoming, feedforward
synaptic connections as well as their outgoing, feedback synaptic connections—and the
changes to both must depend on the errors the network makes when it tries to reconstruct
its input. Here, we propose a model for activity in the network and show that the com-
monly used spike-timing-dependent plasticity paradigm will implement the desired
changes to feedforward synaptic connection weights. Critically, we use recent experimen-
tal evidence to propose that feedback connections learn according to a temporally reversed
plasticity rule. We show mathematically that the two rules combined can approximately
implement autoencoder learning, and confirm our results using simulated networks of
integrate-and-fire neurons. By showing that biological neurons can implement this power-
ful algorithm, our work opens the door for the modeling of many learning paradigms
from both the fields of computational neuroscience and machine learning.

Introduction

Neurons in the brain’s sensory areas need to form useful internal representations of the external
world. Over the course of development, as these neurons create and modify their synaptic con-
nections, they develop receptive fields which allow them to respond to characteristic stimulus
features. The preferred features are relatively simple for neurons in primary areas such as pri-
mary visual cortex (V1) and primary auditory cortex (A1), but increase in complexity, sparsity,
abstractness, and size in higher brain areas. It is an intriguing possibility that the brain uses a
similar mechanism to learn receptive fields in higher sensory areas as it does in the primary
areas. If so, that mechanism must be flexible enough to work across the different regimes of
sparsity, complexity, and abstraction. The mechanism must also be capable of producing repre-
sentations which are potentially “stackable”, so that the output from one area can be represented
in more abstract form in the subsequent area. For instance, if pairwise or higher order correla-
tions in neuronal activity are present in one area, those correlations might be captured to form a
more abstract representation in the next area. Finally, the mechanism must be implementable
by biological neurons: all computations must be local, and synaptic weight changes should
match experimentally observed synaptic plasticity. Here, we introduce a model for learning in a
single area which we argue fulfills these requirements: it is biologically plausible while allowing
varying levels of sparsity and producing representations that need not be uncorrelated.

Many previous biologically plausible models of receptive field development learn local or
“one-hot” representations, in which each stimulus causes approximately one neuron (or one
small neighborhood of neurons) to respond; models in this class include Kohonen’s Self-Orga-
nizing Map [1], LISSOM [2, 3], and Winner-Take-All models [4, 5]. Learning in these models
moves the winning neuron’s receptive field closer to the current stimulus using procedures
which are simple, synaptically local, and do not require feedback connections. However, local
representations have very limited capacity: they can represent O(N) distinct inputs with N
neurons, thus requiring that the number of neurons is comparable to the number of features to
be distinguished. Local models of low-level vision can succeed because natural image patches
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seem to exist in a space of low dimensionality [6], and spatially localized features can be charac-
terized using only a few parameters (such as orientation, spatial frequency, and phase). How-
ever, in higher brain areas with larger and more complex receptive fields, the number of
neurons required for a local model to be able to represent all possible stimuli would grow
tremendously.

By contrast, distributed models can represent many more potential inputs, from O((})) for
sparse models with k active units up to O(2") for dense models [7-9], and may therefore be bet-
ter suited for modeling at all levels of the sensory hierarchy. Several biologically plausible models
have been proposed for learning distributed representations in the special case where neuronal
activity is very sparse and uncorrelated [7, 10-12]; under these conditions, a simple learning
rule similar to that seen in the local models can be used. However, a model which does not
require neurons to be uncorrelated is desirable because neurons in real cortical networks
respond to stimuli in highly correlated ways. This stimulus-dependent correlation should be dis-
tinguished from noise correlation, which measures the similarities of fluctuations in neuronal
responses to identical stimuli. Noise correlation is frequently measured to be small, and so corti-
cal firing is often described as “decorrelated” (e.g. [13]). However, stimulus-dependent correla-
tion is strong; in V1, from 20-50% of neurons have been estimated to respond to each stimulus
in their receptive field [14]. Many pairs of neurons have highly correlated responses when mea-
sured across multiple stimuli (e.g. [15]). Importantly, in the context of a hierarchy, the correla-
tions remaining in the neurons of one layer can be captured by neurons in subsequent layers.

Perhaps the most well-known model for learning in V1 is Olshausen and Field’s Sparse
Coding model [16]. Their algorithm attempts to find receptive fields which simultaneously pre-
serve information while maintaining sparse neuronal activity, but it does not require neuronal
activity to be uncorrelated in order to function. However, the algorithm thus far lacks a biologi-
cal interpretation. A different spike-based matching pursuit model [17] uses different interac-
tions to determine the neuronal activities but the same learning rule, and that learning rule
similarly lacks a biological interpretation.

Here, we introduce a novel biological mechanism for a well-known learning algorithm
known as the autoencoder. Autoencoders are two-layer neural networks which attempt to
learn distributed representations that can be used to accurately reconstruct their inputs. In an
autoencoder, external stimuli induce activity in the lower-layer “visible” units. This activity,
combined with feedforward connections, then creates a pattern of activity in the upper-layer
“hidden” units. Finally, the network uses symmetric or “tied” feedback weights in order to cre-
ate an attempted reconstruction in the visible layer. The objective of autoencoder learning is to
tind weights such that the reconstruction closely matches the original stimulus input, thus
ensuring that the hidden unit representation is a good one; intuitively, reconstructions can
only be accurate when the hidden layer retains sufficient information about the visible layer.
An autoencoder can be made to find an efficient representation by adding a constraint on the
activity or architecture of the hidden layer. This forces the network to find features which are
useful for describing the particular types of stimuli seen during training. The constraint can
take the form of a regularization term added to the loss function. Alternatively, it can be a hard
limit, such as a limit on the number of hidden units, a requirement that hidden units be binary,
or a requirement that hidden unit activity be sparse. Typically, autoencoders are trained using
stochastic gradient descent on the squared reconstruction error (or on the reconstruction error
plus regularizer term); for each stimulus presentation, synaptic weights are changed in the
direction that would most decrease this loss function. In this work, networks are trained
instead using the “autoencoder rule”, also known as Oja’s subspace rule [18], which is an
approximation to the full gradient descent expression. If the vector of input values is given by
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X, hidden unit activities are given by ¥, and the attempted reconstruction is the vector X, then
the autoencoder rule states that for learning rate 7, the change in synaptic weights w;; between
visible unit i and hidden unit j is given by

