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Abstract: Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid
state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that
doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding
Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering
temperature by approximately 250 ˝C. Moreover, electrical impedance analyses show that adding
Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for
intermediate or even lower temperatures.
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1. Introduction

Because of its good high-temperature electrical conductivity, thermal stability, and chemical
stability, 8 mol% yttria-stabilized zirconia (8YSZ) ceramic material has been used as an oxygen ion
conductor in oxygen sensors [1–4] and solid oxide fuel cells [5–7]. However, the electrical conductivity
of this type of material at intermediate temperatures around 600 ˝C needs to be improved in order to
enhance the stability, sensitivity of electrochemical devices and lower the energy consumption [8–11].
In addition, during the production of 8YSZ, the sintering temperature reaches as high as about 1550 ˝C,
causing manufacturing difficulties. Therefore, it is desirable to reduce the sintering temperature of
8YSZ as well as increase its conductivity [1,12–14].

Using Bi2O3 as a sintering aid during sintering can effectively reduce the sintering temperature
of zirconia, as well as increase its density. Hirano et al. [15] reported that doping with 1 mol% Bi2O3

decreases the sintering temperature of scandia-stabilized zirconia ceramics by 300 ˝C, while allowing
its electrical conductivity at 1000 ˝C and 800 ˝C to reach 0.33 and 0.12 S/cm, respectively. Yeh et al. [12]
studied the effect of bismuth doping on YSZ sintering and they discovered that small amounts of
Bi2O3 were able to effectively reduce sintering temperature and promote ceramic densification. Besides
serving as a sintering aid, Bi2O3 is also a very good oxygen ion conductor, and adding Bi3+ to zirconia
can also produce oxygen vacancies. Bai et al. [16] studied the effect of Bi2O3 on the physical and
electrochemical properties of scandia-stabilized zirconia, and they found that the conductivity of
samples doped with 2 mol% Bi2O3 was also enhanced. Similar results were also discovered by
Raghvendra and Prabhakar Singh in Bi2O3 doped calcia-stabilized zirconia [9] and Sara et al. [17].
Winnubst et al. [18] studied the effects of varying amounts of Bi2O3 on the ionic conductivity of YSZ,
but in those studies it was found that the enhancing effect of Bi2O3 on the ionic conductivity of YSZ
was very limited. Verkerk et al. [19] discovered that due to the emergence of numerous monoclinic
phases, Bi2O3 has a negative influence on the electrical conductivity of YSZ, but they did not study the
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properties of Bi2O3 doped YSZ in a completely stable cubic phase [12]. Overall the effects which Bi2O3

can exert on the electrical conductivity of YSZ are not well understood.
In addition, some researchers [20,21] have studied the importance of cation disorder upon

aliovalent doping and its effects on the enhancement of ion positional disorder in oxides with fluorite
structures like YSZ. It has been previously reported that this positional disorder could result in higher
ionic conductivity in solid electrolyte materials. Therefore, we hoped that the addition of Bi2O3 might
also have a influence like that and be beneficial to the improment of the conductivity of YSZ.

This study investigates the influence of Bi2O3 on the polymorphic phasing and ionic conductivity
of YSZ via X-ray diffraction (XRD), electron diffraction, electron microscopy, dielectric spectroscopy,
etc. Then we report the effects of bismuth oxide doping on reducing zirconia sintering temperature,
increasing the density and conductivity.

2. Experimental Section

In this experiment, zirconia powder (99.9%, Aladdin Industrial Corporation, Shanghai, China)
was used as a reactant in the solid state reaction to prepare Bi2O3 doped YSZ. 8 mol% YSZ (8YSZ)
and 10 mol% YSZ (10YSZ) were each mixed with 2 mol% [17,22,23] Bi2O3 powder (99.9%, Aladdin
Industrial Corporation, Shanghai, China), adding ethanol as an abrasive, and ground in a planetary
ball mill for 10 h. The ground powder was then pressed into disks with a diameter of 10 mm and a
thickness of 2 mm via cold isostatic pressing. The disks were then sintered in air atmosphere for 2 h
at 1100, 1200, 1300, and 1400 ˝C, respectively. An 8YSZ ceramic disk was sintered at 1550 ˝C for 4 h as
a control.

