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Stability of synchronization in simplicial complexes
L. V. Gambuzza1,12, F. Di Patti 2,12, L. Gallo 3,4,12, S. Lepri2, M. Romance 5, R. Criado5, M. Frasca1,6,13✉,

V. Latora 3,4,7,8,13✉ & S. Boccaletti2,9,10,11,13✉

Various systems in physics, biology, social sciences and engineering have been successfully

modeled as networks of coupled dynamical systems, where the links describe pairwise

interactions. This is, however, too strong a limitation, as recent studies have revealed that

higher-order many-body interactions are present in social groups, ecosystems and in the

human brain, and they actually affect the emergent dynamics of all these systems. Here, we

introduce a general framework to study coupled dynamical systems accounting for the

precise microscopic structure of their interactions at any possible order. We show that

complete synchronization exists as an invariant solution, and give the necessary condition for

it to be observed as a stable state. Moreover, in some relevant instances, such a necessary

condition takes the form of a Master Stability Function. This generalizes the existing results

valid for pairwise interactions to the case of complex systems with the most general possible

architecture.
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Many systems in physics, biology, engineering and social
sciences can be modeled as networks of interacting
units1. Often, each of the elementary system con-

stituents (the nodes of the network) is a dynamical system itself,
whose evolution is influenced by the states of the other units to
which is connected to through the links of the network. Unra-
veling how the interplay of network structure and the type of
interactions shape the overall dynamics of the system and rule its
collective behaviors is thus a problem of wide interest across
disciplines.

There is an underlying strong assumption that is made when
one adopts a network representation of a complex system: the
overall interplay among the units of the system is assumed to be
exhaustively described by combinations of pairwise interactions.
Such an hypothesis may be justified when studying certain types
of processes, but it is very short in representing faithfully other
many circumstances. Indeed, from functional2–4 and structural5

brain networks to protein interaction networks6, to semantic
networks7, random walks8 and co-authorship graphs in science9

there are a lot of practical situations which simply cannot be
factorized in terms of pairwise interactions10,11.

Simplicial complexes are topological structures formed by
simplices of different dimensions (such as nodes, links, triangles,
tetrahedra, etc.) and map many-body interactions between the
elements of a system. Differently from networks, simplicial
complexes can therefore efficiently represent the interactions
between any number of units. While simplicial complexes are not
a new idea12, the availability of new data sets and the recent
advances in topological data analysis techniques13 renewed the
interest of the scientific community14,15. In particular, a lot of
attention in the last years has been devoted to the modeling of
simplicial complexes, and significant progresses were made in
extending to simplicial complexes standard graph models, such as
random graphs models16, the configuration model17, models of
network growth18 and activity driven models19.

On the other hand, synchronization is a phenomenon appear-
ing ubiquitously in natural and engineered systems20–22, and
corresponds to the emergence of a collective behavior wherein the
system units eventually adjust themselves into a common evolu-
tion in time. Various studies have shed light on the intimate
relationships between the topology of a networked system, its
synchronizability, and the properties of the synchronized states. In
particular, synchronous behaviors have been observed and char-
acterized in small-world 23, weighted24, multilayer25, and adaptive
networks26,27. Outside complete synchronization, moreover, other
types of synchronization have been revealed to emerge in net-
worked systems, including remote synchronization28,29, cluster
states30 and synchronization of group of nodes31, chimera32,33,
Bellerophon states34,35, and Benjamin–Feir instabilities36–38.
Finally, the transition to synchronization has been shown to be
either smooth and reversible, or abrupt and irreversible (as in the
case of explosive synchronization, resembling a first-order like
phase transition39).

Extending the investigation of synchronization to structures
including higher-order interactions is of great interest to many fields
of study. An example is neuron dynamics where, on the one hand,
synchronization plays a central role40–43 and, on the other hand,
evidences of higher-order interactions between the neurons have
been recently provided44–46. Ecological systems47 and nonlinear
consensus48 constitute other examples where higher-order interac-
tions may be fundamental in shaping the collective behavior of the
system, thus further motivating such study.

While attempts of extending to p-uniform hypergraphs the
analysis of complete synchronization of dynamical systems have

been recently made49, the study of systems interplaying through
higher order interactions in simplicial complexes has been so far
limited to the case of the Kuramoto model50,51. This is, in fact, a
specific model, wherein each unit of the ensemble i= 1, …, N is a
phase oscillator and is characterized by the evolution of its real-
valued phase θi(t) ϵ [0, 2π]. The model has been studied in all
different sorts of network topologies with possible applications to
biological and social systems21,50, and recently extensions of it
have been proposed that include higher-order interactions.
Namely, it has been shown that the Kuramoto model may exhibit
abrupt desynchronization when three-body interactions among
all the oscillators are added to52, or completely replace53, the all-
to-all pairwise interactions of the original model. Similar results
have been obtained with a non-symmetric variation of the Kur-
amoto model in which the microscopic details of the interactions
among the phase oscillators are described in the form of a sim-
plicial complex54. A different approach has been proposed by
Millán et al., who have formulated a higher-order Kuramoto
model in which the oscillators are placed not on the nodes but on
higher-order simplices, such as links, triangles, and so on, of a
simplicial complex55. Finally, Lucas et al. have considered an
extension of the Kuramoto model to high-order interactions of
any order, which is still analytically tractable because all the
oscillators have identical frequencies56.

We here abandon the limitation of sticking with a specific
model system, and introduce instead the most general frame-
work for the study of dynamical systems in simplicial complexes.
Namely, we consider an ensemble of completely generic (yet
identical) dynamical systems, organized on the nodes of a
simplicial complex of generic order, and interacting via generic
coupling functions. In other words, except for the fact that the
systems have to be identical, we do not make any specific
assumption that may limit in a way or another our approach. In
such a wide context, we show that complete synchronization
exists as an invariant solution as far as the coupling functions
cancel out when nodes dynamics is identical. Furthermore, we
give the necessary condition for it to be observed as a stable
state, which in some instances takes the form of a Master Sta-
bility Function (MSF), a method initially developed in ref. 57 for
pairwise coupled systems, and later extended in many ways to
complex networks58 and to time-varying interactions59–61.
Therefore, not only our framework includes and encompasses all
studies made so far on the Kuramoto model, but it is valid for
an enormously larger number of situations, and as so it
is applicable to a very wide range of experimental and/or
practical circumstances. We will show, indeed, that all the the-
oretical predictions that our method entitles us to make are fully
verified in simulations of synthetic and real-word networked
systems.

Results
Necessary condition for the synchronization of dynamical
systems with higher-order interactions. The object of our study
is the most general simplicial complex of N coupled dynamical
units. This means that the different dynamical units are subject
not only to pairwise interactions, but also to three-body interac-
tions, four-body interactions and so on. The precise microscopic
structure of the interactions is described by underlying simplicial
complex, which can have any dimension D ≥ 1 (for all details and
notations on simplicial complexes, see the “Methods”). In the
particular case of D= 1, our system coincides with the standard
case of a complex network of N coupled dynamical units. We
assume that the equations of motion governing the dynamics of
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our D-dimensional simplicial complex can be written as:

_xi ¼ fðxiÞ þ σ1
XN
j1¼1

að1Þij1
gð1Þðxi; xj1 Þ

þ σ2
XN
j1¼1

XN
j2¼1

að2Þij1j2
gð2Þðxi; xj1 ; xj2 Þ þ ¼

þ σD
XN
j1¼1

:::
XN
jD¼1

aðDÞij1::::jD
gðDÞðxi; xj1 ; :::; xjD Þ;

ð1Þ

where xi(t) is the m-dimensional vector state describing the
dynamics of unit i, σ1,…, σD are real-valued parameters describing
coupling strengths, f : Rm�!Rm describes the local dynamics
(which is assumed identical for all units), while gðdÞ :
Rðdþ1Þ ´m�!Rm (d= 1, …, D) are synchronization noninvasive
functions (i.e. g(d)(x, x, …, x)≡ 0 ∀d) ruling the interaction forms
at different orders. Furthermore, aðdÞij1:::jd

are the entries of the
adjacency tensors A(d), with d= 1, …, D. These tensors, which
generalize the notion of the adjacency matrix of a graph, describe
the architecture of interactions of any order that can take place in
the simplicial complex [see the “Methods” for a complete dis-
cussion on them and all quantities appearing in Eq. (1)]. This is
the most general type of system we can consider, as there are no
further specific restrictions on both the adjacency tensors of the
simplicial complex and the functions f and g(d).