Aw; =n(x, — x,)y; (Autoencoder learning rule) (1)

Autoencoders can be used to accurately model responses in early sensory areas; indeed, Olhau-
sen & Field’s Sparse Coding network is an autoencoder with lateral interactions between the
hidden units used to impose a sparsity constraint. But the autoencoder is a very general algo-
rithm. With different neuronal activation functions and lateral interactions, autoencoders can
also find the subspace spanned by Principal Component Analysis (PCA) eigenvectors [9, 18]
or perform an online implementation of K-means clustering [19]. (See [9] for an extensive
review of autoencoders and their relationship to other learning algorithms.) These cases show
that autoencoders can span the range between learning dense distributed models, as in PCA
[20], and local models, as in K-means. Sparse Coding, where several hidden units respond to
each stimulus, falls in between these two extremes. Autoencoders have been used extensively in
the machine learning community, where they have been stacked to form multi-layer represen-
tations of increasing abstraction [21-23] or used to pre-train deep neural networks that per-
form classification tasks [24].

There are two main difficulties regarding a biologically plausible implementation of the auto-
encoder. The first challenge arises from the fact that learning must depend on the difference of

two neuronal activities: the original visible unit activity X and the reconstructed activity X (see
Eq (1)). The second difficulty comes from the required symmetry of learning tied weights,
where feedforward weights are equal to feedback weights. Preserving this symmetry over the
course of learning dictates that any change to the feedforward synaptic strength between two
neurons must be accompanied by an identical change to the feedback strength. If a feedforward
synapse is weakened, the feedback synapse must also be weakened, and vice versa. In real neu-
rons, feedforward and feedback synapses are physically distinct entities, and a biologically realis-
tic model must account for how the two can experience identical (or very similar) plasticity.
Previous implementations have addressed these two challenges by positing that hidden
layer neurons are inhibitory and create negative reconstructions, so that the final activity in the

visible layer is € = ¥ — X,and stipulating that learning then proceeds according to symmetric
Hebbian rules Aw;; = €; y; [25, 26]. However, these implementations are biologically unrealistic
in three important ways. First, they require visible unit activity levels € to become negative at
times in order to create synaptic depression. Second, the inhibitory nature of the feedback con-
nections is unrealistic, since it is known that most feedback connections between cortical areas
arise from excitatory neurons, and most feature-selective neurons are excitatory [27]. Third,
the learning rules themselves are unrealistic; experiments have shown that in real neurons,
unlike those modeled in inhibitory feedback networks, synaptic plasticity is neither purely
Hebbian nor symmetric. Instead, the sign of synaptic plasticity often depends on the relative
timing of activity in pre- and post-synaptic neurons [28, 29], in a process known as spike-tim-
ing dependent plasticity (STDP) [29-32].

Here, we instead propose a spiking neural network in which feedback creates a weak, posi-
tive reconstruction. Unlike a previous proposal with a similar architecture [33], our model uses
a biologically realistic synaptic plasticity rule to implement learning. The required negative
sign in the learning rule arises naturally from an additive version of STDP, while our proposed
differences in the plasticity rules at feedforward versus feedback synapses [34] lead to effective
symmetry in learning. We show analytically that the learning in our network approximates the
autoencoder learning rule.
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To examine the behavior of our model in the sparse regime, we use a very simple, biologi-
cally plausible method for inducing individual hidden neurons to have high lifetime sparsity.
Our method uses local homeostatic mechanisms within each neuron to drive the network to
find sparse solutions, and is designed to mimic a biological process known as “synaptic scaling”
[35-37], in which neurons regulate their activity levels by modifying their susceptibility to syn-
aptic inputs. The resulting sparsity is important because it is well known that algorithms which
yield sparse representations of natural stimuli can learn synaptic weights which closely resem-
ble the receptive field structures of simple cells in primary sensory cortices (reviewed in [38]).
The specific choice of algorithm seems to matter less than its basic ability to create a sparse
representation [39]; while Sparse Coding was an early and famous example [16], various well-
known sparse algorithms give qualitatively and even quantitatively similar results on visual,
auditory, and somatosensory stimuli. These include independent component analysis [40],
sparse autoencoders [41], restricted Boltzmann machines [41], and K-means clustering [42]
(all are reviewed in [43] and [39]).

We use simulated networks of integrate-and-fire neurons in two experiments to show that
our network is capable of minimizing reconstruction error in these example datasets. For the
first experiment, in which we train the network using a dataset containing handwritten digits,
we use model neurons that approximate the idealized units in a neural network by having syn-
aptic weights that can become positive or negative and an additive form of synaptic scaling that
resembles a neural network bias term. For the second experiment, we use a dataset containing
whitened natural image patches and we verify that the learned receptive fields resemble those
measured in primary visual cortex. Here, we more closely model biological excitatory neurons
by restricting synaptic weights to be positive and by using a multiplicative form of synaptic
scaling. In both experiments, dynamic parameters such as membrane time constants and syn-
aptic transmission delays are set to biologically realistic values.

Results
The autoencoder rule

We begin by defining the general autoencoder problem in a two-layer neural network. Each
neuron in the first, visible layer is connected reciprocally to each neuron in the second, hidden
layer, and there are no lateral connections. During each training trial, the network is presented
with stimulus X in the visible layer. The network then computes a representation ¥ in the hid-
den layer, using feedforward weights W (with the jth column vector denoted by ;) and other

parameters 0 according to the potentially non-linear function
Y =f(&;w;,0). (2)

The network then computes an attempted reconstruction X in the visible layer using sym-
metrical or “tied” feedback weights W' and an activation function g, so that

X; :g(zijij)' 3)

A squared reconstruction error is defined as

E=IF %" =3 (- 1)" @)

i

How should this network modify its weights so as to minimize this error, using stochastic
gradient descent? The derivative of £ with respect to the weights w;; between a visible neuron i
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and a hidden neuron j is

98 _ 22 ‘9"/ gi{_). (5)

K

The initial visible activities x; don’t depend on the weights, so % = 0 for all 7. Similarly, the
)

hidden unit activity y; is independent of the weights to other hidden units, so 2}'7" =0forj#j.
ij

If we define
d
I (6)
then
8w,, oy
—_ 1’2)’] 8 I’Z—W’ glyjéll +gza—jw’ (7)
1]
Therefore,
1 0& Oy]
—58—% (x; g,y]+z —]W/ (8)

There are two terms above because of the tied weights: changing w;; modifies both feedfor-
ward and feedback connections, and these changes have two independent effects on the recon-
struction error. The first term is simpler, and reflects the contribution from the changed
feedback connections. Importantly, it depends only on the activities of the connected neurons i
and j. We therefore say that it is a “local” computation, and one that might plausibly be com-
puted by biological neurons.