The density of the ceramic disks was determined via the Archimedes method. Crystal structure
was studied via X-ray diffraction (X'Pert PRO, PANalytical, Almelo, the Netherlands). Microscopic
morphology was characterized with a scanning electron microscope (SEM, SU-70, Hitachi, Tokyo,
Japan). Samples for transmission electron microscopy (TEM) and spectroscopy were prepared via a
dual beam-focused ion beam (FIB, Quanta 3D FEG, FEI, Hillsboro, OR, USA) instrument. A G2 F20
transmission electron microscope (FEI Tecnai, Hillsboro, OR, USA) was used to perform TEM and
high angle annular dark field scanning transmission electron microscopy (HADDF-STEM) analysis on
Bi10YSZ samples sintered at 1300 ˝C. X-ray Energy Dispersive Spectroscopy (EDS) data was acquired
at STEM model. For electrodes, the sample disks were first painted with a thin and homogeneous
silver slurry lamella as big as the disk surface, and then sintered at 700 ˝C for 30 min to get bright and
smooth silver electrodes. The electrical properties of the samples were measured using a VersaSTAT
electrochemical workstation (Ametek, Bowen, PA, USA) at 50 ˝C intervals from 350 ˝C to 650 ˝C, with
the frequency range of 0.1 Hz–1 MHz and a voltage of 10 mV.

3. Results and Discussion

3.1. Structural Characterization

Figure 1 is the XRD diffraction pattern of the 2 mol% Bi2O3-doped 8YSZ (2Bi-8YSZ) samples
sintered at varying temperatures and 8YSZ sintered at 1550 ˝C. Diffraction shows that the primary
structure of the sample is cubic phase (c), with small amounts of the monoclinic phase (m). The
monoclinic phase exhibits low electrical conductivity and causes material instability due to the
polymorphic transitions, thereby making it an undesirable phase for zirconia as a solid electrolyte
material. The purpose of the stabilization with yttria is to reduce and eliminate the monoclinic phase
in zirconia. Table 1 shows the estimated weight percent of monoclinic phases in different samples
for reference. The weight percent of cubic phases is calculated by the internal standard method with
the values of RIR and the integrated intensity of the the strongest peak in both phases base on the
XRD data. As Figure 1 and Table 1 show, the quantity of monoclinic phase is gradually reduced as
the sintering temperature is increased. The 8YSZ sample was in complete cubic phase at the sintering
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temperature of 1550 ˝C, while the 8YSZ doped with 2 mol% Bi2O3 failed to produce a zirconia sample
with a complete cubic phase.
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2Bi-10YSZ4 1400 0 

Figure 2 is the XRD diffraction pattern of 2Bi-10YSZ sintered at various temperatures and 
10YSZ sintered at 1550 °C, and shows that once the sintering temperature exceeds 1300 °C, 
2Bi-10YSZ no longer contains the monoclinic ZrO2; these results were also verified via selected area 
electron diffraction analysis. 
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(d) 2Bi-10YSZ 1300 °C; (e) 2Bi-10YSZ 1400 °C. 

3.2. Microstructure 

Figure 1. XRD pattern: (a) 8YSZ 1550 ˝C; (b) 2Bi-8YSZ 1100 ˝C; (c) 2Bi-8YSZ 1200 ˝C; (d) 2Bi-8YSZ
1300 ˝C; (e) 2Bi-8YSZ 1400 ˝C.

Table 1. The weight percent of monoclinic phases of different samples.

Sample Sintering Temperature (˝C) Weight Percent of Monoclinic Phase (wt%)

8YSZ 1550 0
2Bi-8YSZ1 1100 33
2Bi-8YSZ2 1200 19
2Bi-8YSZ3 1300 17
2Bi-8YSZ4 1400 6
2Bi-10YSZ1 1100 20
2Bi-10YSZ2 1200 4
2Bi-10YSZ3 1300 0
2Bi-10YSZ4 1400 0

Figure 2 is the XRD diffraction pattern of 2Bi-10YSZ sintered at various temperatures and 10YSZ
sintered at 1550 ˝C, and shows that once the sintering temperature exceeds 1300 ˝C, 2Bi-10YSZ
no longer contains the monoclinic ZrO2; these results were also verified via selected area electron
diffraction analysis.
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3.2. Microstructure

Figure 3 shows scanning electron microscope images of 2Bi-8YSZ sintered at various temperatures.
The images indicate that the samples are composed of densely packed grains. Cavity defects decreased
with the increased sintering temperatures, and the average grain size increased from about 2.5 µm
to 13 µm as the sintering temperatures increased.
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Figure 3. Scanning electron microscope images of 2Bi-8YSZ at various temperatures: (a) 1100 ˝C;
(b) 1200 ˝C; (c) 1300 ˝C; (d) 1400 ˝C.

