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Middle East Technical University,

Turkey

*Correspondence:
Isamu Motoyoshi

imotoyosi.ac@gmail.com

Received: 08 April 2021
Accepted: 28 June 2021
Published: 26 July 2021

Citation:
Okada K and Motoyoshi I (2021)

Human Texture Vision as Multi-Order
Spectral Analysis.

Front. Comput. Neurosci. 15:692334.
doi: 10.3389/fncom.2021.692334

Human Texture Vision as Multi-Order
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Texture information plays a critical role in the rapid perception of scenes, objects,
and materials. Here, we propose a novel model in which visual texture perception
is essentially determined by the 1st-order (2D-luminance) and 2nd-order (4D-energy)
spectra. This model is an extension of the dimensionality of the Filter-Rectify-Filter
(FRF) model, and it also corresponds to the frequency representation of the Portilla-
Simoncelli (PS) statistics. We show that preserving two spectra and randomizing
phases of a natural texture image result in a perceptually similar texture, strongly
supporting the model. Based on only two single spectral spaces, this model provides a
simpler framework to describe and predict texture representations in the primate visual
system. The idea of multi-order spectral analysis is consistent with the hierarchical
processing principle of the visual cortex, which is approximated by a multi-layer
convolutional network.
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INTRODUCTION

The primate visual system rapidly analyzes texture information, or image statistics or ensemble,
from complex natural images (Landy and Graham, 2004; Rosenholtz, 2014; Whitney and
Yamanashi Leib, 2018), and uses it for the immediate perception and recognition of scenes,
objects, and surface materials (Lowe, 1999; Oliva and Torralba, 2001, 2006; Motoyoshi et al., 2007;
Rosenholtz et al., 2012). Recent studies further suggest that our perception in the peripheral vision is
generally governed by such texture information (Balas et al., 2009; Freeman and Simoncelli, 2011).
Neural and computational models of texture processing are thus important for understanding the
nature of visual cognition.

Visual texture is defined as the image region consisting of complex repetition of various features
(Bergen, 1991). By this definition, visual perception of a texture is determined by the global
distribution of features, without positional information about the features within the region. The
pioneering works by Julesz (1965) and later psychophysical studies (Regan, 2000; Landy and
Graham, 2004) suggest that the human visual system encodes such global measures only for low-
level features in most cases, although there are some cases in which textures can be discriminated
on the basis of higher-level features (Julesz, 1981; Motoyoshi and Kingdom, 2010).

Following Julesz’s conjecture, studies have proposed a computational model that analyzes spatial
distribution of low-level statistics. The most influential one is often referred to as the Filter-Rectify-
Filter (FRF) model (Bergen and Adelson, 1988; Bergen and Landy, 1991). The FRF model consists of
two stages of image processing based on spatial filtering and energy computation. At the 1st stage,
bandpass filters decompose the luminance image into different orientation and spatial frequency
subbands, and the non-linear computation converts them to energy representation. The 2nd stage
repeats the same computation for each subband energy images. The final output is assumed to
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be a spatial summation of the 2nd-order energies. A large number
of psychophysical evidence shows that this simple model (Bergen
and Adelson, 1988; Landy and Graham, 2004), and its modified
versions (Malik and Perona, 1990; Motoyoshi and Kingdom,
2007), can explain human performance on texture discrimination
tasks. On the other hand, there is another representative model of
texture vision called the Portilla-Simoncelli (PS) statistics model
(Portilla and Simoncelli, 2000), which is becoming prevalent in
visual neuroscience (Freeman and Simoncelli, 2011; Freeman
et al., 2013; Okazawa et al., 2015). The PS statistics model
computes the statistical properties of subband responses and their
relationship, and can predict the perception of natural textures
based on the ensemble (Portilla and Simoncelli, 2000; Balas et al.,
2009; Freeman and Simoncelli, 2011; Rosenholtz et al., 2012).

Revisiting the computational architecture of the FRF model,
the present study proposes a novel model, or a viewpoint, that
natural texture perception is essentially based on 1st- and 2nd-
order spectral analyses. We show that the computations of
this model are functionally consistent with the computations
of PS statistics in two single-frequency spaces. To validate the
model, we also introduce a novel texture synthesis based only on
scrambling of the 1st- and 2nd-order phase spectra.

