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Using only increasing contrast enhancement as a marker of malignant transformation (MT)
in gliomas has low specificity and may affect interpretation of clinical outcomes. Therefore
we developed a mathematical model to predict MT of low-grade gliomas (LGGs) by
considering areas of reduced apparent diffusion coefficient (ADC) with increased contrast
enhancement. Patients with contrast-enhancing LGGs who had contemporaneous ADC
and histopathology were retrospectively analyzed. Multiple clinical factors and imaging
factors (contrast-enhancement size, whole-tumor size, and ADC) were assessed for
association with MT. Patients were split into training and validation groups for the
development of a predictive model using logistic regression which was assessed with
receiver operating characteristic analysis. Among 132 patients, (median age 46.5 years),
106 patients (64 MT) were assigned to the training group and 26 (20 MT) to the validation
group. The predictive model comprised age (P = 0.110), radiotherapy (P = 0.168),
contrast-enhancement size (P = 0.015), and ADC (P < 0.001). The predictive model
(area-under-the-curve [AUC] 0.87) outperformed ADC (AUC 0.85) and contrast-
enhancement size (AUC 0.67). The model had an accuracy of 84% for the training
group and 85% respectively for the validation group. Our model incorporating ADC and
contrast-enhancement size predicted MT in contrast-enhancing LGGs.

Keywords: malignant transformation, contrast enhancement, apparent diffusion coefficient, model prediction and
validation, low-grade gliomas
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INTRODUCTION

Malignant transformation (MT) of low-grade gliomas (LGGs) is the
histopathologic progression of grade II World Health Organization
(WHO) tumors to WHO grade III or IV tumors. LGGs account for
14.6% of gliomas in population-based studies (1) and may remain
stable clinically and by imaging for years after initial diagnosis and
treatment. MRI features suggesting disease progression include
enlargement of non-enhancing areas and increasing enhancement
on post-gadoliniumT1-weighted images. However, tumors showing
these featuresmay remainWHOgrade II orundergoMTandcorrect
diagnosis requires histopathologic confirmation. Because of potential
risks and costs associated with histopathologic confirmation,
increased contrast enhancement is frequently used as a surrogate
marker forMT in clinical practice, research studies, and clinical trials
ofLGG. In thewidelyusedResponseAssessment inNeuro-Oncology
criteria (2), an increase of enhancement is regarded as MT.

In a recent study, the specificity of using increased contrast
enhancement to detect MT was 57%, despite a sensitivity of 92%
(3). Among LGGs with increasing contrast enhancement, the
percentage of tumors that remained grade II ranges from 18-37%
(3, 4). Also, increasing contrast enhancement may be associated
with treatment-related changes (5, 6). This limited accuracy of
using increasing contrast enhancement to diagnose MT was
recognized in a consensus article recently published by the
Society for Neuro-Oncology and the European Association of
Neuro-Oncology (7). Therefore, using increasing contrast
enhancement as a marker of MT may result in overtreatment
of patients whose tumors remain low-grade, errors in the results
of research studies, and misinterpretation of clinical benefits of
new therapies. Because of the issues associated with increasing
contrast enhancement, it is crucial to search for imaging markers
that can accurately diagnose MT.

Diffusion-weighted imaging (DWI) identifies high-grade
gliomas by their low apparent diffusion coefficient (ADC) values
(8, 9). In a study investigating multiple diffusion tensor imaging
parameters, ADC showed the highest diagnostic performance in
differentiating between LGGs and high-grade gliomas (9). A recent
study demonstrated the utility of DWI in predicting MT of LGGs
(10). Since ADC values can be heterogeneous in previously treated
LGGs (11), the choice of regions for ADCmeasurements affects its
reproducibility and accuracy in diagnosing MT. To the best of our
knowledge, the role of DWI in diagnosing MT has not been
investigated among LGGs with increased contrast enhancement.
In our study which used histopathology as the gold standard, we
aimed to develop a regressionmodel based on clinical and imaging
factors to predict MT in a group of patients with LGGs with
increased contrast enhancement on follow-up MRI studies.
MATERIALS AND METHODS

