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Abstract

Motivation: The amount of information available in textual format is rapidly increasing in the

biomedical domain. Therefore, natural language processing (NLP) applications are becoming in-

creasingly important to facilitate the retrieval and analysis of these data. Computing the semantic

similarity between sentences is an important component in many NLP tasks including text retrieval

and summarization. A number of approaches have been proposed for semantic sentence similarity

estimation for generic English. However, our experiments showed that such approaches do not

effectively cover biomedical knowledge and produce poor results for biomedical text.

Methods: We propose several approaches for sentence-level semantic similarity computation in

the biomedical domain, including string similarity measures and measures based on the

distributed vector representations of sentences learned in an unsupervised manner from a large

biomedical corpus. In addition, ontology-based approaches are presented that utilize general and

domain-specific ontologies. Finally, a supervised regression based model is developed that effect-

ively combines the different similarity computation metrics. A benchmark data set consisting of

100 sentence pairs from the biomedical literature is manually annotated by five human experts and

used for evaluating the proposed methods.

Results: The experiments showed that the supervised semantic sentence similarity computation

approach obtained the best performance (0.836 correlation with gold standard human annotations)

and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the

Pearson correlation metric.

Availability and implementation: A web-based system for biomedical semantic sentence similarity

computation, the source code, and the annotated benchmark data set are available at: http://tabi

lab.cmpe.boun.edu.tr/BIOSSES/.

Contact: gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr

1 Introduction

Semantic text similarity estimation is a research problem that aims to

calculate the similarities among texts based on their meanings and se-

mantic content, rather than their shallow or syntactic representation.

The measures on semantic text similarity have undertaken a crucial

role in many natural language processing (NLP) applications such as

machine translation (Finch et al., 2005), automatic summarization

(Wang et al., 2008), and question answering (Jeon et al., 2005).

Several approaches for semantic sentence similarity computation

have been proposed for generic English. These approaches are in

general based on computing word-level similarities and combining

these to obtain sentence-level similarity scores. Corpus-based meas-

ures such as Latent Semantic Indexing (LSA), knowledge-based

measures that utilize general-domain ontologies including WordNet

(Miller, 1995), and string-based measures such as edit distance have

been effectively used for word-level similarity computation (Li et al.,

2006; Liu et al., 2015; Mihalcea et al., 2006). The SemEval

Semantic Textual Similarity (STS) task series, which is being con-

ducted annually since 2012 has also boosted research in this area

(Agirre et al., 2012, 2013, 2014, 2016; Agirrea et al., 2015).

Manually annotated and test datasets provided by STS enabled the

development and comparison of different approaches for semantic

text similarity estimation. Supervised machine learning methods

that integrate different features such as WordNet and corpus-based

features, syntactic features, and features based on the distributed

dense vector representation of words were shown to be effective for
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semantic text similarity computation (Han et al., 2013; �Sari�c et al.,

2012; Sultan et al., 2015).

Publicly available tools such as ADW (Align, Disambiguate and

Walk) (Pilehvar et al., 2013; Pilehvar and Navigli, 2015) and

SEMILAR (Semantic Similarity Toolkit) (Rus et al., 2013) for gen-

eric domain sentence semantic similarity computation have also

been developed. ADW is a knowledge-based system that uses the

Topic-sensitive PageRank algorithm (Haveliwala, 2002) over a

graph generated using WordNet to model the similarity between lin-

guistic items of different granularity such as words, sentences, and

documents (Pilehvar et al., 2013; Pilehvar and Navigli, 2015). ADW

was evaluated on SemEval 2012 data set and was shown to outper-

form the top three ranked systems (Pilehvar et al., 2013). SEMILAR

is a toolkit that implements several measures based on WordNet or

LSA (Rus et al., 2013). Different algorithms such as the optimal

matching and the quadratic assignment problem algorithm are

applied for assessing the similarity of sentence pairs by using the cal-

culated word-level similarities (Rus et al., 2013). The general do-

main state-of-the-art systems ADW and SEMILAR are considered as

baseline models in our study.

Assessing the similarity between two sentences is an important

problem in the biomedical domain as well, due to the huge amount

of information available in textual format, which renders effective

retrieval, extraction and summarization of information vital. The

excessive use of domain specific-language along with the rich variety

of expressions and inadequate training corpora make measuring sen-

tence similarity in the biomedical domain a difficult task. Therefore,

semantic text similarity measures to be used in biomedical NLP

studies call for domain-specific approaches including the use of bio-

medical domain-specific corpora or biomedical knowledge sources.

As an example, consider the following two sentences taken from

(Wang et al., 2014) and (Fu et al., 2013), respectively.