As the notation may result somehow cumbersome, for the sake
of clarity in what follows we illustrate the case of D= 2, so that a
reader will be able to appreciate each and every conceptual action
we are making. At the end, we will then summarize the steps one
has to do in order to extrapolate the results to all values of D.

Let us then consider the following set of coupled differential
equations

_xi ¼ fðxiÞ þ σ1
XN
j¼1

að1Þij gð1Þðxi; xjÞ

þ σ2
XN
j¼1

XN
k¼1

að2Þijk g
ð2Þðxi; xj; xkÞ;

ð2Þ

where σ1 and σ2 are the coupling strengths associated to two- and
three-body interactions.

Existence and invariance of the synchronized solution
xs(t)= x1(t)=…= xN(t) are guaranteed by the noninvasive-
ness of the coupling functions. In order to study the stability of
the synchronization solution, one considers small perturba-
tions around the synchronous state, i.e., δxi= xi− xs, and
perform a linear stability analysis of Eq. (2). To do this, one
can perform the following transformation of the variables.

Consider δx ¼ ½δxT1 ; δxT2 ; ¼ ; δxTN �T , and let us take, as a
reference basis of R, the one made by the eigenvectors v1,
v2, …, vN of the classic Laplacian matrix Lð1Þ. This allows to
define new variables η= (V−1⊗ Im)δx, where V= [v1, v2, …,
vN]. To express the dynamics of the system in terms of the new
variables η, one needs to extend the notion of classical
Laplacian matrix, which accounts for pairwise interactions, to
a set of generalized Laplacian matrices, where the generic
matrix of order d, indicated as LðdÞ, accounts for (d+ 1)-body
interactions (for a formal definition see “Methods”). In the
specific case of D= 2, we will therefore describe the systems
with two matrices, Lð1Þ and Lð2Þ, respectively.

Through a series of three conceptual steps detailed in the
“Methods”, the following equations can be derived

_η1 ¼ JFη1

_ηi ¼ ðJF� σ1λiJG
ð1ÞÞηi � σ2

PN
j¼2

~Lð2Þ
ij JGð2Þηj;

8><
>: ð3Þ

where JF= Jf(xs), JG(1)= Jg(1)(xs, xs) and JG(2)= J1g(2)(xs, xs, xs)
+ J2g(2)(xs, xs, xs) represent the Jacobian matrices for the func-
tions f, g(1) and g(2) respectively, 0= λ1 < λ2 ≤…λN are the

eigenvalues of Lð1Þ, and ~Lð2Þ
ij are suitable, known, coefficients

given by transforming Lð2Þ with the matrix V that diagonalizes
the classic Laplacian Lð1Þ (see the “Methods” for all details). The
dynamics of the linearized system is then decoupled into two
parts: the dynamics of η1, accounting for the motion along the
synchronous manifold, and that of all other variables ηi (with i=
2, …, N), representing the different modes transverse to the
synchronization manifold, and coupled each other by means of

the coefficients ~Lð2Þ
ij (all of them being known quantities).

The problem of stability is then reduced to: (i) simulating a
single, uncoupled, nonlinear system; (ii) using the obtained
trajectory to feed up the elements of the Jacobians JG(1) and JG
(2); (iii) simulating the dynamics of a system of N− 1 coupled
linear equations, and tracking the behavior of the normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼2

Pm
j¼1 ðηðjÞi Þ2

q
for the calculation of the maximum Lyapu-

nov exponent (being ηi � ðηð1Þi ; ηð2Þi ; :::; ηðmÞ
i Þ).

Stability of the synchronous solution requires as a necessary
condition that Λmax, the maximum among the (conditional)
Lyapunov exponents associated to all transverse modes, be negative.
Given the node dynamics and the coupling functions, Λmax is in
general function of the topology of the two-body interactions, the
topology of the three body interactions, and the two coupling
strengths σ1 and σ2, i.e., Λmax = Λmaxðσ1; σ2;Lð1Þ;Lð2ÞÞ.

It is important to notice that, in analogy with the classical MSF
approach, also in the case of simplicial complexes one is, therefore,
able to separate the motion along the synchronization manifold and
that transverse to it, and such a crucial separation ultimately enables
the study of stability of the synchronous manifold. For simplicial
complexes, however, the higher complexity in the structure of the
interactions yields a formalism requiring the analysis of a set of
coupled differential equations, rather than of a single parametric
variational equation (as in the case of the MSF). In other words, in
the fully general case the set of equations describing the motion
transverse to the synchronous manifold cannot be further
decomposed into independent, decoupled modes, as it happens in
the network case; however, the analysis of stability still requires a
straightforward computation of a single quantity, i.e., the maximum
Lyapunov exponent, which has to be performed on such a set of
coupled, linear equations. In the more general case, the transverse
modes are intertwined, such that stability has to be analyzed
without reduction in dimensionality. However, we will momentarily
show that there are relevant instances where such an expression can
be simplified, up to recover a formalism that is identical to the
classical MSF, allowing separation of the modes and reduction of
the dimensionality of the problem to a single parameteric
variational equation.

In analogy with the classification of systems made for
synchronization of complex networks (Chapter 5 in ref. 1), one
immediately realizes that, once specified the dynamical system
taking place in each node (i.e., the function f), the various coupling
functions g(1) and g(2), and the structure of the simplicial complex
(i.e., Lð1Þ and Lð2Þ), all possible cases can be divided in three
classes: (i) class I problems, where Λmax is positive in all the half
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plane (σ1 ≥ 0, σ2 ≥ 0), and therefore synchronization is never stable;
(ii) class II problems, for which Λmax is negative within a
unbounded area of the half plane (σ1 ≥ 0, σ2 ≥ 0); and (iii) class III
problems, for which the area of the half plane (σ1 ≥ 0, σ2 ≥ 0) in
which Λmax is negative is instead bounded, and therefore additional
instabilities of the synchronous motion may occur at larger values
of the coupling strengths. While class I problems are trivial (in that
synchronization is never observed), examples of class II and class III
problems are shown in Fig. 1 for simplicial complexes of Rössler
oscillators62, and one easily sees that the predictions made by
solving Eq. (3) are indeed fully confirmed by the simulations of the
original system in Eq. (2).

Far from being limited to the case of D= 2, our approach can
be extended straightforwardly to simplicial complexes of any
order D. Each term on the right hand side of Eq. (1) can, indeed,
be manipulated following exactly the same three conceptual steps
described in the “Methods”. Once again, one is entitled to select
the eigenvector set which diagonalizes Lð1Þ, to introduce the new
variables η= (V−1⊗ Im)δx. Following the very same steps which
led us to write Eq. (3), one then obtains

_η1 ¼ JFη1;

_ηi ¼ ðJF� σ1λiJG
ð1ÞÞηi � σ2

XN
j¼2

~Lð2Þ
ij JGð2Þηj � ¼

� σD
XN
j¼2

~LðDÞ
ij JGðDÞηj;

ð4Þ

where JG(d) = J1g(d)(xs, …, xs) + J2g(d)(xs, …, xs)+…+ Jdg(d)

(xs, …, xs) and the coefficients ~LðdÞ
ij result from transforming LðdÞ

with the matrix that diagonalizes Lð1Þ. As a result, one has
conceptually the same reduction of the problem to a single,
uncoupled, nonlinear system, plus a system of N− 1 coupled
linear equations, from which the maximum Lyapunov exponent
Λmax = Λmaxðσ1; σ2; :::; σD;Lð1Þ;Lð2Þ; :::;LðDÞÞ can be extracted
and monitored (for each simplicial complex) in the D-dimen-
sional hyper-space of the coupling strength parameters.

The MSF for synchronization in simplicial complexes. Our
results can be greatly simplified in a series of relevant cases in
which either the topology of the connectivity structure, or the
coupling functions, allow to formulate our approach in terms of
MSF. Once again, for the sake of illustration, we will start con-
sidering first the case of D= 2, and then the extension to any
order D.

The first case is an all-to-all coupling, for which every two and
three-body interaction is active. In this case, the classical
Laplacian matrix is.