By contrast, the second term, which reflects the contribution from the changed feedforward
connections, is non-local. It depends on the activities of every visible neuron; this information
would not be available to a biological synapse. Previous authors have noted that the second term
is often small [44], so that an approximate gradient descent using only the first term works nearly
as well as the full equation [44, 45]. For linear reconstructions, where ¢’ is a constant, this becomes
the autoencoder learning rule (Eq 1). This is the rule that we will implement biologically.

We note that the designation of “local” or “non-local” depends upon the activity in the net-
work. We could have written %, in Eq (1) as g(X; y; wj;), and the learning rule would have
appeared non-local due to its dependence on the y; terms. Indeed, it is this exact non-locality
that has caused previous authors to argue that autoencoder learning is not biologically plausible
(e.g. [12]). Here, instead, information about all hidden-unit activities is incorporated into the
reconstruction activations X, of the visible units themselves. Any synaptic plasticity rule which
incorporates X, will allow synaptic changes to depend on the activity of all the hidden units and
the initial activity of all the visible units—even though the learning rule is purely local.

Spiking network for autoencoder learning

To implement the autoencoder learning rule with biologically realistic neurons, we propose a
two-layer network of spiking neurons with Ny;s neurons in the visible layer and Ny,;4 neurons in
the hidden layer (Fig 1a). Every visible neuron is connected reciprocally with every hidden one,
and there are no lateral connections within a layer. The matrix of feedforward connections is
denoted W and the feedback connection matrix is Q; following sections will show how the
weights become symmetric.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004566 December 3, 2015 6/25
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Fig 1. Architecture of the model network and stimulus preprocessing. Architecture of the model network and network activity. a: Architecture of the
model network and stimulus preprocessing. The final preprocessing step of separating the stimulus into two non-negative “ON” and “OFF” populations allows
the visible layer activities to remain positive. b: Example activity of two neurons in the spiking network. In response to external stimulus onset (gray bar), the
visible neuron i fires several spikes in the “initial bout” of activity. After a delay, feedforward excitation causes the hidden neuronj to fires spikes in the
“‘intermediate bout”. After another delay, feedback causes the visible neuron to spike in the “final bout”, the network’s attempted reconstruction. The average
time between spikes in the initial and intermediate bouts and intermediate and final bouts are given by At; and At,, respectively. Every pair of visible and
hidden spikes contributes to plasticity, dependent on their relative times. Learning from two example dotted spikes is described in Fig 2. ¢: Biological
feedforward and feedback connections are physically distinct. For the feedforward connection, the visible neuron is pre-synaptic, the hidden neuron is post-
synaptic, and the synapse lies close to the hidden neuron’s cell body. For the feedback connection, the hidden neuron is pre-synaptic, the visible neuron
post-synaptic, and the synapse is far out on the visible neuron’s dendritic tree.

doi:10.1371/journal.pcbi.1004566.9001

Inputs to the network are pixel values of preprocessed training images, and they stimulate
only the visible neurons (Fig 1a). Plasticity in the system has two components: inter-layer syn-
aptic weights evolve according to the mirrored STDP (mSTDP) rules, and hidden neurons
homeostatically adjust synaptic scaling to maintain target average activity levels (both are
described below). In our simulations, we use the leaky-integrate-and-fire (LIF) model for the
neurons. However, our main results only depend on an approximately linear relationship
between input strength and neuronal firing rate, so other neuron models could work as well.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004566 December 3, 2015 7/25
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The details of the model implementation and all parameters used in the simulations are sum-
marized in S1-S7 Tables.

Our input preprocessing begins with a mean-subtraction step. This leaves pixel values v,
that can be either positive or negative, which allows for a parsimonious representation of input
pixels that are above or below their average values. However, biological neurons cannot have
negative firing rates. We accommodate this by using an “ON-OFF cell” strategy, which uses
twice as many visible neurons as pixels in the stimulus image. The inputs for the first half of
the visible neurons are V,, = max (0, V,,,), while the inputs to the second half of visible neu-
rons are Vo, = max (0, —V_,). This strategy closely resembles that used by subcortical cells in
the mammalian visual system [46, 47], and it allows both the positive and negative areas of the
mean-subtracted natural image patches to be represented with positive neuronal activities of
similar magnitude.

The network is trained through the sequential presentations of input stimuli. We choose
parameters such that activity in the spiking network occurs in three rough bouts. Fig 1b shows
activity for one visible and one hidden unit during a presentation. For each stimulus, visible neu-
rons receive a brief pulse of excitatory synaptic input proportional to stimulus strength. This
input causes the neurons to generate a series of spikes; the spike counts during this period are

represented by the vector X € ZZ. Feedforward synaptic excitation causes some of the hidden

units to spike; their spike counts are given by j € Z. These hidden-unit spikes occur at a
delay with respect to the initial visible unit activity because of a short synaptic transmission delay
and because excitation from many spikes is required before the neurons reach threshold. Finally,
after a further delay, visible units may spike again due to feedback excitation. The total number
of visible spikes occurring due to feedback is x € Z2. In Fig 1b x; =5, y; = 3,and X, = 2; here,
the three bouts are temporally separate, but in simulations there can be some overlap.

To prevent reverberating activity from growing exponentially during the course of a trial,
we can consider parameters that lead to weak feedback, such that the number of spikes in the
attempted reconstructions x is several times smaller than that in the the initial activities ¥ [34,
48]. We denote the constant scaling factor o < 1, and say that the network makes a successful

reconstruction when X ~ o%.

Tied weights along with weak feedback will be maintained when learning rules enforce
the relationship Q = «W'. Because feedforward and feedback synapses occur at physically
distinct locations (Fig 1c), we will show separate, biologically plausible plasticity rules for
both feedforward and feedback connections and describe how they can maintain this sym-
metrical relationship.

