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Abstract

Objective: Large deletions and duplications account for 65%-80% of pathogenic
Duchenne muscular dystrophy (DMD) variants. A nationwide carrier screening for
DMD was initiated in Israel in 2020. We assessed the carrier rate and spectrum of
variants detected in a cohort of women screened for DMD carrier status and
analyzed screening efficacy and challenges related to DMD population screening.
Methods: A cohort of 12,362 women were tested at a single institute using
multiplex ligation-dependent probe amplification based copy number analysis of the
79 DMD exons. Consecutive sequencing of the primer region was performed when a
single exon deletion was suspected.

Results: Deletions involving multiple exons were detected in seven cases and du-
plications involving multiple exons were found in four. Of these, nine were patho-
genic based on previous reports and familial segregation testing, translating to a
carrier rate of 1:1374. A family history was reported in three cases. Single exon
deletions were suspected in 81 cases; further sequencing detected a single nucle-
otide variant affecting probe hybridization. These cases clustered according to
ethnic origin.

Discussion: Population screening for DMD has a significant yield. Most carriers did
not report a family history of dystrophinopathies. Screening should be adjusted for
methodological limitations. Some cases may require extensive genetic counseling

and work-up.

Key points

What's already known about this topic?
e Deletions and duplications account for 65%-80% of pathogenic Duchenne muscular dys-
trophy (DMD) variants.
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gene was 1:1374.

1 | INTRODUCTION

The criteria for population carrier screening for genetic disorders
include phenotype severity that may impact decision-making, high
prevalence of carriers, established analytic validity of screening
methods, predictable genotype-phenotype correlations, and avail-
able prenatal diagnosis and reproductive options.’?

Duchenne muscular dystrophy (DMD) and Becker muscular
dystrophy (BMD) are progressive muscular dystrophinopathies
caused by pathogenic variants in the X chromosome-linked DMD
gene. The DMD gene consists of 79 exons. More than 5000 patho-
genic variants in DMD have been identified as related to DMD or
BMD. Large deletions involving a single exon or multiple exons occur
in 60%-70% of cases, duplications in 5%-10%, and sequence variants
including single-nucleotide variants (SNVs), small deletions, or in-
sertions in 20%-35%.°

Phenotype usually depends on whether the reading frame of the
DMD gene is maintained.*> However, there are known exceptions to
this rule®® DMD is usually caused by out-of-frame variants,
resulting in a severe form of the disease with muscular weakness
occurring from 2 to 3 years of age and low survival rates in adult-
hood.” BMD is usually caused by in-frame pathogenic variants,
resulting in a milder form of the disease, with a clinical onset ranging
from 5 to 60 years and symptoms allowing ambulatory management
throughout life, even into old age.'®

About two-thirds of the pathogenic variants in DMD are inheri-
ted from a female carrier.}* Females are asymptomatic in most cases;
however, they may express mild symptoms such as muscular weak-
ness, myalgia, and elevated creatinine kinase (CK) levels.'?13 Females
heterozygous for DMD pathogenic variants are also at increased risk
for dilated cardiomyopathies.'1>

The reported incidence of DMD and BMD among males is about
1/5,000%¢ and 1/18,000, respectively.!” Given the high tendency for
de novo pathogenic variants, dystrophinopathies are expected to be
prevalent worldwide. To date, population screening for DMD has not
been performed; hence, the actual carrier rate is unknown.

According to the American College of Medical Genetics and
Genomics practice statement regarding screening for autosomal
recessive and X-linked conditions,® screening is recommended for
DMD. Population carrier screening for deletions and duplications in
the DMD gene using Multiplex Ligation-dependent Probe Amplifica-
tion (MLPA) was initiated in Israel, in July 2020.

DIAGNOSIS-WILEY [ %

e About two-thirds of DMD pathogenic variants are inherited from a female carrier.

e A nationwide carrier screening for DMD was initiated in Israel in 2020.

What does this study add?

e The carrier rate among 12,362 women tested for deletions and duplications in the DMD

e Screening should be adjusted for methodological limitations and may require extensive

genetic counseling and work-up.

This study assessed the carrier rate and the spectrum of path-
ogenic variants in a large cohort of healthy women tested for DMD
carrier status in order to evaluate the efficacy and specific challenges

related to DMD population screening.