Lð1Þ
ij ¼ �1 for i≠ j

N � 1 for i ¼ j:

�
ð5Þ

Then, it is easy to rewrite Lð2Þ, because the off diagonal terms Lð2Þ
ij

(i ≠ j) represent the number of triangles formed by the link (i, j)
which, in the present case, is simply equal to N− 2. Second, we

consider the terms of the main diagonal Lð2Þ
ii , the number of

triangles having the node i as a vertex, which is

kð2Þi ¼ N � 1

2

� �
¼ ðN � 1ÞðN � 2Þ

2
: ð6Þ

Consequently, one has that

Lð2Þ ¼ ðN � 2Þ Lð1Þ: ð7Þ

Starting from Eq. (2), applying the steps detailed in the
Methods and noticing that in the all-to-all configuration λ2=…
λN=N, for each ηi (with i 2 2; ¼ ;Nf g), one obtains

_ηi ¼ ½JF� σ1NJGð1Þ � σ2NðN � 2ÞJGð2Þ�ηi: ð8Þ

In other words, in the all-to-all case, the variables ηi come out
to be all uncoupled to each other, so that Λmax uniquely depends
on σ1, σ2 and N, i.e., Λmax=Λmax(σ1, σ2, N).

In the more general case of a D-dimensional simplicial
complex, it is easy to write the generalized Laplacian of order d
as a function of the classical Laplacian matrix. In fact, the number
of d-simplices having node i as a vertex and the number of d-
simplices formed by the link (i, j) are respectively

kðdÞi ¼ N � 1

d

� �
¼ ðN � 1ÞðN � 2Þ¼ ðN � dÞ

d!
ð9Þ

and

kðdÞij ¼ N � 2

d � 1

� �
¼ ðN � 2Þ¼ ðN � dÞ

ðd � 1Þ! : ð10Þ

Fig. 1 Synchronization in simplicial complexes of Rössler oscillators.
Contour plots of the time averaged (over an observation time T= 500)
synchronization error E (see “Methods” for definition and the vertical bars
of each panel for the color code) in the plane (σ1, σ2) for some examples of
simplicial complexes (whose sketches are reported in the top left of each
panel). Simulations refer to coupled Rössler oscillators (x= (x, y, z)T and
f = (−y−z, x+ay, b+z(x−c))T) with parameters fixed in the chaotic regime

(a= b= 0.2, c= 9). In a–d, gð1Þðxi; xjÞ ¼ ½xj � xi;0;0�T , while in (e)

gð1Þðxi; xjÞ ¼ ½0; yj � yi;0�T . As for the other coupling function, one has

gð2Þðxi; xj; xkÞ ¼ ½0; y2j yk � y3i ;0�
T
in (d) and gð2Þðxi; xj; xkÞ ¼

½x2j xk � x3i ;0;0�
T
in all other panels. The blue continuous lines are the

theoretical predictions of the synchronization thresholds obtained from
Eq. (3). a, b, and c are examples of class III problems, whereas panels d and
e are examples of class II problems.
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Given the definition of the generalized Laplacian, we find that

LðdÞ ¼ ðN � dÞ Lðd�1Þ

¼ ðN � 2ÞðN � 3Þ¼ ðN � dÞLð1Þ:
ð11Þ

Once again, one can derive a parametric equation analogous to Eq.
(8), with a MSF (once fixed both the node dynamics and the
coupling functions) which solely depends on the coupling coefficients
and the number of nodes, i.e. Λmax=Λmax(σ1, σ2, …, σD, N)

_ηi ¼ JF� σ1NJGð1Þ � σ2NðN � 2ÞJGð2Þ � ¼
h
�σDNðN � 2Þ¼ ðN � DÞJGðDÞ

i
ηi:

ð12Þ

Another interesting case is that of generalized diffusion
interactions with natural coupling functions. This amounts to
consider diffusive coupling functions, given by

gð1Þðxi; xjÞ ¼ hð1ÞðxjÞ � hð1ÞðxiÞ;
gð2Þðxi; xj; xkÞ ¼ hð2Þðxj; xkÞ � hð2Þðxi; xiÞ;

ð13Þ

where hð1Þ : Rm�!Rm and hð2Þ : R2m�!Rm. In addition, a
condition of natural coupling is considered:

hð2Þðx; xÞ ¼ hð1ÞðxÞ: ð14Þ
Equation (14) expresses, indeed, the fact that the coupling to

node i from two-body and three-body interactions is essentially
similar, in that a three-body interaction where two nodes are on
the same state is equivalent to a two-body interaction. Here, our
approach takes the form of a MSF with a particularly
convenient expression, as it can be written as a function of a
single parameter. In fact, in this case, the transverse modes can be
fully decoupled (see the “Methods” for the full derivation) and a
single parameter MSF can be defined, starting from the following
m-dimensional linear parametric variational equation

_η ¼ JfðxsÞ � αJhð1ÞðxsÞ
h i

η ð15Þ
from which the maximum Lyapunov exponent is calculated:

Λmax=Λmax(α) with α ¼ λðσ1Lð1Þ þ σ2Lð2ÞÞ or α ¼ σ1λðLð1Þþ
rLð2ÞÞ ¼ σ1λðMÞ, where M is given by Lð1Þ þ rLð2Þ with r ¼ σ2

σ1
.

The situation, is therefore, conceptually equivalent to that of
synchronization in complex networks, with the effective matrix
M playing the same role of the classical Laplacian: given the
dynamical system f, the coupling functions h(1) and h(2), and the
structure of connection of the simplicial complex (i.e., Lð1Þ and
Lð2Þ) one can define three possible classes of problems:

(i) class I problems, for which the curve Λmax=Λmax(α) does
not intercept the abscissa and it is always positive. In this
case synchronization is always forbidden, no matter which
simplicial complex is used for connecting the dynamical
systems;

(ii) class II problems, for which the curve Λmax=Λmax(α)
intercepts the abscissa only once at αc, and for which,
therefore, the synchronization threshold is given by the self
consistent equation σcritical1 ¼ αc=λ2½Mðσcritical1 ; σcritical2 Þ�, i.e.
it scales with the inverse of the second smallest eigenvalue
of the effective matrix;

(iii) class III problems, for which the curve Λmax=Λmax(α)
intercepts the abscissa twice at α1 and α2 > α1. In this case,
synchronization can be observed only if the entire
eigenvalue spectrum of the effective matrix is such that
σ1λ2ðMÞ>α1 and, at the same time, σ1λNðMÞ<α2. In this
case, the parameter λ2ðMÞ

λN Mð Þ can be considered as a proxy

measure of synchronizability of the simplicial complex, in
that the closer is such a parameter to unity (the more
compact is the spectrum of eigenvalue of M) the larger can
be the range of coupling strengths for which the two above
synchronization conditions can be satisfied.

We have so far considered the case of D= 2. In the fully
general scenario, the condition for natural coupling is given by

hðDÞðx; ¼ ; xÞ ¼ ¼ ¼ hð2Þðx; xÞ ¼ hð1ÞðxÞ: ð16Þ
The equation for the MSF is formally analogous to Eq. (15),

where now α ¼ σ1λðMðDÞÞ parameterizes the eigenvalues of the
effective matrix of order D

MðDÞ ¼ Lð1Þ þ σ2
σ1

Lð2Þ þ ¼ þ σD
σ1

LðDÞ: ð17Þ
In summary, we have shown that, while in the general case the

transverse modes are intertwined, in the case of all-to-all coupling
or of natural coupling functions a significant dimensionality
reduction of the stability analysis problem is obtained, through
the formulation of a MSF (Eq. (12) for all-to-all coupling and Eq.
(15) for natural coupling).

Synchronization in simplicial complexes of chaotic systems.
Following is a series of results confirming the validity and wide
applicability of our approach. We focus on two paradigmatic
three-dimensional (x ¼ ðx; y; zÞT 2 R3) chaotic systems, namely
the Rössler oscillator62 and the Lorenz system63, and, as a real-
world example of neuron dynamics, on the Hindmarsh-Rose
(HR) model64 (see the “Methods” for the equations describing the
three systems, as well as for the setting of parameters and of
stipulations for the numerical simulations). In particular, we start
with considering the more general case with diffusive coupling,
then we discuss our results on neuron dynamics and on the MSF
cases of all-to-all and natural coupling, where we also show an
analysis carried out on a real-world structure. Finally, we move
away from the study of complete synchronization and illustrate
an example of cluster synchronization in simplicial complexes.