We define a scaled spiking reconstruction error £, = ||X — 1| ”. To determine what

spike
synaptic weight changes will decrease this error, we first need to specify how the spike counts
depend on the weights. If the neurons in the network behave like standard leaky integrate-
and-fire neurons (and time periods are short compared to the membrane time constant),

their spike counts will be well approximated by rectified linear functions, so that ¥ ~
max (0, Wx) and ¥ ~ max (0, «W'j). In this case, the first term of the gradient descent

expression for w;; becomes (%, > 0) x (x, — %) ;- In the common cases where x; and x; are

both zero or are both nonzero, this gives the approximate gradient descent rule which the net-
work should follow:

1
Aw, = (x, — &fci)yj (Scaled autoencoder rule) 9)

Our goal will be to show that biologically realistic synaptic plasticity rules used by the neurons
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Fig 2. Plasticity rules. Each plot shows plasticity from spikes k and / from a visible and hidden neuron, respectively, which occur at times t, and t,. Red cross
and blue triangle show learning from the two example dashed spikes in Fig 1b for feedforward and feedback connections, respectively. Note different x-axes
on each plot. a: Standard STDP rule. Used for feedforward connections in the model, for which spike / is post-synaptic. x-axis shows time difference between
post- and pre-synaptic spikes. The example spikes would strengthen the feedforward connection (red cross) but weaken the feedback connection, if
feedback followed this rule (blue triangle). b: aSTDP rule, in which the time dependence is reversed. Used for feedback connections, for which spike k is
post-synaptic. Learning rate is scaled by a constant {/n relative to STDP. ¢: Combined mSTDP rule. x-axis shows time difference between hidden and visible
spikes, leading to identical profiles for STDP and aSTDP. Feedforward and feedback learning is symmetric (red cross and blue triangle).

doi:10.1371/journal.pcbi.1004566.9002

in our network can implement this scaled autoencoder rule both for feedforward and feed-
back connections.

Mirrored STDP rule leads to learning of symmetric connections. In our model, feedfor-
ward weights between any two neurons i and j are learned according to the commonly used
additive STDP paradigm (Fig 2a), which specifies weight changes due to each pair of spikes in
the two neurons. STDP captures the fact that in many biological synapses, the direction of plas-
ticity depends on the relative timing of pre- vs post-synaptic activity [29]. The identities of the
pre- and post-synaptic neurons depend on the connection direction: for a connection running
from neuron i to neuron j, neuron i is the pre-synaptic one and j is post-synaptic. Under
STDP, if the pre-synaptic neuron spikes first and is closely followed by a postsynaptic spike,
the connection is strengthened. Conversely, if the post-synaptic neuron spikes first, the connec-
tion is weakened. The magnitude of the depression or potentiation decreases exponentially
with the absolute value of the timing difference. When multiple spikes are fired, the weight
change is the sum of the individual change calculated from all possible spike pairs. If S, and

S

05t ar€ the sets of spikes of the pre- and post-synaptic neurons, respectively, and ; is the time

of the spike k, the STDP learning rule is given by:

Awp=n >

KES pre 1€S post

+elitee i >,
(STDP, used for feedforward connections) (10)

—e h—ul/—if <t

Here, 7 is the learning rate and 7, and 7_ are timescales for synaptic potentiation and
depression, respectively; for biological synapses, these are typically on the order of tens of
milliseconds.

Motivated by two experimental results, we use a slightly different plasticity rule for our feed-
back connections. First, feedback connections in cortex tend to be at synapses far out on the
dendrites of the post-synaptic neuron, unlike feedforward connections which usually arrive
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Aw; :gAqﬁ =13

close to the cell body (Fig 1c) [27, 49]. Second, in several cortical systems, plasticity at distal
synapses has been observed to have a reversed temporal dependence as compared with tradi-
tional STDP [50-52]. We have previously postulated [34] that feedback synapses themselves
experience anti-Hebbian STDP [53-55], or “aSTDP”, which is temporally reversed compared
with standard STDP. With aSTDP, pre-synaptic activity occurring before post-synaptic activity
leads to depression, and vice versa. The aSTDP rule is given by (Fig 2b):

Agi=C>0 >0

KES pre 1€S post

+e i/t f t, <t
(aSTDP, used for feedback connections)(11)

—e e i >

This differs from Eq (10) only in the directions of the greater than/less than signs and in the
use of { as a learning rate, potentially different from that for STDP.

Critically, we note that for feedforward connections, visible units are pre-synaptic—but the
reverse is true for feedback connections (Fig 1c). We can use this fact to update Eq (10) by
replacing S, with the set of visible neuron spikes S;, and similarly update Eq (11) by replacing

S, with the set of hidden neuron spikes S,. After making analogous replacements for S

post? we

see that, up to a constant, the equations have become identical. We call this combined learning
rule mSTDP, for mirrored STDP (Fig 2c¢):

el >
(mSTDP, for feedforward and feedback connections)(12)

kes; 1€S; —e Il e g <ty
Thus, under mSTDP the plasticity due to any pair of visible and hidden spikes will be the same
for the feedforward connections as for the feedback connections, up to a scaling factor. We
note that if we had instead used simple STDP for both feedforward and feedback connections,
the plasticity for any pair of spikes would have had the opposite sign for the the two directions
—exactly the opposite of the symmetry needed for autoencoder learning (Fig 2a, blue triangle
and red cross.)

If the weights are initially symmetric up to a scaling factor, such that Q = W', mSTDP

will maintain that symmetry. Moreover, if the weights are initially small but non-symmetric,
mSTDP learning will eventually make them approximately symmetric [56]. This symmetry is
assumed in many neural network models (from Hopfield [57] onward), but here we have
shown how it can arise naturally from biologically realistic assumptions. We note that these
scaled weights will lead to to a scaled feedback reconstruction, as described earlier, and identify
o ~ . In our simulations, for the first experiment we use the approximation that symmetric
plasticity has already led to symmetric weights, and henceforth apply the substitution

Q— %WT, but in the second experiment we initialize W and Q separately and measure how
quickly they become symmetric.