TEXTURE PROCESSING AS TWO-STAGE
SPECTRAL ANALYSIS

Figure 1 shows a very simplified architecture of the FRF model.
As described above, each stage consists of spatial filtering and
energy computation. Conceptually, these operations correspond
to a Fourier analysis and the local observation of the amplitude.
In this view, the 1st-order process is regarded as a local spectral
analysis of the luminance image, and the 2nd-order process
is a spectral analysis of the 1st-order energy outputs for each
subband. The model assumes that perception is determined
by a global measure (e.g., the spatial sum) from the localized
2nd-order process over space. The spatial sum is computed by
pooling signals within a receptive field large enough to cover
the entire texture region (In the conventional FRF model, this
pooling is often assumed in the decision process). Therefore, a
set of the 2nd-order process and following spatial pooling can be
approximated as a global, not local, spectral analysis. Note that
“global spectrum” does not mean spectrum of the entire visual
field, just as “global image statistics” in the PS model do not mean
image statistics of the entire visual field.

The conventional FRF model assumes that both the 1st- and
2nd-order processes involve two-dimensional filtering only for
space (x,y). However, the energy output of the 1st-order process is
four-dimensional, consisting of space (x,y), orientation (ori), and
spatial frequency (freq). Corresponding to the dimensionality of
the output, the 2nd-order process must be a spectral analysis of
four dimensions (x, y, ori, and freq). Figure 2 illustrates a four-
dimensional subband energy in the space domain (x, y, ori, and
freq) and its amplitude spectrum in the Fourier domain (Fx, Fy,
Fori, and Ffreq) (Motoyoshi and Kingdom, 2003).

From a functional view, this notion is consistent with another
powerful texture model, the PS statistics model (Portilla and

Simoncelli, 2000). The PS statistics model involves subband
decomposition and energy measurement similar to the FRF
model, and a variety of image statistics are measured at each stage.
An ensemble of these PS statistics then determines the texture
perception. It is well known that by matching the PS statistics
of a noise to those of a target texture, one can synthesize a
perceptually similar texture, strongly supporting the validity of PS
statistics in natural texture perception. However, the PS statistics
model is relatively complex as it considers many different classes
of statistics, ranging from low-level statistics such as histogram
moments and the power of subbands, to high-level ones such
as autocorrelation/cross-correlation of the linear and energy
subbands. For the cross-correlation of the energy subbands, both
cross-orientation and cross-scale are considered. However, by
viewing the energy as four-dimensional data (Figure 2, left), these
cross-correlations are considered as an autocorrelation along the
orientation and spatial frequency dimensions. Thus, multiple
classes of energy-related PS statistics can be summarized into one
class as a four-dimensional (x, y, ori, and freq) autocorrelation.
Given that the Fourier transform of an autocorrelation function
results in a power spectrum, the energy autocorrelation is
represented as the 4D amplitude spectrum (Figure 2, right). This
means that the energy spectrum functionally corresponds to the
higher-order PS statistics. In the same way, the autocorrelation
of linear subbands corresponds to the luminance spectrum. The
two-stage spectrum is closely related to the PS statistics model as
well as to the extended FRF model, and it enables us to deal with
the two prevailing texture models in the frequency domain.

In summary, the FRF model can be extended and considered
as a simple Fourier spectral analysis of the luminance data (1st-
order, 2D) and the subband energy data (2nd-order, 4D). On
this basis, we propose a novel model that states visual texture
processing is represented as 1st- and 2nd-order spectral analyses
(Figure 3). From this viewpoint, the 1st-order spectrum has
a detailed frequency representation of the luminance image,
including a wide range of periodic variations, and the 2nd-order
spectrum has a 4D frequency representation of the subband
energy data. The phase information (e.g., the total power in
each subband) is lost in the 2nd-order spectrum but implicitly
represented in the 1st-order spectrum.

LUMINANCE-ENERGY PHASE
RANDOMIZED IMAGE

Synthesis of a natural texture based on a model is a powerful
and ecologically valid way to test the model. One of the most
successful cases is the PS synthesis (Portilla and Simoncelli,
2000; Balas, 2006). To test the two-stage spectrum model,
we attempted to generate synthetic natural textures based
on only two spectra. Actually, we simply randomized the
phase of the original image while preserving the original
luminance and energy amplitude spectra. Here we call this
the luminance-energy phase randomization (lum-energy PR)
(The present model does not consider the perception of
artificial textures composed of dots and lines because they are
ecologically invalid).
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FIGURE 1 | A diagram of the Filter-Rectify-Filter (FRF) model of texture vision. The model can be regarded as a two-stage amplitude spectral analysis: The 1st stage
is a local spectral analysis of the luminance input, and the 2nd stage is a global spectral analysis of the 1st-stage output.