Figure 4 is a scanning electron micrograph of 2Bi-10YSZ sintered at various temperatures. The
image indicates that the 2Bi-10YZ sample has a more uniform morphology as well as fewer small
second phase grains. These results are consistent with the XRD analysis results, which all indicate
that more yttria (10 mol%) is needed in the system to stabilize zirconia and obtain a uniform, fully
stabilized cubic structure. This dense and void-free morphology suggest that adding low-melting
Bi2O3 can significantly improve material density and promote grain growth because of introducing
the liquid phase sintering effect [9,12,18]. The rounded rather than straight grain boundaries seen in
the microstructure can be explained as the results of border infiltration occurring during the liquid
sintering process. Table 2 shows the different grain size and density of samples sintered at different
temperatures. Doping with Bi2O3 improved the sample density, and the grain size increased as the
sintering temperature increased. Analysis of the XRD spectra and the SEM picture show that 2Bi-10YSZ
can form stabilized zirconia with a uniform, dense, and complete cubic phase structure. This type of
homogeneous, stable full cubic zirconia will likely exhibit better electrical properties and stability.
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Figure 4. Scanning electron microscope images of 2Bi-10YSZ at various temperatures: (a) 1100 ˝C;
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Table 2. Grain size and densiy of samples.

Sample Sintering Temperature (˝C) Grain Size (µm) Relative Density (%)

8YSZ 1550 6 96.0
2Bi-8YSZ1 1100 2.5 97.5
2Bi-8YSZ2 1200 5 97.8
2Bi-8YSZ3 1300 10 96.7
2Bi-8YSZ4 1400 13 98

2Bi-10YSZ1 1100 3 97.7
2Bi-10YSZ2 1200 5 98.0
2Bi-10YSZ3 1300 10 96.5
2Bi-10YSZ4 1400 14 98.2

3.3. Transmission Electron Microscopy and EDS Analysis

As Figure 5a shows, second phase precipitation appeared at triangular grain boundaries and
some grain boundaries. Bi2O3 presented at the grain boundaries can act as fillers in the triangular
boundary and increase the material density with the liquid sintering. The high resolution pictures
in Figure 5b,c represent the b and c areas marked with rectangles in Figure 5a. Figure 5b is a high
resolution picture of the grain boundary between two zirconia grains. Figure 5c is a high resolution
picture of the grain boundary between a zirconia and a Bi2O3 grain. The high resolution pictures show
that there are only 2–3 atomic layers at the transition interphase between the zirconia grain boundaries,
while the transition interphase is slightly widened between the zirconia and Bi2O3 grains. There was
no amorphous layer in both grain boundaries. The impurities present in an amorphous layer are high
resistance materials, which will block the conduction and migration of oxygen vacancies. Thus, the
lack of an amorphous layer at the grain boundary can also enhance conductivity. As Figure 5c shows,
the zirconia and Bi2O3 grains contact and converge nicely at the grain boundary, which makes the
Bi2O3 located in the boundary looks like a bridge linking the zirconia grains together.

Figure 6 is a selected area electron diffraction pattern of 2Bi-10YSZ sample sintered at 1300 ˝C. The
diffraction zone axis in Figure 6a,b are the [011] and [001] cubic directions. SAED results confirm that
the crystal configuration of 2Bi-10YSZ is the cubic phase structure. The spectrum shown in Figure 7b is
the analysis result of the “b” area in Figure 7a, in which a bismuth peak also proves that some Bi2O3 is
dissolved in the zirconia lattice, that is, Bi2O3 and yttria have a co-doping effect in the zirconia lattice.
EDS spectrum analysis (Figure 7a,c) show that oxygen, yttria, and zirconium are uniformly distributed
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in the material without significant segregation, while bismuth segregation is mainly observed at the
triangular grain boundary. Transmission electron microscopy and EDS analysis demonstrate that Bi2O3

is present in grains and grain boundaries, and enhances the density and conductivity of the material.
Sensors 2016, 16, 369 

 
Figure 5. 2Bi-10YSZ sample sintered at 1300 °C: (a) HADDF-STEM image; (b,c) high-resolution 
images of grain boundaries. 