Patients
This retrospective study was performed after institutional review
board approval. The need to obtain patient informed consent was
waived by our review board (202100387B0). Patients were selected
from our brain tumor database if theymet the following criteria: 1)
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prior pathologic diagnosis of LGG and follow-up MRI studies
performed between 2004 and 2020 showing increasing contrast
enhancement; 2) having undergone surgery due to increased
contrast enhancement with the resected tumor being grade II,
III, or IV gliomas; 3) availability of DWI, and 4) removal of tumor
regions with increased contrast enhancement confirmed by
follow-up MRI. Increasing contrast enhancement was defined as
new enhancement in previously non-enhancing regions, new
separate lesions with contrast enhancement, or at least a 25%
increase in the size of enhancement in previously enhancing
regions at baseline. Baseline was the first follow-up MRI study
after surgery. Increased contrast enhancement was confirmed by
neuroradiologists who compared the baseline MRI and the most
recent MRI before the next surgery. Patients with multiple
surgeries for separate events of increasing contrast enhancement
were included until they experienced MT. Each instance of
increasing contrast enhancement was treated independently.
Histopathologic diagnosis was made by a board-certified
neuropathologist according to the 2000 WHO classification of
CNS tumors before 2007, the 2007 WHO classification from 2007
to 2016, and the 2016WHO classification after 2016. We excluded
patients younger than 18 years of age at initial diagnosis, those
with a diagnosis of radiation necrosis, and those in whom DWI
showed susceptibility artifacts that hindered interpretation.

Between 2004 and 2020, 306 patients with LGGs were regularly
followedup inour institutionafter initial diagnosis and treatment.On
follow-up MRI studies, 132 patients had 149 instances of increasing
contrast enhancement leading to surgery. Seven patients with 9
instances of radiation necrosis were excluded. Eight instances of
increasing contrast enhancement were excluded due to the lack of
DWI studies. Removal of brain regions with increasing contrast
enhancement was confirmed in 44 instances with intraoperative
MRI, in 34 with postoperativeMRI performed within 1 week, and in
46with postoperativeMRI performed between 2-12weeks.Ourfinal
study population consisted of 118 patients with 132 MRI studies
(48grade II, 40 grade III, and44grade IV).Figure1 shows thepatient
selection process.

Clinical and Imaging Information
Patient medical records were retrospectively reviewed to collect
information including sex, age, and Karnofsky Performance Scale
score (KPS) at the time of increased contrast enhancement,
histologic subtypes (diffuse astrocytoma, oligoastrocytoma, or
oligodendroglioma), isocitrate dehydrogenase 1 (IDH1) mutation
status (12), disease duration (time interval between first
histopathologic diagnosis of LGG and subsequent increased
contrast enhancement), adjuvant therapy received before
increased contrast enhancement, post-radiation therapy duration
(time interval between the end of radiation therapy and subsequent
increasedcontrast enhancement), and tumorgradesassociatedwith
increased contrast enhancement. The first follow-up MRI studies
after the last operation were reviewed for the presence of baseline
residual tumor.

MRI Parameters
MRI examinations were performed at 1.5 T (N = 14) or 3.0 T (N =
118). All examinations included a T2-weighted sequence, DWI, and
September 2021 | Volume 11 | Article 744827
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T1-weighted sequences acquired before and after administration of
0.1 mmol/kg body weight gadopentetate dimeglumine (Magnevist;
Schering, Berlin, Germany). MRI parameters are provided in
Table 1. Isotropic DWI and ADC maps were generated using
software provided by the manufacturers.