FIGURE 2 | Relationship between subband energy data in the space domain (x, y, ori, and freq) and its amplitude spectrum in the frequency domain (Fx, Fy, Fori,
and Ffreq).

The luminance-energy phase randomized image is generated
as shown in Figure 4. Since the data is represented in only two
spaces (1st- and 2nd-order spectra), the processing is very simple.
Each step proceeds as follows (see section “Methods: Luminance-
Energy Phase Randomization” in more detail).

(1) Using white noise as a seed, generate a lum-PR image
which has the luminance amplitude spectrum equal to that
of the target. (2) Decompose both the target and the lum-PR
image into orientation and spatial-frequency subbands through
bandpass filters. (3) Convert Each subband into an energy image.
(4) Perform four-dimensional fast-Fourier transform (4D-FFT)
on the energy data to obtain the amplitude spectrum of the
target and the phase spectrum of the lum-PR image. (5) Apply
an inverse FFT to the amplitude and phase spectra to obtain
new subband energy data. (6) Extract linear subbands from
energy data, and then collapse subbands to reconstruct the new
luminance image.

It is well known that the luminance histogram, or pixel
moment statistics, also has an impact on the appearance of a
texture (Chubb et al., 1994; Balas, 2006; Motoyoshi et al., 2007).

Most texture synthesis algorithms make use of this to get better
results, and we found it to be true for the lum-energy PR images.
Therefore, (7) we finally matched the luminance histogram of
the lum-energy PR image to that of the target image. (8) The
algorithm was iterated by replacing the initial seed with the
obtained image to modify the distortion of the spectral shape
caused by the histogram matching; after about 20 iterations, the
perceptual changes converged in most cases.

We applied the lum-energy phase randomization for 300
natural textures. Figure 5 shows examples of the results,
indicating that the lum-energy PR images duplicate the
characteristic appearance of each natural texture, even though
they only share the 1st- and 2nd-order spectra. We have also
confirmed that this randomization works well for several types
of artificial textures that require higher-order (3rd- or 4th-order)
statistics to be discriminated (e.g., Chubb et al., 1994; Victor
et al., 2005). We also observed that the lum-energy PR, while
particularly effective for strongly periodic textures such as tiles
and bricks, seems to fail for textures with complex shading
patterns such as bumpy surfaces under directional lighting.
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FIGURE 3 | A model in which texture perception is based on the 1st- and 2nd-order frequency spectrum. The 1st-order is the spectrum of the luminance image (2D)
and the 2nd-order is the spectrum of the subband energies (4D).

FIGURE 4 | Schematic diagram of the luminance-energy phase randomization. For simplicity, only four orientations and four scales are shown.

Figure 6 compares the lum-energy PR images (4D le-PR)
with images synthesized by other methods. For this we chose
four algorithms: the classical luminance phase randomization
with luminance histogram matching (l-PR), the Heeger-Bergen
(HB) texture synthesis (Heeger and Bergen, 1995), the Portilla-
Simoncelli texture synthesis (PS), and 2D lum-energy PR (2D
le-PR). Here, 2D le-PR is a phase randomization with the energy
spectrum obtained by the 2D-FFT only across space, instead of
the 4D-FFT across space, orientation, and spatial frequency. In
other words, 2D le-PR is based on a model corresponding to
the conventional FRF not considering the correlation between
orientation and spatial frequency. The synthesis algorithm of
2D le-PR is exactly the same as that of 4D le-PR except for the

FFT dimension. We added 2D le-PR to see the difference in the
synthesized textures when the 2nd-order spectral analysis is done
in 2D as in the FRF model and when it is done in 4D as according
to our idea. At least for the samples shown in Figure 6, the 2D
and 4D le-PR images appear similar at first glance. However, a
closer look reveals that 4D le-PR captures the detailed features
a little better, and our psychophysical experiment with 300
textures described below showed that 4D le-PR was significantly
better than 2D le-PR in terms of the perceptual similarity to
the original image.

To compare the perceptual quality of the lum-energy PR
textures with those of the other synthetic textures, we had human
observers assess the perceptual similarity to the original for
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FIGURE 5 | Luminance-energy phase randomized images of various natural textures.