 
Figure 6. Selected area electron diffraction pattern of 2Bi-10YSZ sampled sintered at 1300 °C: (a) FCC 
zone axis [011]; (b) FCC zone axis [001]. 

 

 

Figure 7. (a) HADDF-STEM image of 2Bi-10YSZ; (b,c) EDS energy spectrum. 
  

Figure 5. 2Bi-10YSZ sample sintered at 1300 ˝C: (a) HADDF-STEM image; (b,c) high-resolution images
of grain boundaries.

Sensors 2016, 16, 369 

 
Figure 5. 2Bi-10YSZ sample sintered at 1300 °C: (a) HADDF-STEM image; (b,c) high-resolution 
images of grain boundaries. 

 
Figure 6. Selected area electron diffraction pattern of 2Bi-10YSZ sampled sintered at 1300 °C: (a) FCC 
zone axis [011]; (b) FCC zone axis [001]. 

 

 

Figure 7. (a) HADDF-STEM image of 2Bi-10YSZ; (b,c) EDS energy spectrum. 
  

Figure 6. Selected area electron diffraction pattern of 2Bi-10YSZ sampled sintered at 1300 ˝C: (a) FCC
zone axis [011]; (b) FCC zone axis [001].

Sensors 2016, 16, 369 

 
Figure 5. 2Bi-10YSZ sample sintered at 1300 °C: (a) HADDF-STEM image; (b,c) high-resolution 
images of grain boundaries. 

 
Figure 6. Selected area electron diffraction pattern of 2Bi-10YSZ sampled sintered at 1300 °C: (a) FCC 
zone axis [011]; (b) FCC zone axis [001]. 

 

 

Figure 7. (a) HADDF-STEM image of 2Bi-10YSZ; (b,c) EDS energy spectrum. 
  

Figure 7. (a) HADDF-STEM image of 2Bi-10YSZ; (b,c) EDS energy spectrum.



Sensors 2016, 16, 369 7 of 10

3.4. Impedance and Conductivity Measurement and Analysis

Figure 8 is a complex impedance plane plot, or Nyquist plot, of 8YSZ and 2Bi-10YSZ samples of
different sintering temperatures tested at 500 ˝C. The data processing methods for all samples are the
same; deduction correction was performed on the curves with the ohmic resistance contribution to
allow a better comparation for the resistances of different samples. All impedance data was processed
and analyzed using ZSimpWin software. The lines in Figure 8 are the experiment data and the different
symbols with different colors are the fitting results. Grain or grain boundary resistance is calculated
by fitting two series RQ circuit elements to the impedance spectra. The derived equivalent circuit
diagram of the impedance curve is shown in the insert of Figure 8. The high frequency and low
frequency semicircle of 2Bi-10YSZ sample shown in Figure 8 represent the grain resistance and grain
boundary resistance [17,24,25], respectively. Due to the relaxation properties of different materials
and the relatively high measurement temperature, the high-frequency semicircle of the 8YSZ sample
represents its grain boundary resistance, and the grain resistance is calculated via the horizontal
intercept of the high frequency impedance curve [16,25]. As for the capacitance (C), it can be calculated
with the data of the constant phase element (Q). The valves of C are of the expected magnitude, i.e., of
about 10´10 F and 10´7 F for the grains and the grain boundaries, respectively.
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The figure shows that compared with the 8YSZ sample, which has almost the highest electrical
conductivity among all YSZ materials [3,5,26], the 2Bi-10YSZ samples have decreased high and low
frequency semicircles. In the 8YSZ sample, the bulk resistance mainly comes from the grain boundary
resistance; while in 2Bi-10YSZ sample, the grain boundary resistance is close to the grain resistance. The
grain boundary resistance significantly decreased in 2Bi-10YSZ, while its grain resistance also slightly
decreased, indicating an improvement of the electrical properties. Similar phenomena have been
reported by Raghvendra and Prabhakar Singh [9] in Bi2O3 doped calcium oxide stabilized zirconia
materials; and it has also been discovered by Bai et al. [16] in Bi2O3-doped scandia stabilized zirconia.