Spiking network implements scaled autoencoder learning rule. To begin our analysis of
the effects of the mSTDP learning rule, we consider the timing of the three bouts of activity in
our network (Fig 1b). We note that early visible layer spikes occur before hidden layer spikes,
while late visible layer spikes due to feedback occur after the hidden layer spikes. Defining S; &
and S; as the sets of early and late visible layer spikes, respectively, and S; as the set of hidden
layer spikes, the mSTDP learning rule becomes:

%AW"J =D D e YT el (13)

keS;g leS; Kes;ples;

We next approximate the time differences (t; — ) by the average time between the early and
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intermediate activity bouts, which we call At; (Fig 1b). We similarly approximate 4 = 4 © by
the average time between the intermediate and late activity bouts, Af,; we can now move the
exponential terms outside the sums. We recall that the spike counts in the three bouts are given
by ¥, ¥, and X, so we finally have

1

Z ~ p— A/t e AR/ &
Aw,.j ~e Xy —

= (Bx; =%y, (14)

for f=e "™ and y = e """, A similar result holds if we do not approximate the times of the

spikes but instead integrate over the shape of their distribution: If the density of spikes in

the first bout is given by x; d,(t)dt, where d(f)dt integrates to 1 and is zero for times outside

the bout, and if we define similar densities for the other bouts, then the learning rule is

YAw, = ([ d (e [T (H)e™ ) xy, — (f; di(t)e™ [ d,(t)e /) Xy, This has the same

form as Eq 14, except with different values for 8 and y. In elther case, our learning rule becomes
1 Voot

ﬁAwij CﬁAqﬂ (x I—Exi)y].. (15)

If parameters are such that% = 1, this is exactly proportional to the desired autoencoder learning

ruley AW=(X — —x))7T

Concluding, we have shown that biologically plausible plasticity rules for feedforward and
feedback connections in our spiking network cause it to approximately follow the scaled auto-
encoder learning rule. With our simulations, we will examine whether this approximation does
in fact allow the network to minimize reconstruction error.

Synaptic scaling for sparsity. In order to learn sparse representations, autoencoder net-
works require additional regularizations or constraints. Here, we use a very simple mechanism
with a clear biological interpretation: throughout the course of training, we adjusted each hid-
den neuron’s responsiveness to synaptic inputs so that it would maintain a low target average
activity rate. This can be seen as an implementation of the experimentally observed phenome-
non known as synaptic scaling [35-37]. Different values of the target activity rate correspond
to different levels of sparsity in the learned representation; when the target activity rate is high,
most hidden neurons respond to any given stimulus and the representation is very distributed.
By contrast, for low target activity rates, most hidden neurons respond only to a small fraction
of stimuli, leading to a sparse representation.

Simulation results in spiking networks

We numerically simulated a network of LIF neurons. Because of spiking neurons’ nonlinear
responses to input, the variable time courses of activity in the network, and the exponential
STDP rules, a LIF network does not exactly follow the scaled autoencoder learning rule given
in Eq (9). Moreover, the autoencoder learning rule itself performs only an approximate gradi-
ent descent on the reconstruction error. Our numerical simulations allowed us to investigate
whether the LIF network could minimize the autoencoder loss function while still maintaining
sparsity. (S1-S7 Tables).

The architecture of our simulated network was the same as that in Fig 1a, except that to con-
trol overall activity levels we included a pool of Nj,j, inhibitory neurons in each layer (Fig 3). The
inhibitory neurons in each pool were connected reciprocally with every excitatory neuron in the
layer. Connection weights to and from inhibitory neurons did not change during the simulations.

Our model neurons were conductance-based leaky integrate-and-fire neurons with a spike
frequency adaptation term, similar to those in [58] (S6 Table). In our first experiment, where we
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Fig 3. Model architecture for the integrate-and-fire simulations, including pools of inhibitory neurons
in each layer.

doi:10.1371/journal.pchi.1004566.9003

trained the network with the MNIST dataset of handwritten numerals, synaptic weights from
the visible and hidden units could take on positive or negative values. In our second experiment,
where we trained the network with natural image patches, we imposed more biologically realis-
tic constraints, and restricted weights from visible and hidden units to be positive only.

Synaptic scaling. To implement synaptic scaling in the MNIST experiment, we defined
for each hidden neuron j a property ¢; that we called the “synaptic offset”. We used this to
modify each of that neuron’s incoming synaptic connections, creating effective weights
w; = w; + ¢,. In practice, this approach is very similar to a threshold modification [7, 12] or
to a standard neural network bias term, and it has consistent effects whether weights are posi-
tive or negative.

By contrast, in the natural image patches experiment, we implemented synaptic scaling with
a multiplicative factor ®;, for effective weights w; = w; x ®,. Because the weights were non-
negative, neurons could consistently increase or decrease their net excitation, and thus their
average activity, by increasing or decreasing this scaling factor.

Biological synaptic scaling typically has multiplicative effects on individual synaptic weights,
but the scaling factors can differ between excitatory and inhibitory inputs [37], leading to addi-
tive as well as multiplicative effects on net synaptic inputs. Our synaptic offsets ¢; can be seen
as modeling just the additive components of synaptic scaling, whereas the scaling factors ®@;
directly model multiplicative synaptic scaling on the excitatory weights.

During both experiments, we kept a running average A; of the fraction of trials when each
hidden unit fired at least one spike. We compared A; to a target activation rate p, and after each
trial changed ¢; or ®@; according to A¢; (or AD;) = B(p — A;) for learning rate 3 (S5 Table).

Training procedure. For the MNIST dataset, each of 50,000 training images was down-
sampled to 14x14 pixels and the mean value across the training set was subtracted from each
pixel before images are doubled to 392 ON/OFF input pixels. For each input, a Poisson train of
input spikes was generated with mean rate equal to the pixel value of the input. Our network
had 5,000 hidden units and was trained for two passes through the training set. We used a tar-
get activation rate p = 0.03, meaning that each hidden unit should fire at least one spike for
approximately 3% of stimuli. For the second dataset, we used 16x16 pixel patches taken from
the whitened natural images used in [16], which we mean-subtracted and doubled to 512 pixel
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(a) Learned from MNIST

(b) Learned from natural image patches

Fig 4. Feedforward weights after training for the MNIST and natural image patch datasets. a: Weights learned from the MNIST dataset. Each square in
the grid represents the incoming weights to a single hidden unit; weights to the first 100 hidden units are shown. Weights from visible neurons which receive
OFF inputs are subtracted from the weights from visible neurons which receive ON inputs. Then, weights to each neuron are normalized by dividing by the
largest absolute value. b: Same as (a), but for the natural image patch dataset.

doi:10.1371/journal.pcbi.1004566.9004

inputs. We found that many of the patches had no high-contrast features; these patches acti-
vated the visible neurons only weakly and did not produce any activity in hidden units (and
thus no learning.) For speeding up our simulations, then, we restricted training to high-con-
trast patches where the average value in the pre-processed patch was at least 0.06. We trained
the network with 500 hidden units on 300,000 randomly selected high-contrast patches with a
target activation rate of p = 0.02.