Measurements of Tumor Size and ADC
All imaging data were transferred to an independent workstation
and processed using nordicICE (nordic Image Control and
Evaluation Version 2, Nordic Imaging Lab, Bergen, Norway). Co-
registration of T2-weighted and post-contrast T1-weighted images
to ADC maps were based on a 3D non-rigid transformation and
mutual information. Adequacy of registrationwas visually assessed
and manually adjusted. Blinded to the final pathologic results, 2
board-certifiedneuroradiologistswith20and17yearsof experience
independently measured contrast enhancement size, whole tumor
size, and tumorADConallMRI studies. Post-contrast T1-weighted
Frontiers in Oncology | www.frontiersin.org 3
images in axial, coronal, and sagittal planes were used to localize
increased contrast-enhancing tumor portions. These tumor
portions were carefully chosen to include as much of the
enhancing regions as possible and avoid the inclusion of necrosis,
cysts, hemorrhage, edema, calcifications, and normal-appearing
brain. Size of the contrast-enhancing regions was the product of the
largest diameterof the increased contrast-enhancingportionand its
perpendicular length on a single post-contrast transverse image.
The size of the whole tumor, which included both enhancing and
non-enhancing components, was measured on transverse T2-
weighted images. If multiple lesions were present, the largest 3
were selected and their products were summed.

ADC was measured by placing a region of interest (ROI) of 30
mm2 or larger on the tumor portion with increased contrast
enhancement (Figure 2). The ROI was drawn to cover the largest
axial tumor cross-section, after excluding necrosis, macroscopic
hemorrhages, and calcifications.
FIGURE 1 | Flowchart of patient selection process. DWI, diffusion-weighted imaging.
September 2021 | Volume 11 | Article 744827
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Morphologic Assessment
Blinded tofinal pathology results, 3 board-certified neuroradiologists
with 6, 17, and 20 years of experience independently assessed the
contrast enhancementpatterns.Contrast enhancementpatternswere
categorized into solid (>70% area of the whole tumor on transverse
image), scattered, or rim enhancing.

Statistical Analysis
Intra-class correlation coefficient (ICC) analysis, with a two-way
random-effects model, was used to assess agreement between
observers for measurements of ADC, whole tumor size, and
contrast enhancement size. For each ROI of these measurements,
the mean of the observers’ measurements was adopted as the
final value. Fleiss’s kappa testing was used to evaluate observer
agreement for contrast enhancement patterns and the majority’s
opinion was designated as the final pattern.

Tovalidate ourmodel for thepredictionofMTinLGGs, patients
were split into trainingandvalidation groups.According to the time
ofhistopathologicdiagnosis, instancesdiagnosedbetween2004 and
2018 were included in the training group and those diagnosed
between 2018 and 2020 in the validation group.

Data of the training group were used to develop the study
model. Univariate logistic regression was applied to test if the
following variables could predict MT: sex, age, KPS, histologic
subtype, IDH1 mutation, disease duration, presence of baseline
residual tumor, radiotherapy (RT), post-RT duration,
chemotherapy, whole tumor size, contrast enhancement size,
contrast enhancement pattern, and ADC. Selected variables with
P-values < 0.10 by univariate analysis were subjected to
multivariate analysis using logistic regression with a backward
Frontiers in Oncology | www.frontiersin.org 4
selection procedure. Starting from the highest P-value, a backward
elimination process by using the Wald test was applied to discard
variables that did not contribute significantly to the prediction
concluding with the most parsimonious model to identify MT
(13). Odds ratios and 95% CIs were calculated to demonstrate the
relative risk of each significant factor for MT. Using receiver
operating characteristic curve analysis, areas under the curve and
cutoff values of statistically significant factors and regression
models were determined. Cutoff values with the highest
sensitivity and lowest false-positive rates were chosen to
calculate sensitivity, specificity, and accuracy of each significant
factor and model. A commercially available statistical software
package (SPSS 23, IBM, Armonk, NY) was used for analysis, and
P-values < 0.05 were considered to indicate significance.