The general case. Our discussion begins with going back to Fig. 1,
where we have considered a few elementary configurations of
simplicial complexes, chosen in order to illustrate the classes of
problems that one can deal with even when the structures involve
only a small number of nodes. In particular, Fig. 1 reveals that
synchronization in the general case crucially depends on the
topology and the coupling functions: the same configuration can in
fact feature different dynamics when diverse mechanisms regulate
the coupling and, conversely, the same coupling functions may lead
to different behaviors when the topology of interactions changes.

As an example, let us consider the full dynamical equations
of coupled Rössler oscillators, when the coupling functions
are chosen as gð1Þðxi; xjÞ ¼ ½xj � xi; 0; 0�T and gð2Þðxi; xj; xkÞ ¼
½x2j xk � x3i ; 0; 0�T . They read

_xi ¼ � yi � zi þ σ1
XN
j¼1

að1Þij ðxj � xiÞ

þ σ2
XN
j¼1

XN
k¼1

að2Þijk ðx2j xk � x3i Þ;

_yi ¼ xi þ ayi;

_zi ¼ bþ ziðxi � cÞ;

ð18Þ

In each of the configurations considered, the state of the system
is monitored by the average synchronization error E defined in
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the “Methods”. Figure 1 reports E(σ1, σ2) for different simplicial
complexes (shown as insets in the panels) and coupling functions,
along with the theoretical predictions provided by Eq. (3) (the
blue, continuous, lines superimposed to the diagrams of the
synchronization error). In all the cases, the numerical simulations
are in very good agreement with the theoretical predictions for
the synchronization thresholds.

The results of Fig. 1 suggest several interesting considerations.
Indeed, in the cases reported in panels a and b of Fig. 1
synchronization may be achieved using either two-body or three-
body interactions only (for very small σ1 indeed there is a range of
values of σ2 leading to synchronization, and viceversa), while in
the case of panel c synchronization is forbidden for very small
values of σ1. In the last case, in fact, the two triangles do not have
a common edge as in Fig. 1a, nor a common node as in Fig. 1b,
and therefore interactions through links becomes essential for
synchronization. Finally, one notice that there are scenarios, as in
panels d and e, where the synchronization region is unbounded.
As already mentioned, Fig. 1 provides examples of two of the
three possible classes of behavior, with class III behavior in
Fig. 1a–c, and class II in Fig. 1d (where synchronization exists in
an unbounded region of the coupling coefficient regulating
pairwise interactions, i.e., σ1) and in Fig. 1e (where synchroniza-
tion exists in an unbounded region of the coupling coefficient
regulating three-body interactions, i.e., σ2).

Applications to neuron dynamics. We now discuss the applic-
ability of our framework to the study of neuron dynamics. Syn-
chronization in neural activity is of utmost importance. On the
one hand, synchronized network oscillations are known to play a
role in establishing ensembles of neurons in a task-dependent,
flexible manner40. On the other hand, synchronization of neural
activity is associated to epileptic seizures41–43. Recent evidences in
neuroscience have pointed out the existence of higher-order
interactions between neurons44. In particular, astrocytes and
other glial cells are considered a plausible biological source of
high-order interactions45,46, as they make contact with thousands
of synapses and actively modulate their function65. Although how
to account for these interactions in nonlinear models of neuron
dynamics is still an open problem, here we discuss an example
showing the suitability of our framework to study neuronal
synchronization in the presence of high-order coupling. As a
pratical case study, we here consider an ensemble of HR neurons,
subject not only to pairwise coupling but also to three-body
interactions. The system is described by

_xi ¼ yi þ 3x2i � x3i � zi þ I þ σ1
XN
j¼1

að1Þij tanh
xj � xi
0:5

� �

þ σ2
XN
j¼1

XN
k¼1

að2Þijk tanh
xj þ xk � 2xi

0:5

� �
;

_yi ¼ 1� 5x2i � yi;

_zi ¼ �rzi þ rsðxi þ 1:6Þ;

ð19Þ

where the non-diffusive coupling functions on the membrane
potential account for possible saturation phenomena. Figure 2
shows the results, representing further examples of class II pro-
blems, where synchronization in neuronal activity is achieved in
an unbounded region of the coupling coefficients σ1 and σ2. We
notice that, in this case, three-body interactions are beneficial for
synchronization as they lower the value of the pairwise coupling
strength needed to achieve it.

MSF cases. Let us now move to discuss other results, which refer
to the cases where our approach yields a MSF. We start with the

all-to-all coupling case where, according to Eq. (8), one obtains a
MSF that is function of N, σ1 and σ2. We then consider a simplicial
complex of Rössler oscillators with all-to-all coupling, described by

_xi ¼ � yi � zi þ σ1
XN
j¼1

ðxj � xiÞ þ σ2
XN

j¼1;j6¼i

XN
k¼1;k6¼i

ðx2j xk � x3i Þ;

_yi ¼ xi þ ayi;

_zi ¼ bþ ziðxi � cÞ:

ð20Þ

The results are shown in Fig. 3 for three values of N (N= 10,
N= 50, and N= 100): the synchronous manifold is stable in a
bounded region of the semiplane (σ1 > 0, σ2 > 0) delimited by blue
(N= 10), red (N= 50) and black (N= 100) lines. One immedi-
ately sees that such a stability region moves toward the origin
when N is increased. Hence, increasing N reduces the lower and
upper thresholds for achieving synchronization.

Finally, we consider the case of natural coupling. Here, in full
analogy with what occurs for networks, the MSF is a function of a
single parameter, i.e., Λmax=Λmax(α) with α ¼ λðσ1Lð1Þ þ σ2Lð2ÞÞ
or α ¼ σ1λðLð1Þ þ rLð2ÞÞ ¼ σ1λðMÞ. This enables the study of
synchronization stability into two steps, one pertaining only to the
node dynamics and coupling functions, providing Λmax=Λmax(α),
and a second step, where the condition Λmax(α) < 0 is checked at the
points α ¼ fσ1λ2ðMÞ; ¼ ; σ1λNðMÞg.

We calculated the MSF for the Rössler oscillator and the Lorenz
system with several choices of the coupling functions: hð1ÞðxjÞ ¼
½x3j ; 0; 0�T and hð2Þðxj; xkÞ ¼ ½x2j xk; 0; 0�T ; hð1ÞðxjÞ ¼ ½0; x3j ; 0�T and

hð2Þðxj; xkÞ ¼ ½0; x2j xk; 0�T ; hð1ÞðxjÞ ¼ ½0; 0; x3j �T and hð2Þðxj; xkÞ ¼
½0; 0; x2j xk�T ; hð1ÞðxjÞ ¼ ½y3j ; 0; 0�T and hð2Þðxj; xkÞ ¼ ½y2j yk; 0; 0�T ...
hð1ÞðxjÞ ¼ ½0; 0; z3j �T and hð2Þðxj; xkÞ ¼ ½0; 0; z2j zk�T .

Fig. 2 Synchronization in simplicial complexeses of Hindmarsh–Rose
neurons. Contour plots of the time averaged (over an observation time T=
500) synchronization error E (see “Methods” for definition and the vertical
bars of each panel for the color code) in the plane (σ1, σ2) for simplicial
complexes of HR neurons coupled as in Eq. (19). Parameters are fixed in the
chaotic regime (r= 0.006, s= 4, I= 3.2). a–c refer to three different
simplicial complexes corresponding to the structures considered in
Fig. 1a–c. The blue continuous lines are the theoretical predictions of the
synchronization thresholds obtained from Eq. (3).
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The results are shown in Fig. 4 for the Rössler oscillator and in
Fig. 5 for the Lorenz system. Both cases exhibit a variety of
behaviors that actually encompass all possible classes of MSF. In
the case of Rössler oscillator we have one class III example
(Fig. 4a), one class II example (Fig. 4e), while all remaining cases
do correspond to class I. In the case of the Lorenz system we have
several examples of class I behavior (Fig. 5c, f–h); three class II
examples (Fig. 4a, d, e), and one class III example with a very
narrow region for synchronization (Fig. 4b). Moreover, in Fig. 4i
the MSF assumes negative values in two different intervals of α;
overall, this represents a further example of class III behavior,
providing however the extra scenario where increasing the
coupling strength one can achieve alternating regions of
synchronization and desynchronization.