For each training stimulus, the network spiking response was calculated and feedforward
and feedback weights were changed according to Eq 12. The learning rates were the same for
feedforward and feedback weights. For the MNIST experiments, feedforward and feedback
weights were initialized with symmetrical values, and Eq 12 exactly maintained this symmetry.
For the more biologically realistic natural image patch experiments, the feedforward and feed-
back weights were independently initialized to random values.

Learned hidden unit receptive fields. In Fig 4a, we show the incoming weights w;; or
“receptive fields” for 100 out of the 5,000 hidden neurons in the MNIST network. For visualiza-
tion, the weights from the visible cells with OFF inputs were subtracted from the weights from
the visible cells with ON inputs. The network learned hidden-unit input weights with complex
spatial structures (Fig 4a) somewhere between full digits and individual strokes. The develop-
ment of the weights over time is shown in Fig 5, along with attempted reconstructions made
with the weights at several different points in training. At the earliest time, the few hidden units
that happened to have strong incoming weights would respond to any stimulus, making the
different attempted reconstructions very similar.

In contrast to MNIST, the receptive fields learned by the natural image patch dataset (Fig
4b) were compact. They resembled the Gabor filters found in simple cells of primary visual cor-
tex. Most receptive fields had two or more slightly elongated subregions receiving inputs from
ON or OFF visible units.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004566 December 3, 2015 13/25
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Fig 5. Evolution of weights and reconstructions in the spiking model. a-b: Evolution of weights in the spiking model. Weights as learned after different
numbers of stimulus presentations are shown for 10 example hidden units. c—d: Attempted reconstructions at different points in training for the two spiking
model experiments, for the stimuli shown in the bottom rows. Early in training, the same few hidden units whose incoming weights happened to be strongest
were often activated regardless of the stimulus, leading to similar reconstruction attempts for different stimuli (first rows). Over time, the attempted
reconstructions came to resemble the input stimuli.

doi:10.1371/journal.pcbi.1004566.9005

Autoencoder performance. Fig 6a shows an example raster plot of network activity for all
the neurons that spiked during a single MNIST stimulus presentation after training was com-
pleted. (Compare with Fig 1b). There were 255 active visible neurons, 198 hidden ones, 1,175
active visible inhibitory neurons, and 962 hidden inhibitory neurons. The visible unit activity
during the initial phase, from 0-10ms, was similar (but not identical) to that during the final
reconstruction phase, from about 10-20ms. There were slightly fewer spikes in the later phase,
corresponding to scaled feedback weights, but the general pattern is similar, indicating that the
network has learned to reconstruct the inputs.

We note that the onset latency for hidden unit activity was between 5 and 10ms, and that
most hidden units which produced spikes did so near the end of the initial bout of visible unit
spikes. This onset delay was slightly shorter than the latency differences between visual areas in
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Fig 6. Behavior of the simulated spiking network for the MNIST dataset. a: Behavior of the network during a typical image presentation; compare with
Fig 1b. Time period of external stimulation shown by grey bar. Raster plot includes all neurons which fired at least one spike during the presentation. The
spikes of the visible neurons are in the bottom row and those of the hidden neurons are directly above. The top two rows, in grey, show the spikes for the
inhibitory pools at each layer. Although the each training presentation ran for 65ms, all spikes occurred before 30ms so the raster plot was ended there. b:
Reconstruction loss function, black dots, (defined in text) decreases over time, as does sparsity loss function (red, note log scale on y axis). ¢: The trained
networks’ attempted reconstruction of representative training images. Each image shows the ON cell values minus the OFF cells. The first row shows the

inputs to the network. The second row shows the attempted reconstruction Q7.

doi:10.1371/journal.pcbi.1004566.9006

the primate visual system [59], and was not due to the synaptic transmission delay, which was
2ms; instead, the delay occurred because the network had learned feedforward weights which
were weak enough that hidden units needed to integrate many incoming spikes before they
could fire. These weak feedforward weights were maintained because any hidden units with
strong incoming weights would fire earlier, while initial visible unit activity was ongoing; initial
visible spikes occurring after the hidden unit spikes would cause depression instead of potentia-
tion, and the hidden unit’s incoming weights would be weakened in the future.

To quantify how the network’s reconstruction ability changed over the course of training,
we periodically disabled plasticity and calculated the network’s response to the same 100 test
images. For each test presentation, we recorded the network inputs ¥ and calculated 7 as the
number of hidden neuron spikes. We measured the network’s feedback excitation as Q'Z, and
calculated a reconstruction loss as:

Reconstruction loss = 1 — (corr (¥, Q'Z)) (16)
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doi:10.1371/journal.pcbi.1004566.9007

We defined average hidden unit activity levels A; = (y; > 0), where the average was taken across
all test stimuli. We then defined a sparsity loss function as:

Sparsity loss = ||A, — pl|*/p’ (17)

In Fig 6b, we plotted both of these losses. The network quickly improved its reconstruction
ability, arriving at reconstructions that were on average 80% correlated with their inputs.
Meanwhile, lifetime sparsity was closely maintained. We conclude that the network success-
fully minimized its reconstruction error.

Fig 6¢ shows reconstructions for 10 representative input stimuli at the network’s final
trained weights. The first row shows the input stimulus and the second row shows QZ (always
with the OFF unit values subtracted from the ON unit values.) In all cases, the reconstructions
closely resembled the inputs.