FIGURE 6 | Comparison of the images of lum-energy PR (4D le-PR) with the images of luminance phase randomization (l-PR), Heeger-Bergen synthesis (HB),
Portilla-Simoncelli synthesis (PS), and 2D lum-energy PR (2D le-PR).

natural textures of 300 samples, which is much larger than the
number of samples used in previous studies (Balas, 2006; Wallis
et al., 2017). Eight observers ranked the perceptual similarity of
five synthetic images obtained with different methods and the
original natural texture. Figure 7A shows the average number
of images selected for each rank. 4D le-PR was most frequently

ranked second. PS synthesis was most frequently ranked first
and had the best overall results. 2D le-PR was most frequently
ranked third, and 4D le-PR was often ranked higher than 2D
le-PR. L-PR (with histogram matching) and HB synthesis had
about the same number of images in all ranks and were less
likely to be ranked highly. The number of times that 4D le-PR
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FIGURE 7 | (A) The number of images selected for each rank. (B) The relative similarity to the original texture as scaled by Thurstone’s method. The value is
additively normalized with a minimum of 0. Error bars represent ±1 SEM across eight observers.

ranked first over PS was significantly higher than the numbers
of times that the other three methods ranked first [one-sided
Welch’s t-test, t(13) > 3.01, p < 0.006, d > 1.51], indicating
a high degree of perceptual similarity for 4D le-PR. Figure 7B
shows the relative perceptual similarity to the original, which was
scaled using Thurstone’s method Case V (Thurstone, 1927): for
each synthesis method, the scale values are calculated as the sum
of the log-transformed winning percentages against the other
syntheses. The results show that, on average, the 4D le-PR image
is inferior to the PS image but better than the images of 2D le-PR,
l-PR, and HB. In particular, there was a statistically significant
difference between 4D le-PR and 2D le-PR [one-sided Welch’s
t-test, t(10) = 4.68, p < 0.001, d = 2.34].

Although we did not control stimulus duration, if we
controlled it to a short time, the importance of the statistics
(and hence the rank between synthesis conditions), might
have changed due to temporal dynamics in the hierarchy of
neural processing.

DISCUSSION

In the present study, we extended the dimensions of FRF
processing and proposed a novel model that texture perception
is based on the 1st-order (2D-luminance) and 2nd-order (4D-
energy) amplitude spectra of the image. The model is represented
within only two single spectral spaces (+pixel histogram),
and it provides a simple framework to describe and predict
texture representations in various visual tasks, including scene
and material perception. In addition, the notion is consistent
with the PS statistical model, and it therefore provides a
comprehensive understanding of the FRF and PS models in the
frequency domain.

The model is biologically plausible as both the FRF and PS
models are supported by rich physiological correlates in the early
visual cortex, such as simple and complex cells in V1 (Hubel
and Wiesel, 1968), spatial and sub-spatial neural interactions in

V1 (Morrone, et al., 1982; Ohzawa et al., 1982; Zipser et al.,
1996; Ringach et al., 1997; Nishimoto et al., 2006), second-
order neurons in V2 (Baker and Mareschal, 2001), and image
statistics coding in V1 and V2 (Freeman and Simoncelli, 2011;
Ziemba et al., 2016). Spatial pooling of these signals within
a large receptive field, which represents global image statistics
in the PS model and global energy spectrum in the present
model, are likely to be implemented in V4 neurons (Okazawa
et al., 2015). As for the analysis of the 2nd-order spectrum,
one can assume that the neuronal unit (probably in V2) with
4D receptive fields analyzes the inputs (probably from V1)
over space, orientation, and spatial frequency. Notably, such
a neural circuit is physiologically sensible given the functional
architecture of V1 in which neurons tuned to the spatial position,
orientation, and spatial frequency are regularly mapped along
the cortical surface (Hubel and Wiesel, 1968; Grinvald et al.,
1986; Nauhaus et al., 2012). However, given the fact that such
neural interactions are generally local, it is unlikely that the global
spectrum, decomposed into localized frequencies as assumed in
the present notion, is represented neuronally. In this respect, the
idea of a two-stage spectrum provides a simple understanding but
remains problematic in terms of physiological plausibility.

The model analyzes up to the 2nd-order spectrum: the
final output is a pooled summary of the 2nd-stage (i.e.,
global spectrum analysis), and no further analysis is performed.
Termination of the process at the 2nd-stage is based on the notion
that relatively low-level features are important for preattentive
texture perception. However, it is also possible to perform a
local spectral analysis without pooling in the 2nd-stage, as in
the 1st-stage, and continue the spectral analysis at higher stages.
Such an extension may reconcile the findings that point to the
significance of higher-order features in texture perception (Julesz,
1981; Motoyoshi and Kingdom, 2010), although we did not
directly examine this.