Real-world structures. As an example of a real-world structure,
we apply our method to a social system modeling the interactions
between the members of a university sport club, the so-called
Zachary karate club data set66. The original social system is
described in terms of a network consisting of N= 34 nodes and
78 links. Since the links form 45 triangles, several simplicial
complexes can be constructed from this network, depending on
which and how many nodes forming a triangle are effectively
taken into consideration as being part of a 2-simplex or, on the
contrary, as only connected by three pairwise interactions. In this
way, we will be able to investigate the relevance of three-body
interactions in mechanisms of collective behavior, such as con-
sensus and synchronization, in social systems. It is indeed well
known that pairwise interactions are not always enough to cap-
ture the complex behavior of many systems, including social
systems44. For instance, processes of social contagion can occur in
different ways, either through pairwise interactions (the links of a
network), or in groups of three or more individuals (higher-order
simplices), and it has been shown that models of diffusion on
simplicial complexes can reproduce well the complex mechan-
isms of influence and reinforcement that are at work in the for-
mation of opinions and in the adoption of novelties67,68. At first,
let us consider the case where all triangles are considered as 2-
simplexes. In this way, the members of the Zachary karate club
may have both pairwise, when they are connected by a network
link, and three-body interactions, when they belong to the same
triangle (2-simplex). The presence of a link indicates a social
interaction among the two nodes of the link, whereas a 2-simplex
can be interpreted as a social interaction involving three members
of the club, such as a discussion to which all of them simulta-
neously participated. Oscillators have usually been used to
describe the units of a coupled dynamical system when modeling
opinion formation in social systems50,69. As dynamical units we
have decided to use chaotic oscillators, as it can be relevant to

Fig. 3 Synchronization in a simplicial complex of Rössler oscillators with
all-to-all coupling. Lower and upper boundary curves for the region where
synchronization is stable, at different values of N. The color codes for the
different curves is reported at the top of the panel.

Fig. 4 Synchronization in simplicial complexes of Rössler oscillators, in the case of natural coupling. The Master Stability Function is here calculated
taking into account several coupling functions. a hð1ÞðxjÞ ¼ ½x3j ;0;0�

T
and hð2Þðxj; xkÞ ¼ ½x2j xk;0;0�

T
, b hð1ÞðxjÞ ¼ ½y3j ;0;0�

T
and hð2Þðxj; xkÞ ¼ ½y2j yk;0;0�

T
,

c hð1ÞðxjÞ ¼ ½z3j ;0;0�
T
and hð2Þðxj; xkÞ ¼ ½z2j zk;0;0�

T
, d hð1ÞðxjÞ ¼ ½0; x3j ;0�

T
and hð2Þðxj; xkÞ ¼ ½0; x2j xk;0�

T
, e hð1ÞðxjÞ ¼ ½0; y3j ;0�

T
and hð2Þðxj; xkÞ ¼ ½0; y2j yk;0�

T
,

f hð1ÞðxjÞ ¼ ½0; z3j ;0�
T
and hð2Þðxj; xkÞ ¼ ½0; z2j zk;0�

T
, g hð1ÞðxjÞ ¼ ½0;0; x3j �

T
and hð2Þðxj; xkÞ ¼ ½0;0; x2j xk�

T
, h hð1ÞðxjÞ ¼ ½0;0; y3j �

T
and hð2Þðxj; xkÞ ¼ ½0;0; y2j yk�

T
,

i hð1ÞðxjÞ ¼ ½0;0; z3j �
T
and hð2Þðxj; xkÞ ¼ ½0;0; z2j zk�

T
.
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study synchronization in the more general scenario in which the
opinions do not necessarily converge to a fixed stationary
state70,71. In particular, we associate to each node a Rössler
oscillator and focus on the class III case, selecting the coupling
functions as gð1Þðxi; xjÞ ¼ ½x3j � x3i ; 0; 0�T and gð2Þðxi; xj; xkÞ ¼
½x2j xk � x3i ; 0; 0�T . With these assumptions, the dynamics of each
node i is described by

_xi ¼ � yi � zi þ σ1
XN
j¼1

að1Þij ðx3j � x3i Þ

þ σ2
XN
j¼1

XN
k¼1

að2Þijk ðx2j xk � x3i Þ;

_yi ¼ xi þ ayi;

_zi ¼ bþ ziðxi � cÞ:

ð21Þ

Equations (21) are then simulated for different values of σ1 and
σ2. The average synchronization error and the predictions
provided by the MSF (15) are illustrated in Fig. 6a that shows
the crucial role played by the pairwise links, as synchronization
turns out to be impossible when only three-body interactions are
considered, i.e., when σ1= 0.

Next, we take the original network, and build different
simplicial complexes by considering an increasing percentage
(labeled as p2s) of triangles in the original structure as true 2-
simplexes, that is, an increasing percentage of social interactions
taking place among groups of three members of the club. For
each of these structures, we determine the effective matrix M in
(41), and calculate its spectrum of eigenvalues, and in particular
we calculate the quantities λ2ðMÞ and λ2ðMÞ=λNðMÞ (to
simplify the notation here we shortly refer to these quantities as
λ2 and λ2/λN). The former quantity provides the scaling of

Fig. 5 Synchronization in simplicial complexes of Lorenz systems, in the case of natural coupling. The Master Stability Function is here calculated taking
into account several coupling functions. a hð1ÞðxjÞ ¼ ½x3j ;0;0�

T
and hð2Þðxj; xkÞ ¼ ½x2j xk;0;0�

T
, b hð1ÞðxjÞ ¼ ½y3j ;0;0�

T
and hð2Þðxj; xkÞ ¼ ½y2j yk;0;0�

T
, c hð1ÞðxjÞ ¼

½z3j ;0;0�
T
and hð2Þðxj; xkÞ ¼ ½z2j zk;0;0�

T
, d hð1ÞðxjÞ ¼ ½0; x3j ;0�

T
and hð2Þðxj; xkÞ ¼ ½0; x2j xk;0�

T
, e hð1ÞðxjÞ ¼ ½0; y3j ;0�

T
and hð2Þðxj; xkÞ ¼ ½0; y2j yk;0�

T
, f hð1ÞðxjÞ ¼

½0; z3j ;0�
T
and hð2Þðxj; xkÞ ¼ ½0; z2j zk;0�

T
, g hð1ÞðxjÞ ¼ ½0;0; x3j �

T
and hð2Þðxj; xkÞ ¼ ½0;0; x2j xk�

T
, h hð1ÞðxjÞ ¼ ½0;0; y3j �

T
and hð2Þðxj; xkÞ ¼ ½0;0; y2j yk�

T
, i hð1ÞðxjÞ ¼

½0;0; z3j �
T
and hð2Þðxj; xkÞ ¼ ½0;0; z2j zk�

T
.

Fig. 6 Synchronization in Zachary karate club structure. Synchronization
is studied in simplicial complexes extracted from the interactions
characterizing the Zachary karate club network. a Synchronization error
(color code reported in the bar at the right of the panel) vs. σ1 and σ2 for the
simplicial complex obtained when all the triangles are considered as being
2-simplexes. The red line delimits the area of stability of the synchronous
solution predicted by the MSF. b λ2 vs. the percentage of 2-simplexes in the
structure, p2s (see text for definition); c λ2/λN vs. p2s. In b and c three
different values of r are considered, with the color code for the plotted
curves being reported in the corresponding insets.
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synchronization for class II systems, while the latter quantity
(λ2/λN) is a proxy of synchronizability for class III systems. The
larger are the two quantities, the easier is to obtain synchroniza-
tion. Fig. 6b, c illustrates the results at three values of r ¼ σ2

σ1
. One

finds that increasing p2s has the effect of increasing λ2 (thus it
facilitates synchronization in class II systems), but simultaneously
dwindles λ2/λN (thus hindering synchronization in class III).
Furthermore, Fig. 6 reveals that a larger value of r ¼ σ2

σ1
leads to

larger values of λ2, but smaller values of λ2/λN, thus suggesting a
beneficial impact of stronger three-body interactions for class II
systems and an opposite effect on class III systems.

Cluster synchronization in simplicial complexes. In complex
networks, symmetries may induce cluster synchronization, a
regime where nodes group into clusters of units synchronized to
each other30. Network symmetries are permutations of the nodes
preserving the connectivity pattern; they form a mathematical
group, where each element may be represented by a permutation
matrix R with elements rij= 1 if nodes i and j permute, and rij= 0
otherwise. The relevant property is that the orbits of the sym-
metry group associated to the network represent a partition into
clusters that contain nodes that may synchronize each other.
Group-theoretical considerations determine the exact composi-
tion and stability of clusters defined by the symmetry group30.