• S1: This form of necrosis, also termed necroptosis, requires the

activity of receptor-interacting protein kinase 1 and its related

kinase 3.
• S2: Moreover, other reports have also shown that necroptosis

could be induced via modulating RIP1 and RIP3.

The example sentences S1 and S2 are on the same topic and are simi-

lar to each other. The ‘receptor-interacting protein kinase 1’ in S1 is

the same concept as ‘RIP1’ in S2; likewise ‘kinase 3’ and ‘RIP3’ refer

to the same biomedical term. Domain-independent semantic text

similarity measures developed for generic English can neither recog-

nize these concepts nor give high weight to them while estimating

the similarity between the sentences.

These examples illustrate that new approaches that can handle

both biomedical and domain independent words are needed for sen-

tence similarity computation in the biomedical domain. Garla and

Brandt (2012) compared knowledge-based (ontology-based) and

distributional (corpus-based) similarity measures and observed that

knowledge-based measures are more effective for semantic similarity

computation in the biomedical domain. Most previous work on se-

mantic similarity in the biomedical domain focused on computing

ontology-based similarity between terms (Aouicha and Taieb, 2016;

Harispe et al., 2014; Mabotuwana et al., 2013; Pedersen et al.,

2007; Pesquita et al., 2009; S�aNchez and Batet, 2011). Several stud-

ies showed that the use of biomedical ontologies to measure seman-

tic similarity provided valuable information for a number of tasks

performed in this domain such as similarity computation between

gene products (Lord et al., 2003), scoring protein–protein inter-

actions (Jain and Bader, 2010) as well as disambiguation of biomed-

ical terms (McInnes and Pedersen, 2013). To the best of our

knowledge, there is neither a manually annotated benchmark data

set, nor a comprehensive study on sentence-level semantic similarity

computation in the biomedical domain. Although sentence-level se-

mantic similarity computation has recently been used as a compo-

nent in a text-mining system for evidence-based medicine

(Hassanzadeh et al., 2015) and for biomedical question answering

(Papagiannopoulou et al., 2016), these studies used general domain

semantic similarity computation methods and did not perform any

domain-specific adaptation.

In this study, we show that general domain state-of-the-art sen-

tence similarity computation systems fail to effectively model sen-

tence similarity in the biomedical domain. We propose new

approaches specifically adapted for the biomedical domain that

can be categorized into four areas: string similarity measures,

ontology based measures, a distributional vector model and a

supervised method combining these different measures. Besides a

general domain ontology, namely WordNet (Miller, 1995), we also

exploit a biomedical ontology, UMLS (Unified Medical Language

System) (Bodenreider, 2004). The distributional vector representa-

tions of sentences are learned using a large biomedical corpus of

full text articles. In addition, we present a manually annotated

benchmark data set for biomedical sentence similarity estimation,

which can be used for training and evaluation in future studies in

this area.

2 System and methods

2.1 BIOSSES dataset
Since there are no suitable datasets that comprise sentence pairs

from the biomedical domain, we created a benchmark dataset for

biomedical sentence similarity estimation. The dataset comprises

100 sentence pairs, in which each sentence was selected from the

TAC (Text Analysis Conference) Biomedical Summarization Track

Training Dataset containing articles from the biomedical domain.

TAC dataset consists of 20 articles (reference articles) and citing art-

icles that vary from 12 to 20 for each of the reference articles. We se-

lected the BIOSSES sentence pairs from citing sentences, i.e.

sentences that have a citation to a reference article, instead of choos-

ing random sentence pairs, majority of which would be unrelated.

Our motivation to use the TAC data set was that both semantically

related and irrelevant sentence pairs occur in the annotation files.

Some of the citing sentences cite the same reference articles because

of similar reasons such as referring to a recent study on protein–pro-

tein interactions. Sentences citing the same reference article for a

similar reason, in general have some degree of semantic similarity.

On the other hand, there are also some citing sentences that cite ref-

erence article that are written about different topics or research

fields (e.g. one refers to a study on microbiology, the other mentions

research on embryology). Such citing sentences are expected to have

lower or no semantic similarity. Therefore, it was possible to obtain

sentence pairs with different similarity degrees by using this ap-

proach over the TAC dataset.

The sentence pairs were evaluated by five different human ex-

perts that judged their similarity and gave scores ranging from 0 (no

relation) to 4 (equivalent). The score range was described based on

the guidelines of SemEval 2012 Task 6 on STS (Agirre et al., 2012).

Besides the annotation instructions, example sentences from the bio-

medical literature were provided to the annotators for each of the

similarity degrees. These example sentence pairs that are scored be-

tween 0 and 4 are shown in Table 1.