2 | METHODS

2.1 | Data collection

The study cohort included healthy women of child-bearing age tested
at the Genetic Institute of Meir Medical Center, Israel, from July
2020 to August 2021. The screening was funded by the lIsraeli
Ministry of Health (MOH). Each woman was required to report her
ethnic origin and any family history of genetic diseases. The popu-
lation referred for screening at our genetic institute is ethnically
diverse, and faithfully represents most ethnic groups in Israel. The
proportion of different ethnic groups is not uniform among different
regions in Israel. The Arab population in our cohort accounts for
33.2% compared to the 21% in the Israeli population.

The copy number of each of the 79 DMD exons was analyzed
using the MLPA kit (MRC, Amsterdam, Holland). The MLPA tech-
nique relies on sequence-specific probe hybridization to genomic
DNA, followed by amplification of the hybridized probe, and semi-
guantitative analysis of the resulting polymerase chain reaction
products. Relative copy numbers are determined by comparing the
relative peak heights of reference probes and target probes in the
test samples with those of the reference samples with a known
normal copy number.’®1? MLPA results were interpreted as a
deletion when the reading was 0.40 < DQ < 0.65 compared to
the normal copy number and as duplication when it was
1.30 < DQ < 1.65.

Abnormal results were defined as one copy or more than two
copies of each exon analyzed. Each abnormal result was verified by
repeating the test with DNA from a different blood sample of the
patient. When MLPA suggested a single exon deletion, consecutive
testing using Sanger sequencing of the probe region was performed
to determine whether the suspected single exon deletion was related
to mismatching of the primer, which could lead to a false positive
result. If an SNV affecting probe hybridization was detected, we
aimed to determine whether it is a normal variation in the population

(polymorphism) or a pathogenic variant. We used bioinformatics
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tools, such as looking at its prevalence in the normal population using
data from gnomAD v2.1.1, and assessed its frequency in the Israeli
population based on reports from other Israeli labs. Data regarding
DMD testing results are shared between different labs in Israel. Test
results are reported by the labs to the MOH and discussed in pro-
fessional meetings of the Israeli Society of Medical Genetics. These
variants were classified according to the American College of Medical
Genetics and Genomics (ACMG) guidelines.?®

2.2 | Clinical work-up

All carriers of pathogenic variants and large deletions and duplica-
tions received comprehensive genetic counseling. Some cases with
deletions or duplications and cases with novel SNVs were further
investigated with segregation analysis, including genetic testing
(MLPA screening and Sanger sequencing) for first degree relatives,
phenotypic assessment by a medical geneticist/neurologist, and
referral of relevant family members for echocardiogram and CK
testing. In some cases, when a whole gene deletion was detected or
when MLPA testing suggested a deletion expanding to regions
outside the DMD locus, chromosomal microarray testing was per-
formed. Data regarding segregation analysis and genetic testing are
listed in Tables 2 and 3.

2.3 | Ethics declaration

The study was approved by the Meir Medical Center Ethics Com-
mittee, Kfar Saba, Israel, in August 2021, approval number 0193-21-
MMC. DMD screening was performed as part of a nationwide carrier
screening protocol. All patients gave their informed consent for
carrier screening. As the study was based on a retrospective analysis
of screening results, the Ethics Committee waived the need for
additional informed consent.

2.4 | Statistical analysis

Categorical data were compared using Chi-squared or Fisher's exact
test (each when appropriate). A probability value of p < 0.05 was
considered significant. All analyses were performed using SPSS-26
software (IBM, Armonk, NY, USA).

3 | RESULTS
The screening results of the cohort of 12,362 women screened for
DMD are depicted in Figure 1. The ethnic distribution of the cohort is

presented in Table 1.

Women screened for DMD
N=12,362

[

[

91 cases —
Abnormal MLPA result

[ I

I

12,271 cases -
Normal MLPA result

11 cases — 80 cases —

Large deletions and
duplications

Suspected single
exon deletion

I

[ 1

4 duplications: 7 Deletions:
In-frame-2 In-frame-5

Out of frame-1 Out of frame-1

79 cases —

Recurrent SNVs

Unknown-1 Whole gene-1

1 case —
Novel SNV

3 cases — 6 cases —

Clinically significant. Clinically significant.