We obtained similar results for the natural images dataset (Fig 7), albeit with substantially
decreased final reconstruction performance. In the example presentation shown in the raster
plot (Fig 7a), there were 311 active visible neurons, 25 hidden ones, 1,692 active visible inhibi-
tory neurons, and 981 hidden inhibitory neurons. Initial visible unit spiking stopped while the
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input was still active, due to the influence of inhibition and spike frequency adaptation. The
main difference, as compared to the MNIST dataset, is that the correlation between the input
and the reconstruction remains at just below 35% (Fig 7b). The attempted reconstructions in
Fig 7d captured many of the important features of the inputs but differed in the details. Light
and dark areas in the reconstruction generally correspond to similar features in the stimulus,
but many fine features, in particular thin and elongated features, are missed. Consequently, sti-
muli with wide features, such as the third stimulus in Fig 7d, are reconstructed with consider-
able success, while the network fails to adequately reconstruct the sixth stimulus in this Fig.,
which contains a prominent narrow line. Reconstruction performance could be improved
slightly by increasing excitability in the network after training. We tried increasing each hidden
unit’s scaling factor ®; by 50% during our reconstruction testing steps. This allowed more hid-
den neurons to become active during each presentation, including some which would other-
wise have received only sub-threshold excitation. The activation of additional hidden units
allowed reconstruction performance to improve visually in some cases (Fig 7); for instance, the
curve in the upper-right-hand corner of the final stimulus is more fully traced out, and the
dark band in the center of the first stimulus is more filled in. But the additional excitation did
not fully resolve the difficulties in reconstruction; for example, in the second-to-last stimulus,
the network is only able to reproduce about half of the black diagonal band across the center,
and the reconstruction in the sixth stimulus is still poor. Quantitatively, correlations increased
from between 1%-5% when tested at different points in training (S1 Fig).

Network learns distributed representations. We have argued that an important strength
of autoencoders is their ability to learn distributed representations without requiring the hid-
den units to be uncorrelated. To show that our network is not in the uncorrelated regime, we
studied the stimulus-dependent correlations of the hidden unit receptive fields and activity. Fig
8a shows a histogram of the Pearson correlation coefficients between the vectors of incoming
weights for each pair of hidden units in the trained MNIST network. Some pairs had positive
correlations, indicating that the neurons could be excited by similar stimuli, while other pairs
had negative correlations, meaning they would be unlikely to be activated at the same time. We
confirmed that this implied correlated firing rates by measuring the responses of hidden units
to 1,000 stimulus presentations, and calculating the Pearson correlation coefficients between
the two vectors of spike counts for each neuron pair (Fig 8b). Because firing rates could not go
below zero, this distribution was biased towards positive values. Fig 8c and 8d show similar
results for natural image patches. We thus confirmed that our algorithm neither requires nor
enforces hidden unit decorrelation.

Fig 9 shows how multiple hidden units in our networks jointly represent each stimulus
input. Using 5 example input stimuli for each of our two datasets, we selected the 10 hidden
units which fired the most spikes in response to that input. We plotted the receptive fields for
these hidden units in order, with the most strongly activated on the left. The reconstruction,
calculated from all hidden units, is shown in the final column.

For MNIST (Fig 9a), some stimuli were well-matched by a single unit’s receptive field (for
example, the bottom-most digit “1” stimulus.) However, others were not well-matched, and
instead activated many hidden units. The “4” in the fourth row activated many hidden units,
each of which differed from the input stimulus, but which nevertheless jointly created a very
good reconstruction. This ability is dependent on the existence of a correlated representation;
for instance, the first two hidden units in the third row have very similar receptive field struc-
tures and are likely to frequently be activated for the same stimuli.

For the natural image dataset (Fig 9b), the network strung together the Gabor-like receptive
fields to represent stimuli. Here, because the receptive fields are more spatially localized, the
hidden units activated for each stimulus did not typically have overlapping receptive fields.
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Fig 8. Hidden unit correlations after training. Neither the incoming weights nor the spiking activity is uncorrelated between hidden units. a: Correlations of
the final trained synaptic weights between every pair of hidden units in the MNIST network. b: Correlations of the spike numbers from 1,000 stimulus
presentations between every pair of hidden neurons for MNIST. c—d: Same, for the natural image network.

doi:10.1371/journal.pcbi.1004566.9008

However, this does not mean that the different hidden units had uncorrelated firing responses
across stimulus presentations. Indeed, particular groups of hidden units can be frequently co-
active even though their receptive fields do not overlap. Consider the last four hidden units in
the third row. Combined, these units’ receptive fields form a curve, a white “u” shape on a
black background which resembles that seen near the bottom of the input stimulus. In natural
images, elongated or curved structures like these are likely to occur relatively frequently, mean-
ing that these four units might often be co-activated, leading to increased pairwise and higher-
order correlations between these units. These correlations provide a signal that could be poten-
tially learned by another layer of neurons; for instance, a neuron which learned to respond
strongly to these four hidden units would be a curve detector.

The effect of changing the target activity level. The parameter p determined the level of
sparsity in the learned representations, and thus was expected to greatly affect the forms of the
hidden unit receptive fields. The results shown above were from simulations with p = 0.03 and p
=0.02, for the MNIST and natural image patch datasets, respectively. This corresponded to
each hidden unit being active in about 3% or 2% of the stimulus presentations, respectively,
which is significantly less than the fraction of neurons in early visual areas seen experimentally
to respond to given stimuli [14]. Learned hidden unit receptive fields for different values of p are
shown in Fig 10. For p = 0.001, corresponding to an even more sparse solution, hidden neurons
tended to learn individual receptive fields that had larger support (Fig 10a and 10b). However,
Fig 10a illustrates a potential shortcoming of the use of synaptic scaling to create sparsity: it can
only control “lifetime sparseness” rather than “population sparseness” [60]. In Fig 10a, many
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Fig 9. Highly activated weights for example image presentations in the two datasets. a: Weights for the MNIST dataset. First column shows 5 example
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doi:10.1371/journal.pcbi.1004566.9009

hidden units have receptive fields that resemble the digit 0. Each individual unit fires very infre-
quently, but when a stimulus resembling a 0 appears, many units fire at the same time. To
achieve true population sparsity, a model with some form of lateral interaction between hidden
units would be needed. By contrast, high values of p meant that many hidden units would work
together to represent each stimulus, so there was no requirement that individual receptive fields
resemble any part of the stimulus. The MNIST network with p = 0.3 learned very distributed
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Fig 10. Learned hidden unit weights for different target activation rates p. a: Learned weights for the MNIST dataset with p = 0.001. b: Learned weights
for the natural image patch dataset with p = 0.001. c: Learned weights for the MNIST dataset with p = 0.3.

doi:10.1371/journal.pcbi.1004566.9010

representations without clear structure to the receptive fields (Fig 10c). This network performed
even better on the reconstruction task than the network with p = 0.03 in the main results,
achieving a final reconstruction correlation of 91% compared with 80% for the main results.
The natural image patch experiments, where weights were constrained to be non-negative, had
difficulties with runaway excitation, and training results are therefore not available.