Table 2 shows the Pearson correlation of the scores of each

annotator with respect to the average scores of the remaining four
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annotators. It is observed that there is strong association among the

scores of the annotators. The lowest correlations are 0.902, which

can be considered as an upper bound for an algorithmic measure

evaluated on this dataset.

The distribution of the scores by each of the annotators is illus-

trated in Figure 1. The distribution suggests that there are enough in-

stances for each of the similarity degrees in our dataset.

The BIOSSES dataset of sentence pairs and the annotators’

scores are publicly available at http://tabilab.cmpe.boun.edu.tr/

BIOSSES/DataSet.html.

2.2 String similarity measures
We evaluated the character- and term-based string similarity

approaches briefly described in the following subsections using the

annotated dataset. Simple pre-processing steps consisting of removal

of the punctuation marks (Dot, Comma, Colon, Exclamation Mark,

Semicolon, Slash Mark, Dash, Question Mark) and stop-words

(http://www.ranks.nl/stopwords) were applied to the sentence pairs

before applying the similarity algorithms. The implementations of

the string similarity methods in the SimMetrics Library (https://

github.com/Simmetrics/simmetrics) were used.

2.2.1 Qgram similarity

Qgram similarity (Ukkonen, 1992) is typically used in approximate

string matching by ‘sliding’ a window of length q over the characters

of a string to create ‘q’ length grams for matching. A match is then

rated as the number of q-gram matches within the second string

over the possible q-grams obtained from the first string.

2.2.2 Block distance

Block distance (Krause, 1987), also known as Manhattan Distance,

computes the distance between two points by summing the differ-

ences of their corresponding components. The Equation for block

distance between a point A ¼ (A1,A2,. . .,An) and a point B ¼
(B1,B2,. . .,Bn) in n-dimensional space is:

BDðA;BÞ ¼
Xn

i¼1

jAi � Bij (1)

In our case, Ai refers to the count of term i in sentence A and Bi

refers to the count of term i in sentence B.

2.2.3 Jaccard similarity

Jaccard similarity (Jaccard, 1908) measures the similarity between

two sets and is computed as the number of common terms over the

number of unique terms in both sets (Equation 2). In our case, set A

consists of the unique words in the first sentence and set B consists

of the unique words of the second sentence.

similarity ¼ JACðA;BÞ ¼ jA \ Bj
jA [ Bj (2)

2.2.4 Overlap coefficient

Overlap coefficient (Lawlor, 1980) is a similarity measure that dif-

fers from Jaccard similarity with being divided by the size of the

smaller sized of the two sets (Equation 3).

similarity ¼ OverlapðA;BÞ ¼ jA \ Bj
jMinðjAj; jBjÞj (3)

2.2.5 Levenshtein distance

Levenshtein distance (Levenshtein, 1966) is a simple edit distance,

which consists of the operations for transforming one of the given

Table 2. Correlation scores among annotators

Correlation r

Annotator A 0.952

Annotator B 0.958

Annotator C 0.917

Annotator D 0.902

Annotator E 0.941

Table 1. Example annotations

Sentence 1 Sentence 2 Comment Score

Here we show that both C/EBPa and NFI-A

bind the region responsible for miR-223

upregulation upon RA treatment.

Isoleucine could not interact with ligand

fragment 44, which contains amino

group.

The two sentences are on different topics. 0

Membrane proteins are proteins that inter-

act with biological membranes.

Previous studies have demonstrated that

membrane proteins are implicated in

many diseases because they are positioned

at the apex of signaling pathways that

regulate cellular processes.

The two sentences are not equivalent, but

are on the same topic.

1

This article discusses the current data on

using anti-HER2 therapies to treat CNS

metastasis as well as the newer anti-HER2

agents.

Breast cancers with HER2 amplification

have a higher risk of CNS metastasis and

poorer prognosis.

The two sentences are not equivalent, but

share some details.

2

We were able to confirm that the cancer tis-

sues had reduced expression of miR-126

and miR-424, and increased expression of

miR-15b, miR-16, miR-146a, miR-155

and miR-223.

A recent study showed that the expression of

miR-126 and miR-424 had reduced by

the cancer tissues.

The two sentences are roughly equivalent,

but some important information differs/

missing.

3

Hydrolysis of b-lactam antibiotics by b-lac-

tamases is the most common mechanism

of resistance for this class of antibacterial

agents in clinically important Gram-nega-

tive bacteria.

In Gram-negative organisms, the most com-

mon b-lactam resistance mechanism in-

volves b-lactamase-mediated hydrolysis

resulting in subsequent inactivation of the

antibiotic.

The two sentences are completely or mostly

equivalent, as they mean the same thing.