One may notice that such a multi-order spectral analysis is
remarkably consistent with the hierarchical processing principle
of the visual brain (Van Essen and Maunsell, 1983). The recent
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success of deep neural networks (DNN) largely depends on
multiple layers of convolution and non-linear pooling, which
mimic neural computation in the visual cortex (Fukushima and
Miyake, 1982; Riesenhuber and Poggio, 2000; LeCun et al., 2015).
In a typical DNN for visual object recognition, the 1st layer is
characterized as a bank of filters that extract orientation and
spatial frequency components from the image (LeCun et al.,
2015). The 2nd layer is assumed to be a filtering of the rectified
and pooled outputs from the 1st layer. If the network is limited
to two layers, these computations are analogous with the two-
stage spectral analysis. This in turn leads us to suggest that
the standard form of a convolutional network can be generally
formalized as a “multi-order local spectral analyzer” which
continuously performs local spectral analysis on the data form the
previous layer. Our idea of a two-stage spectrum explains texture
perception through spectral analysis up to the 2nd-order, but if
we continue the analysis beyond the 3rd-order, it may work as
a generalized computational model for a wider range of visual
functions, including object and scene recognition.

It should also be mentioned there are some discoveries that
have a similar structure to our model. One of those examples is
the wavelet scattering network used to compute a translation-
invariant image representation for classification (Mallat, 2012;
Bruna and Mallat, 2013). This framework consists of an iterative
process of filtering and energy measurement on the output of
the previous stage, which is a form common to the spectral
analysis extended to higher-order stages. However, in the wavelet
scattering network, the analysis is always applied to a two-
dimensional output. In our model, by comparison, the number
of dimensions to be analyzed increases as the stages go higher.
In the wavelet scattering network, energy converges rapidly to
zero as order increases, and for most applications, a network
up to the second order is usually considered sufficient (Bruna
and Mallat, 2013). It is an intriguing coincidence that the texture
vision models can account for the human perception by using up
to a 2nd-order process.

Furthermore, the analogy of the two-stage spectral analysis
applies not only to vision but also to audition. One good
example is the analysis of the modulation spectrum of natural
sounds (Singh and Theunissen, 2003). That study’s analysis of
the envelopes of natural sounds by a two-dimensional Fourier
transform of time and frequency strongly ties into our idea
of a four-dimensional spectrum of energy. Another model,
the powerful natural-sound synthesis methods by McDermott
and Simoncelli (2011) also incorporate calculations of subband
envelope modulation and highlight the importance of frequency
analysis of 1st-order output. Taken together, this leads to the
possibility that multi-order spectrum analysis is a universal
form of cortical computation of texture information across
sensory modalities.

While we introduced the luminance-energy phase
randomization (lum-energy PR) only to test the idea of the two-
stage spectrum, it may be used as a new technique to synthesize
naturalistic textures. The algorithm is simpler than PS synthesis
as it is mainly based on the FFT and histogram matching
only. On the other hand, the (4D) lum-energy PR requires a
relatively large amount of data (total data = [N × N](histogram

matching) + [N/2 × N/2](1st-order spectrum) + [N/2 ×
N/2 × 4 × 4](2nd-order spectrum), if N × N pixels of image
size, eight orientations, and eight frequencies) because it was
not designed to represent a texture image with a compact code.
However, there is space to compress the data size by using under-
sampling, PCA, ICA, etc. As the data are represented only in two
single spaces (i.e., 2D spectrum and 4D spectrum), one would
apply PCA/ICA more effectively than previously done for the
PS statistics (Okazawa et al., 2015). With regard to the synthesis
quality under free viewing, neither PS synthesis nor lum-energy
synthesis outperform recent CNN-based methods (Gatys et al.,
2015); note that PS synthesis matches or outperforms CNN-
based textures when briefly presented in the near periphery
(Wallis et al., 2017). Nevertheless, these methods would still be
useful to understand specific neural computations involved in
texture perception.

The psychophysical results show that there is a significant
difference in the synthesis quality of the lum-energy PR texture
depending on whether the preserved energy spectrum is obtained
by 4D-FFT or 2D-FFT. The improvement in representation is
considered one of the advantages of extending the conventional
FRF model that operates only in the spatial dimension to our
model that also considers orientation and spatial frequency
correlations. It is noted, however, that the difference was small
when compared with the difference between PS synthesis and 4D
le-PR. This suggests that the effect of energy correlation across
orientation and frequencies on the quality of the synthesis is not
larger that of energy correlation across space.