Extending the notion of cluster synchronization to simplicial
complexes requires a formal definition of symmetries in the
general framework of multi-body interactions. Although this goes
beyond the purpose of this paper, here, we illustrate an example
of a simplicial complex displaying cluster synchronization. The
core idea is that symmetry-related nodes must be flow invariant.
Since the flow now comprises pairwise as well as higher-order
interactions, symmetries must preserve the invariance for all the
interactions taking place in the simplicial complex. Note that the

same general principle is at the basis of the onset of cluster
synchronization in multilayer networks where the symmetries
guarantee that synchronized nodes have equal dynamical
variables when inter-layer coupling is also included72.

In simplicial complexes, the flow invariance of symmetry-
related nodes is obtained when the same symmetries hold for all
the Laplacians involved in the dynamical equations of the nodes.
Indicating with Ri with i= 1, …, np the np permutation matrices
describing representing the symmetry group associated to the
cluster synchronization state, this requires that the Laplacians
satisfy the following Lyapunov equations30,73:

RiLð1Þ ¼ Lð1ÞRi ð22Þ
and

RiLð2Þ ¼ Lð2ÞRi ð23Þ
for i= 1, …, ng.

To illustrate our results, we consider the two simplicial
complexes shown in Fig. 7a, b, that have the same set of links,
but different 2-simplices. The symmetries existing for the
common network backbone induce the following partition of
the nodes: V1= {1, 2}, V2= {7, 8}, V3 = {9, 10}, V4= {11, 12}, V5

= {3}, V6= {4}, V7= {5}, V8= {6}. Hence, the two simplicial
complexes satisfy Eq. (22) for this symmetry group. However, for
the simplicial complex in Fig. 7a, Eq. (22) do not hold, while the
simplicial complex in Fig. 7b satisfies them.

We numerically study cluster synchronization monitoring the

average synchronization error in each non-trivial cluster eVh
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2Vh
k xiðtÞ � xjðtÞk2

qD E
T
for h= 1, …, 4 and the average

overall synchronization error E as in Eq. (45) to measure the
onset of complete synchronization. Figure 7c, d shows the results
for σ1∈ [0, 1] and σ2= 0.2. As it can be observed, for the
simplicial complex of Fig. 7b there is a interval of values of σ1, i.e.,
σ1∈ [0.1, 0.62], where the units in the four clusters are
synchronized in the absence of complete synchronization,
whereas for the simplicial complex of Fig. 7a V1 is the only
cluster that synchronizes before complete synchronization is
achieved. These results show that higher-order interactions can
modulate the pattern of synchronization emerging in the
simplicial complex, as a diverse arrangement of the same number
of 2-simplices (two in our example) led to different synchronous
clusters.

Discussion
Collective emergent phenomena in complex systems are the result
of the interactions of many elementary systems, that may occur
through different mechanisms. We have here formulated the
most general model accounting for many-body interactions of
arbitrary order among dynamical systems of arbitrary nature, and
we have given explicit necessary conditions for synchronization to
set up in these structures in a stable way.

Under the only hypothesis of non-invasiveness of the coupling
functions (which is the only assumption impossible to be dis-
regarded, as it is the fundamental basis for the very same exis-
tence and invariance of the synchronization solution), we have
derived the conditions for stability of the synchronous motion,
which involve the use of generalized Laplacian matrices mapping
the effects of high-order interactions. Moreover, we have even
shown that, in some relevant cases, our approach ultimately
provides a MSF, which formalizes the interplay between topology
of the simplicial complex and dynamics of the single units.
Finally, our theoretical derivations have been complemented by a
series of numerical results, which have fully confirmed the
validity and generality of the approach, and case studies, where

Fig. 7 Cluster synchronization in simplicial complexes of Rössler
oscillators. a A simplicial complex where the symmetries of Lð2Þ do not
match those of Lð1Þ. b A simplicial complex where the symmetries of Lð2Þ

match those of Lð1Þ. c Synchronization error as a function of σ1 for the
simplicial complex ia. d Synchronization error as a function of σ1 for the
simplicial complex in panel b. In both cases, σ2 has been set to σ2= 0.2.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21486-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1255 | https://doi.org/10.1038/s41467-021-21486-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


our technique crucially enables to take into account the funda-
mental presence of higher-order interactions, whose effect, pre-
viously, was not possible to address.

We note that our method is based on linear stability, therefore
providing a local analysis of synchronization. This analysis can be
complemented by other techniques, such as the basin stability74,
aiming at characterizing the basin of attraction of the synchro-
nous manifold. Similar techniques require extensive numerical
simulations of the full nonlinear model for many different initial
conditions, but provide an important characterization of the
system behavior, specially in the presence of multistability.

Our results pave the way to several novel studies. First, the
generality of the assumptions made renders it applicable in a wide
range of practical cases, and we expect that our method could be
of value in a plethora of experimental and/or practical circum-
stances, in order to make a series of a-priori predictions on the
emergence of synchronization.

Second, the fact that our method can be used irrespectively on
the coupling functions offers the possibility to apply it for the
investigation of diverse coupling mechanisms that may occur at
different orders of the interactions. In particular, questions like
what exact role do such interactions play in shaping the path to
synchronization and its robustness against heterogeneities in the
oscillator dynamics, or what is the difference in using one or
another coupling mechanism, can actually be tackled and clarified
by our approach. Answering these questions, indeed, is of crucial
importance from the perspective of engineering mechanisms for
achieving synchronization in man-made systems. For instance,
power grids are currently synchronized by exploiting only pair-
wise interactions, whereas more functional and more performing
configurations could be designed, thanks to our method, by the
use of higher order interactions.

Third, our study focuses on what is possibly the most common
and widely studied form of synchronization, that is, the regime
where all the units follow the same trajectory. However, as also
mentioned in the introduction, many other different forms of
synchronization exist, including cluster synchronization, Chimera
and Bellerophon states, remote synchronization, etc... All such
states have been so far studied in structures with pairwise inter-
actions. The emergence of such states, or even of novel ones, in
simplicial complexes, as well as their stability, are very intriguing
problems and certainly constitute directions for further research
(an example limited to the case of cluster synchronization has
been discussed in “Results”).

Methods
Networks and higher-order structures of interactions. A network is a collection
of nodes and of edges connecting pairs of nodes. Mathematically, it is represented
by a graph G ¼ ðV; EÞ, which consists of a set V with N ¼ jVj elements called
vertices (or nodes), and a set E whose K elements, called edges or links, are pairs of
nodes (i, j) (i, j= 1, 2, …, N and i ≠ j). As graphs explicitly refer to pairwise
interactions, networks have been very successful in capturing the properties of
coupled dynamical systems in all such cases in which the interactions can be
expressed (or approximated) as a sum of two-body terms75. Conversely, their limits
emerge when it comes to model higher-order interactions. In fact, the presence of a
triangle of three nodes i, j, k in a network, e.g., the presence of the three links (i, j),
(i, k), (j, k) in the corresponding graph, is not able to capture the difference between
a three-body interaction of the three individuals, from the sum of three pairwise
interactions. Notice that these are two completely different situations, with com-
pletely different social mechanisms and dynamics at work67.

Simplicial complexes are instead the proper mathematical structures for
describing high-order interactions. A simplicial complex is an aggregate of
simplices, objects that generalize links and can in general be of different dimension.
A d-simplex, or simplex of dimension d, σ is, in its simplest definition, a collection
of d+ 1 nodes. In this way, a 0-simplex is a node, a 1-simplex is a link, a 2-simplex
(i, j, k) is a two-dimensional object made by three nodes, usually called a (full)
triangle, a 3-simplex is a tetrahedron, i.e., a three-dimensional object and so on. It
is now possible to differentiate between a three-body interaction, and three bodies
in pairwise interactions: the first case will be represented by a complete triangle, a
two-dimensional simplex, while the second case will consist of three one-

dimensional objects. Hence, in the following of this paper, simplices of dimension d
will be used to describe the structure of (d+ 1)-body interactions.