4
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strings to the other, where an operation is defined as an insertion, de-

letion, substitution or copying of a character. The distance is defined

as the minimum number of the required operations to change one

string into another. The Levenshtein distance and block distance val-

ues are converted into similarity values by subtracting from 1.

2.3 Distributional vector model
2.3.1 Paragraph vector model

The word2vec model (Mikolov et al., 2013), which constructs distrib-

uted representations of words, has been widely adopted to many re-

cent NLP tasks including the biomedical domain (Aydin et al., 2017;

Chiu et al., 2016; Moen and Ananiadou, 2013; Muneeb et al., 2015).

In this model, a large amount of unlabeled text data is used in training

to represent words in a new low-dimensional space as real-valued vec-

tors. The model’s ability of considering the word context allows us to

easily relate word vectors in a semantic way (e.g. similar words have

similar vectors). Word2vec is an unsupervised neural network based

learning model based on two approaches, namely Skip-Gram and

Continuous-Bag-of-Words (CBOWs). In the CBOW approach, the

words are predicted based on their surrounding words ignoring the

word order, whereas in Skip-Gram, a word is used to predict its sur-

rounding words while considering how distant they are in the text.

Paragraph vector is presented following the word2vec model as

a way to describe sentences (Le and Mikolov, 2014). The paragraph

vector method was utilized to capture semantic information from

the texts. The difference of this model from the word2vec model is

that the paragraphs are also mapped to distributed vector represen-

tations and used to predict the next word in the given context to-

gether with the distributed vector representations of the words in

the paragraph. We trained a paragraph vector model by using a sub-

set of the Open Access Subset of PubMed Central (http://www.ncbi.

nlm.nih.gov/pmc/) dataset, which comprises �4G text data of �37K

articles. The size of the output sentence vectors was set to 100 and

the Skip-Gram approach was employed.

2.4 Ontology-based similarity
Ontologies are widely used for measuring semantic similarity be-

tween concepts/terms, since their representation links terms seman-

tically. Due to the fact that a sentence consists of a set of words, we

can utilize ontology-based word-level similarity measures to com-

pute semantic similarity scores between sentences. To make our pro-

posed algorithms clearer, we first briefly introduce the WordNet

(Section 2.4.1) and the UMLS ontologies (Section 2.4.2), then de-

scribe the ontology-based word-level similarity algorithms (Section

2.4.3). Finally, we present our proposed approaches (Section 2.4.4),

which exploit the word-level algorithms described in Section 2.4.3

to obtain sentence-level similarity scores.

2.4.1 WordNet

WordNet (Miller, 1995) is a large English lexical thesaurus that has

been widely used for computing semantic similarity by using the

measures described in Section 2.4.3. According to the structure of

WordNet, each word consists of a form ‘f’ which is a string and a

sense ‘s’ represented by a set of synonyms that have that meaning.

Words in WordNet are categorized according to their syntactic cate-

gories such as verb, noun, adjective, and adverb. Since the same

words can be interpreted as having different part-of-speech (POS)

tags according to the contexts they occur in, this syntactic categor-

ization allows to save the same word with each possible POS tags

separately in a taxonomy. In addition, words and word senses are

connected to each other with various types of relationships. The

types of relationships most commonly used for measuring semantic

similarity are listed below:

• Synonymy is the basic relation type in WordNet, since sets of

synonyms (synsets) are used to represent word senses.
• Hyponymy and hypernymy represent the hierarchical relations

between a word and its sub-name and super-name, respectively.
• Antonymy represents the relation between a name and its oppos-

ite-name.

2.4.2 UMLS

UMLS (Bodenreider, 2004) is a comprehensive thesaurus consisting

of >1.7 million biomedical concepts. It comprises of the vocabulary

sources on specialized topics such as MeSH consisting of medical

subject headings, OMIM containing genetic knowledge bases, and

SnomedCT which consists of the concepts belonging to clinical repo-

sitories. Since UMLS consists of various terminology sources, some

concepts can overlap. In other words, the same concept can belong

to different sources. To be able to use multiple sources as a single re-

source in the UMLS Metathesaurus, concept unique identifiers are

assigned to the concepts.

2.4.3 Word-level similarity methods

The rich semantic information carried by ontologies enables the

computation of semantic similarity scores among concepts. In this

subsection, we briefly describe the ontology based path-based and

information content (IC)-based similarity metrics that are employed

Fig. 1. Distribution of the similarity scores in the dataset
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in our proposed sentence-level similarity computation method. Path-

based approaches utilize the structure of the taxonomy, whereas IC-

based approaches use extra information that is learned from corpus

statistics.