Through the development of lum-energy PR images, we also
found that the pixel-luminance histogram plays a significant role
in addition to the two spectra data. This is consistent with the
previous texture models, including PS (Portilla and Simoncelli,
2000; Balas, 2006) and HB (Heeger and Bergen, 1995).

Methods: Luminance-Energy Phase
Randomization
Luminance-energy phase-randomized images were generated
according to the following procedure. All computations were
implemented by a MATLAB code. An image with the same
luminance amplitude spectrum as the target (lum-PR image) was
generated using white noise as a seed. Both the target and the
lum-PR image were decomposed into subband images with eight
orientations (0–157.5◦ in 22.5◦ step) and eight spatial frequencies
(1–128 cycle/image in 1 octave step) using log-Gabor filters with
a spatial-frequency bandwidth of 1 octave and an orientation
bandwidth of 30◦. Each subband was then converted into an
energy image by taking the square root of the sum of squares
of the quadrature pair. The amplitude spectrum of the target
energy and the phase spectrum of the lum-PR image energy
were then obtained by four-dimensional fast-Fourier transform
(4D-FFT) on the energy data. New subband energy data was
obtained by the inverse FFT of the amplitude and phase spectra.
Linear subbands were extracted from energy data using the
carrier from the lum-PR image. A new luminance image was then
obtained by collapsing the linear subbands. Finally, a luminance
histogram of the obtained image was matched to that of the target.
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Histogram matching was performed in the same way as in the
Heeger-Bergen synthesis (Heeger and Bergen, 1995). The whole
algorithm was iterated 20 times, with the initial being replaced
with the histogram-adjusted image on each iteration.

Methods: Psychophysical Experiment
Visual stimuli consisted of 300 natural texture images (4.3 × 4.3
deg, 256 × 256 pixels). They were collected from NYU
Laboratory for Computational Visiony1, McGill Calibrated
Color Image Database2 (Olmos and Kingdom, 2004), and our
own database. Heeger-Bergen synthesis and Portilla-Simoncelli
synthesis were carried out using the original algorithm (Heeger
and Bergen, 1995; Portilla and Simoncelli, 2000). The lum-
energy PR (4D, default) was carried out using the algorithm
described above. The 2D lum-energy PR was carried out by
replacing 4D-FFT with 2D-FFT in the algorithm. This 2D-FFT
was applied only across x-y space for each orientation and
frequency subband. The lum PR image was generated by iterating
alternately the phase randomization of luminance and histogram
matching. Algorithms were iterated 20 times for all methods
except Heeger-Bergen synthesis. For Heeger-Bergen synthesis
only, the number of iterations was set at five as recommend by
the original paper.

In each trial, the original texture was presented in the center
of the background, and synthetic textures from the five different
methods were randomly presented at each vertex of a regular
pentagon with the original as the center, and all were located
at 6.0◦ from the center. The observers viewed the display with
free gaze and ranked the perceptual similarity of the synthetic
images to the original image. Stimuli were shown until the
observer responded.

One of the authors and seven naïve paid volunteers
participated in the experiment (one females, 21–28 years old,
mean = 23.0, SD = 2.35). All of them had normal or corrected-
to-normal vision. All experiments were conducted in accordance
with the Ethics Committee for Experiments on Humans of
the Graduate School of Arts and Sciences, The University of
Tokyo. All stimuli were generated by a PC and presented on
LCD or OLED monitors with a refresh rate of 60 Hz. Due to
1 http://www.cns.nyu.edu/~eero/software.html
2 http://tabby.vision.mcgill.ca/

the COVID-19 pandemic situation, each observer used LCD
monitors (BenQ XL2720B, BenQ XL2730Z, BenQ XL2735B, and
BenQ XL2430T) or OLED monitors (SONY PVM-A250 and
SONY PVM 2541A) installed in a dark room at their individual
homes. The luminance of all monitors was carefully calibrated
and gamma-corrected by Colorimeter (ColorCal II CRS). The
mean background luminance ranged from 26.2 to 48.6 cd/m2

(mean = 36.2, SD = 7.48). The viewing distance was adjusted
so that the pixel resolution was 1.00 min/pixel. The size of the
background in each monitor varied from 31.0◦ (W) × 18.0◦ (H)
to 42.7◦ (W)× 24.0◦ (H).
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