By inputting the data of the validation group into the study
model formula developed by multivariable regression, the MT
probabilities for each instance of the validation group were
obtained. Using a cut-off probability of 0.5, these MT
probabilities were tabulated to calculate the respective sensitivity,
specificity,PPV,andNPVfor thisgroup tovalidate the studymodel.

To further validate the study model developed using
multivariate regression, we performed classification and
regression trees method (CART) with k-fold cross validation
using the ‘Tree’ command in the SPSS 23 software package (14,
15). All patients were randomly divided into a training set (80%)
and a validation set (20%). Using data of the training set, the CART
was applied to develop amodel withMT as the dependent variable.
The independent variables were the parameters included in the
most parsimonious model generated using multivariate regression.
Five-fold cross validation was performed to validate the model
TABLE 1 | MRI parameters.

Field
strength

Vendor Model Patients Sequence TR
(ms)

TE
(ms)

TI
(ms)

In-plane resolution
(mm2)

Slice thickness
(mm)

Slice gap
(mm)

3 T Siemens Magnetom Trio 87
T2W 4000 90 0.43 × 0.43 4 0

Post-contrast
MPRAGE

2000 2.6 900 1.0 × 1.0 1 0

DWI 5300 93 1.15 × 1.15 4 0
3 T Philips Ingenia 24

T2W 4500 100 0.68 × 0.68 4 1
Post-contrast T1TFE 8 3.5 950 1.0 × 1.0 1 0

DWI 4000 60 1.78 × 1.78 4 1
3 T GE Discovery

MR750
7

T2W 5400 107 0.43 × 0.43 4 1
Post-contrast

BRAVO
8.2 3.2 450 1 × 1 1 0

DWI 6000 65 0.86 × 0.86 4 1
1.5 T Philips Intera 6

T2W 4000 90 0.41 × 0.41 5 1.5
Post-contrast T1W 420 11 0.41 x 0.41 5 1.5

DWI 3200 60 0.82 × 0.82 5 1.5
1.5 T GE Optima MR450 8

T2W 5300 100 0.45 × 0.45 5 2
Post-contrast

BRAVO
7.8 3.2 450 1 × 1 1 0

DWI 6000 74 0.86 × 0.86 5 2
Septembe
r 2021 | Volume 11 |
DWI performed using 3 diffusion gradients with b values 0 and b = 1000 s/mm2. T2W, T2-weighted; T1W, T1-weighted; DWI, diffusion-weighted imaging; TR, repetition time; TE, echo
time; TI, inversion time; MPRAGE, magnetization-prepared rapid acquisition with gradient echo; TFE, turbo field echo; BRAVO, brain volume imaging.
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based on the selected parameters. This model was applied to the
validation set to assess the performance of the prediction.
RESULTS

Patient Demographics
Table 2 is an overview of clinical and imaging information of 132
instances. One hundred and six instances (median age, 46 years;
interquartile range, 27–65 years; 68 male patients) were included
Frontiers in Oncology | www.frontiersin.org 5
in the training group and 26 instances were included in the
validation group.

Interobserver Agreement
There were excellent interobserver agreements in themeasurement
of contrast enhancement size (ICC = 0.958, 95% CI = 0.941–0.970,
P < 0.001), whole tumor size (ICC = 0.935, 95% CI = 0.903–0.955,
P<0.001) and tumorADC(ICC=0.924, 95%CI=0.891–0.947,P<
0.001). Interobserver agreement among the 3 readers was
substantial-to-perfect for categorization of contrast enhancement
FIGURE 2 | Images in a 40-year-old man with low-grade glioma with increased contrast enhancement but preserved grade II histology. (A) Axial apparent diffusion
coefficient, and (B) Axial post-contrast T1-weighted images show region-of-interest placement in the contrast-enhancing solid portion of the right frontal tumor.
Images in a 58-year-old man with low-grade glioma with increased contrast enhancement and malignant transformation. (C) Axial apparent diffusion coefficient, and
(D) Axial post-contrast T1-weighted images show region-of-interest placement in the contrast-enhancing solid portion of the left frontal tumor.
September 2021 | Volume 11 | Article 744827
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pattern (Fleiss’ kappa coefficient = 0.806, 95% CI = 0.801–0.810,
P < 0.001).