The Path algorithm (Rada et al., 1989) measures the semantic

similarity of two concepts by calculating the shortest path between

them in taxonomy. The intuition behind the algorithm is that the

shorter the path between concepts in a hierarchy the more similar

they are.

SimPathðc1; c2Þ ¼ ð2 � depthmaxÞ � lenðc1; c2Þ (4)

In Equation 4, the len function computes the shortest path between con-

cepts c1–c2, and depthmax refers to the maximum depth of the tax-

onomy. For example, given the sample taxonomy provided in Figure 2,

the semantic distance between the terms ‘protein’ and ‘beta-lactams’ is

computed as:

SimPathðprotein;beta-lactamsÞ ¼ ð2 � 5Þ � 4 ¼ 6 (5)

The shortest path between c1 and c2 counts all nodes between

them—including themselves. Since the maximum depth of the tax-

onomy is constant, this measure does not take into consideration the

specificity of the concepts. According to the definition, len(c1,c2) is

equal to 4 and depthmax is 5.

Similarly, the Leacock and Chodorow (LCH) measure (Leacock

and Chodorow, 1998) takes the maximum depth of the taxonomy

into account and the similarity is determined as:

SimLCHðc1; c2Þ ¼ �log
lenðc1; c2Þ

2 � depthmax
(6)

Unlike the Path and LCH measures, Wu and Palmer (WP) (Wu and

Palmer, 1994) measure accounts for the specificity of the concepts,

due to the concept depth feature. WP similarity between concepts c1

and c2 is measured as twice the depth of the lowest common sub-

sumer of the given concepts over the sum of the depths of c1 and c2.

SimWPðc1; c2Þ ¼
2 � depthðLCSðc1; c2ÞÞ
depthðc1Þ þ depthðc2Þ

(7)

The following example based on the sample taxonomy in Figure 2 il-

lustrates the effect of concept depth using the WP and the Path

metrics.

SimWPðcephem; ampicillinÞ ¼ ð2 � 3Þ=ð4þ 5Þ ¼ 0:66 (8)

SimWPðantibiotic; enzymeÞ ¼ ð2 � 1Þ=ð2þ 3Þ ¼ 0:40 (9)

SimPathðcephem; ampicillinÞ ¼ 10� 4 ¼ 6 (10)

SimPathðantibiotic; enzymeÞ ¼ 10� 4 ¼ 6 (11)

Although the Path algorithm gives the same semantic similarity score

for the two pairs, which have different specificity, WP estimates that

cephem and ampicillin are more similar than antibiotic and enzyme.

The result of the WP metric is reasonable for this example, since the

path between deeper concepts causes less semantic distance.

Both the concept depth feature and the frequency of the concept

in a corpus give an idea about the specificity of the concept. With

the motivation of these facts, IC is used for measuring the semantic

similarity between concepts. IC of a concept is defined as the nega-

tive log likelihood of encountering concept c in a given corpus.

ICðcÞ ¼ �log ðpðcÞÞ (12)

The probability of encountering concept c is given as,

pðcÞ ¼ freqðcÞ=N (13)

In Equation (13), N denotes the total number of words in the corpus

used, while freq(c) is the number of occurrences of concept c in the

corpus.

The Resnik (Resnik, 1995) similarity measure is determined as

the IC of the lowest common subsumer of concepts c1 and c2.

SimResnikðc1; c2Þ ¼ ICðLCSðc1; c2ÞÞ (14)

The Lin (Lin, 1998) similarity between concepts c1 and c2 is calcu-

lated as twice the IC of the lowest common subsumer of the con-

cepts over the sum of ICs of c1 and c2.

SimLinðc1; c2Þ ¼
2 � ICðLCSðc1; c2ÞÞ

ICðc1Þ þ ICðc2Þ
(15)

Jiang and Conrath (JCN) (Jiang and Conrath, 1997) measures the se-

mantic similarity between concepts c1 and c2 as in Equation (16),

which uses the ICs of the concepts and their lowest common subsumer.

SimJCNðc1; c2Þ ¼
1

ICðc1Þ þ ICðc2Þ � 2 � ICðLCSðc1; c2ÞÞ
(16)

2.4.4 Sentence-level ontology-based methods

In this section, we introduce our sentence-level ontology-based

methods namely WordNet-based Similarity Method (WBSM),

UMLS-based Similarity Method (UBSM) and combined ontology

method (COM). The general design of these approaches is shown in

Fig. 3. Sentence-level similarity module

Fig. 2. Hierarchical relationships among a small subset of proteins and

antibiotics
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Figure 3. There are two main tasks in the general flow; calculation

of word-level similarities (Section 2.4.3), adapting word-level simi-

larities to obtain sentence-level score (sentence-level similarity

method). Although the proposed three methods use the same algo-

rithms for these tasks, they differ from each other by using different

ontologies for word-level similarity calculation.