Comparison between 2Bi-10YSZ samples of different sintering temperatures shows that the
sample sintered at 1300 ˝C exhibits the lowest total resistance. Figure 9 is an Arrhenius curve
of 2Bi-10YSZ sintered at 1300 ˝C and 8YSZ sintered at 1550 ˝C showing the ionic conductivity

plotted against inverse temperature. The sample conductivity is calculated as: σ =
L

RA
. L and

A are the thickness and circular area of the test wafer sample, respectively, and R is the resistance
of grain or grain boundaries. In 2Bi-10YSZ samples, the sample sintered at 1300 ˝C exhibits the
highest conductivity of 0.013 S/cm at 650 ˝C, and the conductivity of 8YSZ sintered at 1550 ˝C is
about 0.003 S/cm at 650 ˝C, demonstrating that adding Bi2O3 improves the conductivity to about four
times the original conductivity.
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In Figure 10, the grain and grain boundary Arrhenius curves of 8YSZ of 1550 ˝C and 2Bi-10YSZ
of 1300 ˝C show that the improvement of sample conductivity of 2Bi-10YSZ mainly occurs in the grain
boundaries. When the test temperature is higher than 500 ˝C, the grain conductivity of Bi10YSZ is also
higher than that of 8YSZ. One of the reasons for the conductivity improvement is the promotion of
grain growth by Bi2O3, affording a high density material. Another important reason for the boundary
improvement is attributed to the aggregation and segregation of some Bi2O3. Bismuth oxide-based
electrolyte is a widely used solid electrolyte material, which has a higher ionic conductivity than
zirconia-based materials. Because these materials contain more oxygen vacancies on one side. On the
other side, Bi3+ has a high polarization capability due to the influence of 6s2 lone pair electrons and
a strong ability to adapt and integrate to a relatively disordered surroundings [27–29]. Thus, Bi2O3

segregated at the grain boundaries can remove impurities, such as aluminum oxide, silicon oxide,
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However, at low temperatures, these oxygen vacancies cannot migrate freely, and most of which
will bind and interact with cations. Thus, at lower temperatures, the 2Bi-10YSZ grain conductivity has
no big difference with that of 8YSZ. When the temperature becomes higher, more vacancies get free
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from association to migrate. The conductivity of the 2Bi-10YSZ grain increases notably in the latter
range and the grain conductivity of 2Bi-10YSZ also become higher than that of 8YSZ. Table 3 shows the
activation energies for grain and grain boundary of 8YSZ and Bi10YSZ. They are sintered at 1550 ˝C
and 1300 ˝C separately. All the activation energies are similar to the published data [7,32]. It indicates
that when Bi2O3 is added in YSZ, the activation energies increase. The increace may be ascribed to the
added oxygen vacancies with more correlation effects and the lattice distortion in both the grain and
grain boundary caused by the solution of Bi2O3 in the grain and the segregation of Bi2O3 in the grain
boundary, respectively. Thus, there are more vacancies and defect positions in the Bi10YSZ, which
is benificial to the ions transport and then the conductivity of the sample becomes more sensitive to
the temperature.

Table 3. Activation energies of grain and grain boundary of 8YSZ and Bi10YSZ.

Sample Activation Energy of Grain (eV) Activation Energy of Grain Boundary (eV)

8YSZ-1550 ˝C 1.03 1.17
Bi10YSZ-1300 ˝C 1.35 1.26

4. Conclusions

Doping with Bi2O3 enhances the grain growth of 10YSZ, reduces its sintering temperature and
improves its ionic conductivity. 10 mol% YSZ doped with 2 mol% Bi2O3 exists in a completely stable
cubic phase after sintering at 1300 ˝C. Due to the filling effect of Bi2O3 at grain boundaries, 2Bi-10YSZ
has a higher conductivity of 0.013 S/cm at 650 ˝C, which is about four times higher than that of 8YSZ.
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