Study Model Development
Table 3 illustrates the results of univariate analysis in which
previous radiotherapy (P = 0.034), larger whole tumor size (P =
0.033), larger contrast enhancement size (P = 0.006), and lower
ADC (P < 0.001) were associated with MT (Figure 3). On ROC
analysis, the discriminative power of contrast enhancement size
measured with AUC was 0.67 (95% CI: 0.57, 0.78). With 3.25
cm2 as the cutoff value, contrast enhancement size predicted MT
with a sensitivity of 48/64 (75%), specificity of 22/42 (52%), and
accuracy of 70/106 (66%) (Figure 4). The discriminative power
of ADC measured with AUC was 0.85 (95% CI: 0.79, 0.93). With
the cutoff value of 968.07 ×10-6 mm2/seconds, using ADC
predicted MT with a sensitivity of 55/64 (86%), specificity of
28/42 (67%), and accuracy of 83/106 (78%) (Figure 4).

Using multivariate logistic regression analysis with a
backward selection procedure, the most parsimonious model
for predicting MT was developed and consisted of age in years
(P = 0.110), radiotherapy (P = 0.168), contrast enhancement size
in cm2 (P = 0.015), and ADC in mm2/s (P < 0.001). The model
Frontiers in Oncology | www.frontiersin.org 6
formula was logit (probability) = 8.152 - 0.038*Age
-0.853*Radiotherapy + 0.081*Contrast enhancement size -
0.006*ADC. On ROC analysis, the AUC of this model was 0.87
(95% CI: 0.81, 0.94) (Figure 4). With 0.5 as the probability cutoff
value, the sensitivity, specificity, and accuracy of this model in
diagnosing MT were 56/64 (88%), 33/42 (79%), and 89/106
(84%), respectively (Table 4).

Study Model Validation
By inputting the data of the validation group (26 instances) into
the study model formula, the model correctly classified MT in 22
of 26 instances (85%), with a sensitivity of 17/20 (85%) and
specificity of 5/6 (83%) (Table 4).

Using the CART with a 5-fold cross validation and
incorporating age, radiotherapy, contrast enhancement size,
and ADC as the independent variables, the model generated
with the training set (106 instances) correctly classified MT in 91
of 106 instances (86%), with a sensitivity of 58/66 (88%) and
specificity of 33/40 (83%) (Table 4). By applying this model to
the validation set (26 instances), MT was correctly classified in 23
of 26 instances (88%), with a sensitivity of 16/18 (89%) and
specificity of 7/8 (88%) (Table 4).
TABLE 2 | Clinical and imaging data of 132 instances with low-grade gliomas demonstrating increased contrast enhancement.

Clinical and Imaging Information Training Group (N =106) Validation Group (N = 26) All Instances (N = 132)

Sex
Female 38 (55.9%) 8 (30.8%) 46 (34.8%)
Male 68 (64.2%) 18 (69.2%) 86 (65.2%)

Age range (year) 48 ± 12* 51, 23# 47, 19#

Karnofsky performance status 90, 10# 88.2 ± 9.1* 90, 10#

Histologic subtype
Diffuse astrocytoma 32 (30.2%) 11 (42.3%) 43 (32.6%)
Oligoastrocytoma 30 (28.3%) 5 (19.2%) 35 (26.5%)
Oligodendroglioma 44 (41.5%) 10 (38.5%) 54 (40.9%)

Isocitrate dehydrogenase 1 mutation
Wild-type 14 (13.2%) 4 (15.4%) 18 (13.6%)
Mutant 66 (62.3%) 20 (76.9%) 86 (65.2%)
Not available 26 (24.5%) 2 (7.7%) 28 (21.2%)