Inspired by the study of Li et al. (2006), we developed a

sentence-level similarity method, which is an algorithm to adapt

word-level similarities to sentence-level. The algorithm is explained

below using a walk-through example.

A walk-through example

• S1: Necroptosis requires the activity of RIP1 and RIP3.
• S2: Necroptosis could be induced via modulating RIP1 and

RIP3.

Given two sentences S1 and S2, dictionary D is constructed,

which consists of the union of the unique words from the two sen-

tence. D for the example sentences S1 and S2 is:

D: {Necroptosis, requires, the, activity, of, RIP1, and, RIP3,

could, be, induced, via, modulating}

D is used to build the semantic vectors D1 and D2 for S1 and S2,

respectively, which have the same dimension as the dictionary. For

instance, in order to build a semantic vector for S1, each word in the

dictionary is compared with every word in S1 and the highest simi-

larity score is assigned for the corresponding dimension index in the

semantic vector. As shown in Figure 4, D is obtained by using all dis-

tinct words in S1 and S2. For determining the score of the 10th di-

mension of the semantic vector D1, the ontology-based word-level

similarity scores between each word in S1 and the 10th dimension of

D are computed. Since the highest score is 0.33 among all similarity

scores, the score of the 10th index of D1 is set as 0.33. This process

is repeated for the remaining indexes of the semantic vector D1.

Then, the same algorithm is applied to create the semantic vector

D2. Finally, the cosine similarity between D1 and D2 gives the se-

mantic similarity score between the two sentences S1 and S2.

WBSM. WBSM takes two sentences to be compared as inputs

and returns the semantic similarity score by exploiting WordNet.

We used the WS4J library (https://github.com/Sciss/ws4j) for calcu-

lating the similarities between words by utilizing the WordNet

ontology. The algorithms described in Section 2.4.3 were evaluated

for WBSM. These measures were calculated using the Is-A relations

in the WordNet ontology. Then, the sentence-level similarity

method was used to combine word-level similarity scores to sen-

tence-level.

UBSM. Differently from WBSM, UBSM uses METAMAP

(Aronson, 2001), which is a tool for extracting medical concepts

from text rather than assuming each word as a concept. This ap-

proach is more reliable, since concepts can consist of more than one

word. The METAMAP tool is run on both sentences S1 and S2 and

a dictionary is constructed from the unique mapped concepts/

phrases in the two sentences. Therefore, the word-level similarity

method utilizing UMLS takes concepts mapped by METAMAP as

inputs. The rest of the methodology for constructing the sentence-

level vectors is the same as WBSM.

Umls:Similarity (McInnes et al., 2009) web interface was used to

calculate the similarity of the concepts, which were mapped by

METAMAP. The scope of Umls:Similarity is limited to the OMIM

(Online Mendelian Inheritance in Man) and MeSH (Medical Subject

Headings) ontologies, which are subsets of the UMLS ontology.

Parent/Child (PAR/CHD) relationship was used as the relationship

parameter in the UMLS:Similarity web interface. The algorithms

described in Section 2.4.3 were evaluated for UBSM.

COM. The major motivation behind the COM was to benefit

from both biomedical domain and general domain ontologies, since

sentences in biomedical text consist of both general terms and

biomedical-specific terms. To utilize the knowledge from both

UMLS and WordNet ontologies, we propose a new approach in this

section. Our method performs combination of different approaches

on sentence-level. As shown in Figure 5, the sentence-level COM

takes the similarity scores of WBSM and UBSM for a sentence pair,

then combines these scores by using Equation 17, where k represents

the weight parameter. When k is set to 0.5, equal weight is given to

the similarity scores obtained from the WordNet and UMLS ontolo-

gies. When k is set to a value >0.5, higher weight is given to the

Fig. 4. Illustration of the proposed sentence-level ontology-based similarity algorithm which constructs semantic vectors of sentences

Fig. 5. Sentence-level COM

i54 G.So�gancıo�glu et al.

Deleted Text: Word-level Similarity Method (
Deleted Text: )
Deleted Text: <bold>WordNet-based Similarity Method (</bold>
Deleted Text: <bold>):</bold>
https://github.com/Sciss/ws4j
Deleted Text: <bold>UMLS-based Similarity Method (</bold>
Deleted Text: <bold>):</bold>
Deleted Text: <bold>Combined Ontology Method (</bold>
Deleted Text: <bold>)</bold>
Deleted Text: <bold>:</bold>
Deleted Text: combined ontology method
Deleted Text: combined ontology method
Deleted Text: greater than 


similarity score obtained from WordNet, and when it is set to a

value smaller than 0.5, higher weight is given to the similarity score

obtained from UMLS.

combinedscore ¼ ScoreWordNet:kþ ScoreUMLS:ð1� kÞ (17)

If a word does not occur in either of the ontologies (UMLS

and/or WordNet), the similarity score between the word and any

other word with respect to the corresponding ontology is considered

to be 0.