Finally, a simplicial complex S on a given set of nodes V, with jVj ¼ N , is a
collection of M simplices, S ¼ fσ1; σ2; ¼ ; σMg, with the extra requirement that,
for any simplex σ 2 S, all the simplices σ 0 with σ 0 � σ, i.e., all the simplices built
from subsets of σ, are also contained in S. Due to this requirement, simplicial
complexes are a very particular type of hypergraphs76. Simplicial complexes have
shown to be appropriate in the context of social systems67,77,78 and they will turn
very useful to study coupled dynamical systems. We indicate as Md, d= 1, 2,…, D
the number of d-simplices present in S (where D, the order of the simplicial
complex, is the dimension of the largest simplex in S), with the constraint thatPD

d¼1 Md ¼ M.
As a mathematical representation of simplicial complexes, we use here a

formalism which generalizes directly the concept of adjacency matrix for a
network. The adjacency matrix A of a graph G is a N ×N matrix, such that entry aij
is 1 when edge ði; jÞ 2 E, and 0 otherwise. The idea can be extended to simplicial
complexes by considering tensors instead of matrices. In fact, for each dimension d,

we can define the N ´N ´ ¼ ´N|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}dþ1
adjacency tensor A(d), whose entry aðdÞi1 ;¼ ;idþ1

is equal to 1 if the d-simplex (i1, …, id+1) belongs to the simplex S, and is 0
otherwise17. Notice that each tensor is symmetric with respect to its d+ 1 indices,

which means that the value of a given entry aðdÞi1 ;¼ ;idþ1
is equal to the value of the

entries corresponding to any permutation of the indices.
With the definition above, A(1) coincides with the standard adjacency matrix A,

while the N × N × N adjacency tensor A(2) characterizes two-dimensional objects:

one has að2Þijk ¼ 1 if the three nodes i, j, k form a full triangle, and otherwise að2Þijk ¼ 0.
As a conclusion, it is possible to map completely the connectivity structure of a
simplicial complex S into the entire set of D adjacency tensors A(d), d= 1, 2, …, D.

A node i of a simplicial complex S cannot be, therefore, characterized only by

giving its degree ki ¼
PN

j¼1 a
ð1Þ
ij , but one needs instead to account for the number

of simplices of any dimension, incident in i. It is therefore extremely useful to

define the generalized d-degree, kðdÞi , of a node i as

kðdÞi ¼ 1
d!

XN
i1¼1

XN
i2¼1

¼
XN
id¼1

aðdÞi;i1 ;i2 ;¼ ; id
; ð24Þ

with d= 1, 2, …, D so that kð1Þi coincides with the standard degree of node i, kð2Þi
counts the number of triangles (2-simplices) to which i participates

kð2Þi ¼ 1=2
XN
j¼1

XN
k¼1

að2Þijk ; ð25Þ

kð3Þi the number of tetrahedrons, and so on.

Analogously, we can also define the generalized d-degree kðdÞij of a link (i, j) as
the number of d-simplices to which link (i, j) is part of. We can write its expression
in terms of the adjacency tensor A(d) of dimension d, with d= 1, 2,…,D, as17

kðdÞij ¼ 1
ðd � 1Þ!

XN
i1¼1

XN
i2¼1

¼
XN
id�1¼1

aðdÞi;j;i1 ;i2 ;¼ ;id�1
; ð26Þ

so that kð1Þij ¼ að1Þij , while kð2Þij counts the number of triangles (2-simplices) to which
(i, j) participates

kð2Þij ¼
XN
k¼1

að2Þijk ; ð27Þ

and so on.
The Laplacian is a matrix that is of particular importance in many linear

processes such as diffusion in graphs, but also turns useful in the linearization of
nonlinear systems, for instance when we study the stability of a synchronized state
in a networked dynamical system. The Laplacian matrix L= {lij} of a graph can be
defined as L= K− A, where K is the diagonal matrix having the node degrees as
diagonal elements. We give here a definition of generalized Laplacian describing
the case of systems with high-order interactions. The generalized Laplacian of
order d, with d= 1, 2, …, D, is a matrix LðdÞ whose elements are defined as

LðdÞ
ij ¼

0 for i≠j and að1Þij ¼ 0

�ðd � 1Þ!kðdÞij for i≠j and að1Þij ¼ 1

d!kðdÞi for i ¼ j;

8>><
>>: ð28Þ

where kðdÞij is the generalized d-degree of the link (i, j), and kðdÞi is the generalized d-
degree of node i. Replacing Eqs. (24) and (26) in Eq. (28), in the case D = 2, we get
an equivalent expression for the generalized Laplacian:

Lð2Þ
ij ¼ �Pk a

ð2Þ
ijk for i≠j

�P‘≠i Lð2Þ
i‘ for i ¼ j;

8<
: ð29Þ
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Notice that Lð1Þ recovers exactly the classical Laplacian matrix. This definition
of generalized Laplacian will turn useful in our study.

Derivation of Eq. (3). To derive the conditions for the stability of the synchro-
nization solution xs, one first considers small perturbations around the synchro-
nous state, i.e., δxi= xi− xs, and performs a linear stability analysis of Eq. (2). One
has

_δxi ¼ JfðxsÞδxi þ σ1
XN
j¼1

að1Þij

∂gð1Þðxi; xjÞ
∂xi

jðxs ;xsÞδxi
"

þ ∂gð1Þðxi; xjÞ
∂xj

jðxs ;xsÞδxj
#

þ σ2
XN
j¼1

XN
k¼1

að2Þijk

∂gð2Þðxi; xj; xkÞ
∂xi

jðxs ;xs ;xsÞδxi
"

þ ∂gð2Þðxi; xj; xkÞ
∂xj

jðxs ;xs ;xsÞδxj

þ ∂gð2Þðxi; xj; xkÞ
∂xk

jðxs ;xs ;xsÞδxk
#
;

ð30Þ

where Jf(xs) denotes the m ×m Jacobian matrix of the function f, evaluated at the
synchronous state xs. The first, very important, conceptual step in our derivation
consists in noticing that all coupling functions are synchronization noninvasive
(i.e., g(1)(x, x) ≡ 0 and g(2)(x, x, x) ≡ 0). As their value is then constant (equal to
zero) at the synchronization manifold, it immediately follows that their total
derivative vanishes as well, which implies on its turn that

∂gð1Þðxi; xjÞ
∂xi

					
ðxs ;xsÞ

þ ∂gð1Þðxi; xjÞ
∂xj

					
ðxs ;xsÞ

¼ 0;

∂gð2Þðxi; xj; xkÞ
∂xi

					
ðxs ;xs ;xsÞ

þ ∂gð2Þðxi; xj; xkÞ
∂xj

					
ðxs ;xs ;xsÞ

þ

þ ∂gð2Þðxi; xj; xkÞ
∂xk

					
ðxs ;xs ;xsÞ

¼ 0:

ð31Þ

Then, one can factor out the terms
∂gð1Þ ðxi ;xjÞ

∂xi
jðxs ;xsÞδxi and

∂gð2Þðxi ;xj ;xkÞ
∂xi

jðxs ;xs ;xsÞδxi
in the summations (both of them, indeed, do not depend on the indices of the

summations). Furthermore, one has that
PN

j¼1 a
ð1Þ
ij ¼ kð1Þi andPN

j¼1

PN
k¼1 a

ð2Þ
ijk ¼ 2kð2Þi . Plugging back the resulting terms inside the summations,

and using Eq. (31), one eventually obtains

_δxi ¼ JfðxsÞδxi � σ1
XN
j¼1

Lð1Þ
ij Jgð1Þðxs; xsÞδxj

� σ2
XN
j¼1

XN
k¼1

τijk J1g
ð2Þðxs; xs; xsÞδxj þ J2g

ð2Þðxs; xs; xsÞδxk
h i

;

ð32Þ

where we introduced a tensor T whose elements are τijk ¼ 2kð2Þi δijk � að2Þijk for i, j, k
= 1, …, N, and simplified the notation as

Jgð1Þðxs; xsÞ ¼ ∂gð1Þðxi; xjÞ
∂xj

jðxs ;xsÞ;

J1g
ð2Þðxs; xs; xsÞ ¼ ∂gð2Þðxi; xj; xkÞ

∂xj
jðxs ;xs ;xsÞ;

J2g
ð2Þðxs; xs; xsÞ ¼ ∂gð2Þðxi; xj; xkÞ

∂xk
jðxs ;xs ;xsÞ:

ð33Þ

Already at this stage, it is fundamental to remark that our approach does not
require a diffusive functional form for the interplay among the network nodes, and
therefore we are actually encompassing an extremely broad class of coupling
functions. For instance, our approach allows the formal treatment of the Kuramoto
model50, where m= 1, each network unit i is identified by the instantaneous phase
θi of an oscillator, and the coupling between nodes i and j is given by the function
sinðθj � θiÞ, which is not diffusive.