Baseline residual tumor
Yes 80 (75.5%) 14 (53.8%) 94 (71.2%)
No 26 (24.5%) 12 (46.2%) 38 (28.8%)

Disease duration (year) 4.6, 6# 4.8, 6.3# 4.7, 5.9#

Adjuvant therapy
Radiotherapy 80 (56.3%) 22 (100%) 102 (61.4%)
Carmustine implant 49 (34.5%) 0 49 (29.5%)
Temozolomide 13 (9.2%) 0 15 (9.0%)

Post- Radiotherapy duration (month) 42.8, 68.4# 56.7 ± 46.1* 42.8, 60.1#

Whole tumor size (cm2) 8, 14.6# 9.8, 18.4# 9, 14.3#

Contrast enhancement size (cm2) 5, 13.5# 10.9 ± 12.8* 5, 13.3#

Contrast enhancement pattern
Solid 32 (30.2%) 7 (26.9%) 39 (29.5%)
Scattered 44 (41.5%) 11 (42.3%) 55 (41.7%)
Rim 30 (28.3%) 8 (30.8%) 38 (28.8%)

Apparent Diffusion Coefficient (×10-6 mm2/s)
< 968 56 (52.8%) 16 (61.5%) 72 (54.5%)
> 968 50 (47.2%) 10 (38.5%) 60 (45.5%)

Tumor grade
II 42 (39.6%) 6 (23.1%) 48 (36.4%)
III 30 (28.3%) 10 (38.5%) 40 (30.3%)
IV 34 (32.1%) 10 (38.5%) 44 (33.3%)
September 2021 | Vo
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TABLE 3 | Univariate analysis of factors associated with malignant transformation in the study group (106 instances).

Factors Malignant Transformation P Value OR 95% CI

No Yes

Sex .70 1.18 0.52-2.64
Male 26 42
Female 16 22

Age (year) 50 ± 12 47 ± 13 .09 0.97 0.94-1.00
Karnofsky performance status 90, 12.6 90, 15 .52 1.01 0.98-1.05
Histologic subtype .29 NA NA
Diffuse astrocytoma 13 19
Oligoastrocytoma 15 15
Oligodendroglioma 14 30

Isocitrate dehydrogenase 1 mutation .38 NA NA
Yes 25 41
No 13 13

Disease duration (year) 4.2, 4.0 4.9, 4.2 .59 1.00 1.00-1.00
Baseline residual tumor .13 0.47 0.18-1.25
Yes 35 45
No 7 19

Radiotherapy .03 9.46 1.18-75.78
Yes 36 44
No 6 20

Post-radiotherapy duration (month) 42.5, 48.4 46, 49.1 .99 0.99 0.99-1.01
Chemotherapy .12 1.94 0.85-4.47
None 30 36
Carmustine implant 16 33
Temozolomide 1 12

Whole-tumor size (cm2) 3.8, 9.7 12.0, 9.1 .03 1.05 1.00-1.09
Contrast enhancement size (cm2) 2.0, 7.0 6.8, 10.2 .01 1.09 1.02-1.15
Contrast enhancement pattern (cm2) .64 0.89 0.53-1.48
Solid 11 21
Scattered 19 25
Rim 12 18

Apparent Diffusion coefficient (×10-6 mm2/s) 1137.0 ± 287.8 880.3 ± 257.2 < 0.001 0.99 0.99-1.00
Frontiers in Oncology | www.frontiersin.org
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Data are mean ± SD for age; data are median, interquartile range for Karnofsky performance status, disease duration, post-radiotherapy duration, whole-tumor size, contrast enhancement
size, and apparent diffusion coefficient.
A B

FIGURE 3 | Boxplots between contrast-enhanced tumor portions with malignant transformation and those that remained WHO grade II regarding (A) Apparent
diffusion coefficient, and (B) Contrast-enhancement size.
icle 744827
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DISCUSSION