2.5 Supervised combination of similarity measures
We combined our unsupervised semantic similarity measures within

a supervised method. We used the similarity scores computed by the

unsupervised COM, Paragraph Vector and Qgram similarity as fea-

tures in a supervised regression model. Linear Regression imple-

mented in the Weka library (Hall et al., 2009) was used as the

supervised model. A linear regression model can be expressed as in

Equation (18) (Alpaydin, 2014; Buckley and James, 1979; Raftery

et al., 1997),

y ¼
Xk

j¼1
bjxj þ b0 (18)

where y is the dependent variable, each xj is an input variable, and k

equals to the number of predictors (input variables). bjs correspond

to the parameters of the linear regression model, which are esti-

mated from the training data. Therefore, in our supervised similarity

model, the predicted sentence similarity score (y) is calculated

through the similarity scores (xj) that were obtained by the unsuper-

vised methods.

The supervised system exploiting the results of the unsupervised

similarity computation methods is illustrated in Figure 6. The pre-pro-

cessed sentences are given to each unsupervised system as inputs. Then,

the output score of each system, which is the semantic similarity score

for the given pair, is used as a feature in our supervised system.

3 Experimental results

The proposed sentence-level semantic similarity estimation algo-

rithms are evaluated using the manually annotated dataset described

in Section 2.1. For each sentence pair in the dataset, the mean of the

scores assigned by the five human annotators was taken as the gold

standard. The Pearson correlation (Pearson, 1895) between the gold

standard scores and the scores estimated by the algorithms was used

as the evaluation metric. The strength of correlation can be assessed

by the general guideline proposed by Evans (1996) as follows:

• very strong: 0.80–1.00
• strong: 0.60–0.79
• moderate: 0.40–0.59
• weak: 0.20–0.39
• very weak: 0.00–0.19

Since there is no previous study on sentence semantic similarity

computation developed specifically for the biomedical domain, we

considered the domain-independent state-of-the-art approaches

ADW (Pilehvar et al., 2013; Pilehvar and Navigli, 2015) and

SEMILAR (Rus et al., 2013) introduced in Section 1 as our baseline

models. According to the results shown in Table 3, both ADW and

SEMILAR obtain moderate correlation based on Evans’ definition

(Evans, 1996). The poor results of these generic-domain similarity

estimation systems demonstrate the need for new approaches for

this domain-specific research field.

We evaluated several string similarity measures on our dataset.

We experimented with performing preprocessing as described in

Section 2.2 and without performing preprocessing for all string-

based methods as well as for the other evaluated methods. Pre-pro-

cessing improved the performances of all methods. Therefore, in

Table 3 we report the results when preprocessing was performed.

Our experiments showed that the application of preprocessing meth-

ods contributed more to the performance of the string similarity

measures compared with the other methods. The range of increase

in Pearson correlation varies between 10 and 31% for the string

similarity measures. This result is expected, as string-based

approaches are highly sensitive to small changes, since they do not

take into consideration the semantic information of text.

Fig. 6. Supervised combination of similarity measures

Table 3 Experimental results of the presented approaches

Methods Pearson correlation

Domain-independent systems

ADW 0.586

SEMILAR 0.419

String similarity measures

Qgram 0.754

Jaccard 0.710

Block 0.752

Levenshtein 0.592

Overlap coefficient 0.695

Word Embeddings based Similarity

Paragraph Vector 0.787

Ontology-based similarity

WBSM-Path 0.644

WBSM-Resnik 0.234

WBSM-Lin 0.495

WBSM-WP 0.354

WBSM-JCN 0.623

WBSM-LCH 0.287

UBSM-Path 0.651

UBSM-Resnik 0.473

UBSM-Lin 0.645

UBSM-WP 0.576

UBSM-JCN 0.624

UBSM-LCH 0.333

COM ([k ¼ 0.5]) 0.710

Supervised semantic similarity system

Linear regression 0.836
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Paragraph vector is an unsupervised approach, which we used

with a large unlabeled corpus of biomedical text to learn semantic

information. The strong correlation result obtained by the

Paragraph Vector method shows that it is a promising method for

representing sentences as vectors while capturing semantics.

For both WBSM and UBSM, using the path algorithm as the

word-level similarity approach yielded the best performance with

Pearson correlation scores of 0.644 and 0.651, respectively.