Discussion

In this work, we propose a detailed and biologically realistic model for how spiking neurons
could implement the commonly used unsupervised autoencoder learning algorithm. Our work
provides a necessary first step in making biologically realistic models for any of the many unsu-
pervised learning algorithms which include an autoencoder term, ranging from those inspired
by machine learning to those inspired by biology, such as Sparse Coding [16]. We describe
how strong feedforward and weak feedback excitation can drive a pattern of spiking activity
that corresponds to the autoencoder’s visible unit input, hidden unit activity, and attempted
reconstruction. Given this activity pattern, we show how STDP, a biological learning rule with
strong experimental evidence, will cause changes in feedforward synaptic strength that approx-
imate those dictated by the autoencoder learning rule. We argue that pure Hebbian STDP does
not, however, cause the correct changes for the feedback synapses given this activity pattern.
Instead, we draw upon recent experimental evidence to argue that those feedback synapses
might learn according to a temporally reversed version of the learning rule, aSTDP, and show
how STDP and aSTDP combine in the two-layer network context to form a symmetric learning
rule we call mirrored STDP, or mSTDP. Finally, we show how mSTDP can allow both feedfor-
ward and feedback synapses to correctly implement the autoencoder learning rule.

We further describe how the network can find sparse representations by requiring its hid-
den units to fire infrequently. We argue that biological neurons could accomplish this through
the experimentally observed process known as synaptic scaling.

This constraint was chosen here for its simplicity, but other forms of regularizers or sparsity
constraint would also be compatible with our mirrored STDP model. For instance, in the Olshau-
sen & Field Sparse Coding algorithm [16], hidden units in each trial find an optimal sparse
steady-state through inhibitory lateral interactions and a term that could be modeled as spike rate
adaptation. Once this steady-state is achieved, synaptic plasticity proceeds according to the auto-
encoder learning rule and could therefore be implemented with a model similar to ours.
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Although we show here how networks could use mirrored STDP to implement autoencoder
learning, we note that the basic principle can work independently of the specific plasticity
mechanism. It only requires two factors. First, the network should have both a sensory-driven
feedforward phase and feedback-driven attempted reconstruction phase. Second, during the
feedforward phase, correlated firing should increase synaptic strength for both feedforward
and feedback connections; in contrast, during the feedback phase, correlated firing should
decrease synaptic strength. In our model, the decrease in synaptic strength during the feedback
phase occurs because of the relative timing of activity in this phase. But similar results could be
obtained, for instance, in a spike frequency model of plasticity in which weak firing due to feed-
back leaves neurons in a depressive regime (e.g. [61]).

Several previous spike-timing-based models of unsupervised feature learning have been suc-
cessful at learning receptive fields that resemble those seen in V1; these include Rank Order
Coding using SpikeNET, by Delorme, Perrinet and Thorpe [4], and the SAILNet model of Zyl-
berberg and colleagues [12]. Neither network can learn a dense distributed code: in Rank
Order Coding, only a single hidden unit responds to each local stimulus, while in SAILNet,
hidden units are encouraged to be uncorrelated and fire very infrequently. Non-distributed,
biologically realistic models have even successfully been extended into mid-level visual areas;
for instance, Masquelier and Thorpe have shown that a winner-take-all STDP model was capa-
ble of learning good features in the second level of a max-pooling hierarchy [5]. We argue that
distributed representations are likely to be better models for yet higher visual areas because of
their increased representational capacity. However, additional work will be required to eluci-
date the conditions under which distributed representations—such as those which can be
learned by the autoencoder—are warranted, and when the simpler learning mechanisms used
in winner-take-all networks will suffice.

We test our model using two-layer networks of simulated integrate-and-fire neurons using
two datasets: handwritten digits in the MNIST dataset and whitened natural image patches. In
both cases, the network learns distributed hidden unit representations which are capable of
reconstructions. However, the reconstruction performance is not as good for the natural image
patches as for the MNIST dataset. This may in part be due to the fact that our current imple-
mentation only allowed us to explore the extremely sparse regime with low hidden unit activity,
since parameters that led to less sparse solutions caused difficulties with runaway excitation
during training. Indeed, when we increased the network activity after training by manually
increasing synaptic scaling factors by 1.5, reconstruction performance improved (Fig 7). Future
work will be required to elucidate whether the training principles described here would con-
tinue to function in a more complicated network that is more robust to runaway excitation.

In the case of the natural image patches, the learned feedforward weights resemble those
observed in the early mammalian visual system. As such, the autoencoder may be a useful
model to consider when studying the development of connections between pyramidal neurons
in the lateral geniculate nucleus and primary visual cortex, or between primary and secondary
visual cortex. Of course, early visual areas of the brain cannot learn different sets of receptive
fields for different stimuli, as in the two datasets we used here. They must learn very general
representations that can be used to build more specific representations further up in the corti-
cal hierarchy. However, in those higher brain areas, if specific sets of neurons are activated in
response to different types of stimuli (such as faces), it is conceivable that an autoencoder-like
algorithm could allow the development of more specialized receptive fields.

By restricting our model neurons in the natural image patch experiments to have non-nega-
tive weights, we show that autoencoder learning can work when the neurons follow Dale’s law.
However, a true understanding of how sparse response patterns can arise will require a model
for the development of selective inhibition. Neurons with purely excitatory receptive fields can
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exhibit sparse firing when those receptive fields are very small or the excitation very weak.
Indeed, the receptive fields learned by our model neurons with the natural image patches were
localized to small regions. By contrast, when receptive fields can have inhibitive components,
as in our MNIST experiment, neurons can fire in a sparse manner even when the receptive
fields are large and complex. Future work is needed to explore how plasticity in inhibitory neu-
rons might help develop these complex receptive fields.
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