Let us now make our second, conceptual, step, which will allow us to greatly
simplify the last term on the right hand side of Eq. (32). Such a term refers to three-
body interactions, and we now show how to map it into a single summation
involving the generalized Laplacian matrix. This is done by remarking that the two
Jacobian matrices J1g(2)(xs, xs, xs) and J2g(2)(xs, xs, xs) are both independent on k

and j. Accordingly, Eq. (32) becomes

_δxi ¼ JfðxsÞδxi � σ1
XN
j¼1

Lð1Þ
ij Jgð1Þðxs; xsÞδxj

� σ2
XN
j¼1

J1g
ð2Þðxs; xs; xsÞδxj

XN
k¼1

τijk þ
XN
k¼1

J2g
ð2Þðxs; xs; xsÞδxk

XN
j¼1

τijk

" #
:

ð34Þ
Then, using the symmetric property of T, namely

P
k τijk ¼

P
k τikj , we have

_δxi ¼ JfðxsÞδxi � σ1
XN
j¼1

Lð1Þ
ij Jgð1Þðxs; xsÞδxj

� σ2
XN
j¼1

J1g
ð2Þðxs; xs; xsÞδxjLð2Þ

ij

"
þ
XN
k¼1

J2g
ð2Þðxs; xs; xsÞδxkLð2Þ

ik

#

¼ JfðxsÞδxi � σ1
XN
j¼1

Lð1Þ
ij Jgð1Þðxs; xsÞδxj � σ2

XN
j¼1

Lð2Þ
ij J1g

ð2Þðxs; xs; xsÞ
h

þJ2g
ð2Þðxs; xs; xsÞ

i
δxj:

ð35Þ

Let us now rewrite Eq. (35) in block form by introducing the stack vector

δx ¼ ½δxT1 ; δxT2 ; ¼ ; δxTN �T and denoting by JF= Jf(xs), JG(1)= Jg(1)(xs, xs) and
JG(2)= J1g(2)(xs, xs, xs)+ J2g(2)(xs, xs, xs). One obtains

_δx ¼ IN � JF� σ1Lð1Þ � JGð1Þ � σ2Lð2Þ � JGð2Þ
h i

δx: ð36Þ
The third, and final, conceptual step is to remark that all generalized Laplacians

LðdÞ are symmetric real-valued zero-row-sum matrices. Therefore: (i) they are all
diagonalizable; (ii) for each one of them the set of eigenvalues is made of real non-
negative numbers, and the corresponding set of eigenvectors constitutes a
orthonormal basis of RN ; (iii) they all share, as the smallest of their eigenvalues,
λ1≡ 0, whose associated eigenvector 1ffiffiffi

N
p ð1; 1; 1; :::; 1ÞT is aligned along the

synchronization manifold; (iv) as in general they do not commute, the sets of
eigenvectors corresponding to all others of their eigenvalues are different from one
another, and yet any perturbation to the synchronization manifold (which, by
definition, lies in the tangent space) can be expanded as linear combination of one
whatever of such eigenvector sets (the relevant consequence is that one can
arbitrarily select any of the generalized Laplacians as the reference for the choice of
the basis of the transverse space, and all other eigenvector sets will map to such a
basis by means of unitary matrix transformations).

We are then fully entitled to take, as reference basis, the one constituted by the
eigenvectors of the classic Laplacian Lð1Þ (V= [v1, v2, …, vN]), and consider new
variables η= (V−1⊗ Im)δx. We get

_η ¼ðV�1 � ImÞ IN � JF� σ1Lð1Þ � JGð1Þ
h

�σ2Lð2Þ � JGð2Þ
i
ðV� ImÞη:

ð37Þ

Furthermore, taking into account that V�1Lð1ÞV ¼ diagðλ1; λ2; ¼ ; λN Þ ¼ Λð1Þ,
where 0= λ1 < λ2 ≤…λN are the eigenvalues of Lð1Þ , and indicating with
~Lð2Þ ¼ V�1Lð2ÞV the transformed generalized Laplacian of order 2, one obtains
that

_η ¼ IN � JF� σ1Λ
ð1Þ � JGð1Þ � σ2 ~L

ð2Þ � JGð2Þ
h i

η: ð38Þ
As Lð2Þ is zero-row sum (i.e. Lð2Þv1 ¼ 0), Eq. (3) are finally obtained from Eq.

(38).

Derivation of the MSF in the case of natural coupling. In the case of natural
coupling as in Eq. (14), one has that J1h(2)(xs, xs)+ J2h(2)(xs, xs)= Jh(1)(xs). The
consequence is that the equations of the linearized dynamics in Eq. (35) can be
rewritten as follows

_δxi ¼ JfðxsÞδxi � σ1
XN
j¼1

Lð1Þ
ij Jh

ð1ÞðxsÞδxj

� σ2
XN
j¼1

Lð2Þ
ij Jh

ð1ÞðxsÞδxj

¼ JfðxsÞδxi

�
XN
j¼1

σ1Lð1Þ
ij þ σ2Lð2Þ

ij

h i
Jhð1ÞðxsÞδxj:

ð39Þ

Alternatively, one can consider the zero-row sum, symmetric, effective matrix
M, given by

M ¼ Lð1Þ þ rLð2Þ; r ¼ σ2
σ1

: ð40Þ
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and rewrite Eq. (39) as follows

_δxi ¼ JfðxsÞδxi � σ1
XN
j¼1

Mij Jh
ð1ÞðxsÞδxj: ð41Þ

where we notice that the eigenvalues of M depend on the ratio r of the coupling
coefficients.

Equation (41) allows to establish a formal full analogy between the case of a
simplicial complex and that of a network with weights given by the coefficients of
the effective matrix M. In this case, by diagonalizing the effective matrix M, the
transverse modes can be fully decoupled such that Eq. (15) is obtained, which
prompts for the definition of a single-parameter MSF.

Numerical simulations. In our numerical simulations, we used two paradigmatic
chaotic systems for the study of synchronization in systems of coupled units. The
isolated dynamics of the Rössler oscillator is described by

_x ¼ �y � z;

_y ¼ x þ ay;

_z ¼ bþ zðx � cÞ;
ð42Þ

while the equations for the Lorenz system are

_x ¼ σðy � xÞ;
_y ¼ xðρ� zÞ � y;

_z ¼ xy � βz;

ð43Þ

In both cases, the parameters are fixed so as the resulting dynamics is chaotic.
Namely, for the Rössler oscillator we selected a= b= 0.2, c= 9, and for the Lorenz
system σ= 10, ρ= 28, and β= 8/3.

Furthermore, as a real-world example, we have considered the HR model for
the neuron, whose isolated dynamics is described by the set of equations

_x ¼ y þ 3x2 � x3 � z þ I;

_y ¼ 1� 5x2 � y;

_z ¼ �rz þ rsðx þ 1:6Þ;
ð44Þ

Here we fixed r= 0.006, s= 4, I= 3.2, so that the resulting dynamics is chaotic64.
In all cases, the state of the system is monitored by the average synchronization

error defined as

E ¼ 1
NðN � 1Þ

XN
i;j¼1

k xj � xik2
 !1

2
* +

T

; ð45Þ

where T is a sufficiently large window of time where the synchronization error is
averaged, after discarding the transient.

Numerical integrations of the simplicial complexes of chaotic units are
performed by means of an Euler algorithm, with integration step δt= 10−4, in a
windows of time equal to 2T with T= 500.

For the calculation of the maximum Lyapunov exponent of the transverse
modes in Eq. (3) we used the algorithm reported in ref. 79 (pp. 116–117) with the
following parameters: integration step size δt= 10−3, number of iterations per
cycle I= 10000, number of cycles C= 5.

For the calculation of the MSF (15) we made use of the algorithm for the
computation of the entire spectrum of Lyapunov exponents in ref. 80 (with
parameters: integration step size of the Euler algorithm δt= 10−5, length of the
simulation L= 2500, windows of averaging T= 0.9L).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper itself.
Additional data related to this paper may be requested to the corresponding authors.
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