Our results showthat ifweused increasing contrast enhancement as
an indication of MT in LGGs, one-third (48/132) of them would
remain grade II. Amultivariate logistic regressionmodel, including
age, presence of radiotherapy,ADCand contrast enhancement size,
was established to predict MT (accuracy: 84%, sensitivity: 86%,
specificity: 79%). This model was further validated by using data of
26 recently recruited instances (accuracy: 85%, sensitivity: 85%,
specificity: 83%). By inputting clinical information and common
MRI parameters into the model formula the probability ofMT was
predicted with high accuracy.

In high-grade gliomas, decreased ADC (16, 17) is associated with
increased tumor cellularity. MT is expected to show decreased ADC
due to increased cellularity. Previous reports using ADC for
differentiation among glioma grades show variable results.
Differentiation between LGGs and high-grade gliomas can be
achieved using DWI in which ADC values of LGGs are
significantly higher than those of high-grade tumors (18, 19). A
recent report revealed significant ADC differences between grades II
andIII, grades II and IV,andbetweengrades IIand III-IVgliomas (9).
Conversely, a study of non-enhancing gliomas found no significant
ADC differences between LGGs and high-grade gliomas (20),
Moreover, a considerable overlap of ADC values have been found
Frontiers in Oncology | www.frontiersin.org 8
betweengrade II andgrade IVgliomas (21) andbetweengrade III and
grade IV gliomas (19). These inconsistenciesmay be partly explained
by tissue heterogeneity in glial tumors (22). Because tumor grading
depends on the location of biopsies or surgical resection, such
heterogeneity may cause sampling errors and thus inaccurate
grading. In these previous studies, the location of contrast
enhancement was not cross-referenced to that of the ROI (8, 9, 18,
19).ADCvalueshavebeenused todetect earlyMTinLGG. Ina study
of 18patients undergoingMT(10), low intensity onDWIwasused to
target possibleMT. Similarly, because of heterogeneity of high-grade
glioma (23) and MT (11), portions of tumors with varying ADC
values may coexist making it difficult to locate those with the lowest
diffusion further reducing reproducibility.Of note is that in one series
contrast enhancement occurred simultaneously with restricted
diffusion in 12/18 (66%) patients and appeared about eight months
later in the remaining 6/18 (33%) patients with restricted diffusion
(10). Contrast enhancement was also found in the location of
restricted diffusion about 3 months later in 23/27 (85%) patients
with glioblastoma (10). These results suggest that contrast
enhancement is likely to appear within months after restricted
diffusion in high-grade gliomas. In our study, ADC was only
measured in tumor portions with increasing contrast
enhancement. Given that our model accurately diagnosed MT in a
subset of patientswith contrast-enhancing tumors, the combined use
A B

FIGURE 4 | Graphs show receiver operating characteristic curve plotted using calculated sensitivity against 1-specificity to assess test performance (area-under-the-
curve) in diagnosing malignant transformation. (A) Apparent diffusion coefficient and contrast-enhancement size, and (B) the multivariate logistic regression model.
TABLE 4 | Diagnostic accuracy of malignant transformation for study model and model validation.

Statistical Algorithm Sensitivity Specificity PPV NPV Accuracy

Multivariate regression Study model (106 instances) 0.88 0.79 0.86 0.80 0.84
Model validation (26 instances) 0.85 0.83 0.94 0.63 0.85

Classification and regression trees with 5-fold cross validation Study model (106 instances) 0.88 0.83 0.89 0.80 0.86
Model validation (26 instances) 0.89 0.88 0.94 0.78 0.88
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of ADC measurements and increasing contrast enhancement
improved the specificity by limiting the ADC measurement to the
contrast-enhancing tumor portions thus counteracting the effect of
tumor heterogeneity.