Therefore, for the combined ontology approach, we used the path

algorithm both for computing the WordNet- and the UMLS-based

scores. Then, the weighted sum of the similarity scores obtained

from the WordNet- and UMLS-based methods was assigned as the

final similarity score. The best combination was achieved when the

weight parameter lambda was set to 0.5 (k ¼ 0.5) in Equation (17).

The comparison between the COM and the methods that use a sin-

gle ontology show that the efficient unification of the available bio-

medical information coming from a biomedical ontology with

general domain information increased the overall performance. The

results of the combined ontology approach justify our hypothesis,

which was based on exploiting both general-domain and domain-

specific ontologies for domain-specific text. The significant increase

in the correlation performance of the combined model, compared

with the individual correlation scores, indicate that the combination

is useful.

The evaluation of the supervised model was performed using

stratified 10-fold cross-validation over all the sentence pairs, due to

the small size of the dataset. The final result for the supervised seman-

tic similarity system was obtained by averaging the individual correl-

ation results of each fold. As the learning model, Linear Regression

implemented in the Weka library (Hall et al., 2009) was employed.

The experimental results indicate that the supervised combin-

ation of the similarity scores computed by the different methods out-

performs the individual performance of each unsupervised method.

This shows that these unsupervised system scores complement each

other. Although each unsupervised method obtained strong associ-

ation with the gold standard, combination of these approaches by a

supervised algorithm led to very strong correlation. The Supervised

Semantic Similarity System exploiting the scores of the unsupervised

systems as features produced the best correlation of 83.6% among

the others.

4 Discussion

In this study, we presented and compared several approaches to

measure semantic sentence similarity in the biomedical domain. We

demonstrated the need for adapted or new approaches for domain-

specific semantic sentence-level similarity, since our results showed

that state-of-the-art domain-independent semantic similarity meas-

ures are inadequate when applied to biomedical text. Another im-

portant contribution of this research is that we provide a strong

baseline as well as a hand-crafted benchmark dataset for further

studies due to attempting the first methods in this unexplored re-

search area of biomedical sentence-level semantic similarity

computation.

Thanks to the ontologies that enable the computation of seman-

tic distances between concepts, ontology-based measures have been

used in our semantic similarity computation study. Since the sen-

tences in our dataset are selected from biomedical articles, we uti-

lized WordNet as the general domain ontology and UMLS as the

biomedical domain-specific ontology. The evaluations indicated that

the COM, which utilizes both the WordNet and UMLS ontologies,

accomplished better results on estimating the similarity among bio-

medical sentences compared with the methods where a single ontol-

ogy was utilized. This outcome is reasonable, since sentences in the

biomedical domain comprise both biomedical and general concepts.

Thus, the knowledge extracted from both WordNet and UMLS

complements each other and contributes to the overall performance

of the system.

Besides UMLS, there are various biomedical ontologies special-

ized on different subtopics in the biomedical domain such as the

ChEBI ontology focusing on chemical entities (Degtyarenko et al.,

2008), the Interaction Network Ontology specializing in the domain

of molecular interactions ( €Ozgür et al., 2016), and the Human

Phenotype Ontology providing controlled vocabulary for pheno-

typic features related to human diseases (Köhler et al., 2017).

Integrating the semantic similarity scores computed by using differ-

ent biomedical ontologies might contribute to the performance of

the COM. As future work, we aim to make use of the knowledge ob-

tained from different biomedical ontologies, in order to enhance our

system to respond to a wider range of concepts and relationships.

Our results revealed that the unsupervised Paragraph Vector ap-

proach based on a biomedical corpus to learn the distributional vec-

tor representations of sentences is a promising method for

biomedical semantic similarity computation.

Finally, we presented a supervised semantic similarity estimation

system based on a linear regression model, which exploits high-level

features. The high-level features consist of the similarity scores of

the best performing unsupervised systems, namely Qgram,

Paragraph Vector and the COM. Combining the unsupervised meth-

ods with the help of a supervised learning model increased the over-

all performance of the system. Experiments showed that using

different approaches to estimate the similarity contributes to the

overall performance of the system.

The manually annotated dataset and the developed semantic

similarity estimation systems are publicly available. We believe that

our biomedical-domain specific semantic sentence-level similarity

measures can be used in various applications of biomedical NLP

such as automatic summarization, question answering, text categor-

ization and text retrieval.

The upper bound in this study can be considered as the perform-

ance of a typical human, which is 90.2% according to the correl-

ations between the human annotators. Although our best

performing system achieved high correlation with human annota-

tions (83.6%), there is still room for improvement for biomedical

domain-specific semantic sentence similarity estimation.
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