Recently, anMRS study diagnosingMT of LGGs with increased
contrast enhancement showed an accuracy of 89.6% (4). In that
study, using single-voxel proton MRS, the NAA/Cho ratio was the
only significant factor diagnostic of MT. Unlike that study, ours
used DWI and contrast-enhanced imaging which are included in
routine MRI protocols. Moreover, pre-localization of lesion as
needed for MRS was not required and imaging data can be
retrospectively processed to evaluate different tumor components,
for example, non-enhancing components. However, when the
results of imaging are uncertain using conventional MRI
techniques, MRS can be obtained to improve one’s interpretation.

In our study, the median time to MT was 5 years and thus
comparable to previously reported times to MT that range from 2.7
to 5.4 years (24, 25). However, in our study, none of the previously
identified factors (24–26), including old age, male sex, multiple tumor
locations, tumor size > 5 cm, adjuvant temozolomide, presence of
residual tumor, astrocytoma histology, and IDH wild-type, were
significant predictors of MT. This discrepancy may be attributed to
different criteria used forMT, suchas the fact that in our studyMTwas
confirmedwithhistologybut inothers, this confirmationwas imaging-
based insomepatients.Whilemostof thepreviouslymentionedfactors
were analyzed inour study,ADCwasnot assessedor analyzed in those
other studies. In our study, the combined effect of ADC and contrast
enhancement size onMTwas stronger than the effect of other factors
thus diluting the effect of those factors in the multivariate regression
model.More importantly, inother studies, the factorswere assessed for
associationswithMT, but in ours, various factorswere used to develop
a model to predict MT.

Deep learninghas recentlybecomeadominant formof supervised
machine learning method that uses a network architecture for a
specific application (27). For classification in neuroimaging, imaging
features are extracted and act as inputs to enter a neural network, like
the convolutional neural network (CNN), which outputs a
probability of the image belonging to each class. Deep learning
methods have been applied in multiple aspects of gliomas, using
MRI metrics to predict long-term outcome, treatment response like
pseudopregression, and tumor genetics including 1p19q codeletion,
O-6-methylguanine DNA-methyltransferase promoter, and IDH
mutations (28). A deep learning approach would be able to model
more complex and non-linear relationships between dependent and
independent variables. In contrast, the model presented in our study
is a simple linear relationship of limited clinicoradiologic features.
Ourmodelmaynot be as robust as onebuiltwithdeep learning in the
prediction of MT, but it allows assessments of the individual
associations between MT and clinicoradiologic parameters. This
information could be clinically important and is not available with
deep learningmethod. However, if a larger sample size was available,
applying a radiomic approach with deep learning to predict MT of
gliomas would be a focus of further investigation.

Only LGGs having increasing contrast enhancement were
included in our study. The exclusion of non-enhancing tumors
was a limitation of our study. Further study of MT in non-
Frontiers in Oncology | www.frontiersin.org 9
enhancing tumors is necessary and should be performed using an
alternative approach instead of manual ROI placement, such as
whole-tumorhistogramanalysis. Second, ADCmeasurementsmay
be affected by heterogeneity in MRI units and protocols.
Unfortunately, these heterogeneities are inevitable in a study of
patients imaged over 17 years although it has been reported that
variability ofADCvalues across platforms is small (29). Thirdly, the
use of 2-dimensional measurements was a limitation of our study.
A recent study comparing volumetric segmentation and
bidimensional products in the assessment of glioblastoma
progression revealed that using the bidimensional measurement
was approximately 30% less accurate and tended to underestimate
tumor progression (30). Lastly, the inclusion of patients from a
single institution may limit the generalizability of our findings,
which can be improved by performing a more comprehensive
multicenter study using differentMRI scanners andMRI protocols.

In conclusion, a model incorporating ADC and contrast
enhancement size was established to predict MT in low-grade
gliomas with increased contrast enhancement. Compared with
using contrast enhancement size alone, taking into consideration
ADC more accurately diagnoses MT of low-grade gliomas.
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