Family history-1 Family history-2

1 case — 1 case—

Clinically insignificant Clinically insignificant

L

A h 4 v v v
»| 12,352 cases — 9 cases —
linicall cl I L case-
Clinically inically et
insignificant significant CIass\'fl'jc:tlon
> variants variants

FIGURE 1 DMD screening results of a cohort of 12,362 women tested at a single institute using MLPA based copy number analysis of the
79 DMD exons. DMD, Duchenne muscular dystrophy; MLPA, multiplex ligation-dependent probe amplification
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TABLE 1 Ethnic distribution of the study population

Women screened (num, %)

Ethnic group N = 12,362

Ashkenazi Jews 1563 12.6
North African Jews 916 7.4
Iranian and Iraqgi Jews 320 2.6
Yemenite Jews 375 3.0
Balkan Jews 117 0.9
Arab Muslims 4054 328
Bedouin Muslims 53 0.4
Others® 4964 40.2
Total 12,362 100.0

2Others includes less common ethnicities as well as all individuals with a
mixed ethnicity.

In total, 11 cases of multiple exon deletions or duplications
involving multiple exons were detected, of which 9 were defined
as pathogenic based on previous reports and familial segregation
testing. Hence, the carrier rate detected is 1:1374. The carrier rate
of out-of-frame deletions and duplications and whole gene de-
letions was 1:4120. Of the nine pathogenic variants detected, in
three cases, a family history of dystrophinopathies was reported,
and in six cases, no family history was reported. There was no
difference in carrier rate according to ethnic group. Clinical data
regarding large deletions and duplications detected are presented
in Table 2.

3.1 | Deletions
Overall, seven large deletions (del) were detected, of which six were
pathogenic. Five were in-frame, one was out of frame, and one was a
whole gene deletion.

The Exon 16-22 deletion was classified as clinically insignificant
based on reports from other Israeli laboratories of four additional
cases, including a case of a healthy homozygous female with an un-
affected father.

In the patient with deletion of the entire DMD gene, chromo-
somal microarray testing detected a 16 Mb deletion on Xq [GRCh37/
hgl9 chrX:24728601-41173009] including 63 genes, of which 30
were OMIM genes.

In one case, no deletion in the DMD gene was detected. However,
reference probes detected a suspected large deletion near the DMD
gene. CMA testing detected a 23.9 Mb deletion on Xp22.33p22.11
including 160 genes (113 OMIM genes). The deletion was catego-
rized as pathogenic. The carrier reported no abnormal phenotype and
her clinical examination revealed no abnormalities. The patient was
planning an IVF pregnancy with sperm donation, and preimplantation

diagnosis was discussed.

DIAGNOSIS-WILEY— [ %

3.2 | Duplications

Four large duplications were detected, of which three were patho-
genic. Of the duplications, two were in-frame, one was out of frame,
and one included the terminal part of the gene (exons 63-79).

The Exon 1-15 in-frame duplication was classified as clinically
insignificant based on MLPA testing results, showing that the father
was a healthy carrier.

Duplications of the promotor region were detected in four cases,
of which two were in Jews from Bukhara. These were previously
reported by other labs, mostly in Jews from Bukhara, and were

categorized as clinically insignificant.

3.3 | Single exon deletions related to SNVs
affecting hybridization

In 81 cases, a single exon deletion was detected by MLPA (Table 3).
In all these cases, sequencing analyses revealed an SNV affecting
probe hybridization. This suggests that there was no single exon
deletion but rather an artifact created by the SNV (false positive
result). Of note, the values in these cases for the specific exon de-
letions were borderline, with values around 0.67 compared to the
expected 0.40 < DQ < 0.65 value in the seven cases of multiple exon
deletions.

Eighty of the SNVs detected were previously reported in healthy
individuals (Table 3) and classified as benign. These included an SNV
in Exon 48, an SNV in introns 8, 70, 1, 68, and a single nucleotide
deletion in intron 68.

These SNVs clustered according to ethnic origin (Table 3),
including 53 cases with exon 48 deletion in Israeli Muslim Arabs and
15 cases of exon 8 deletion in North African Jews.

In one case, a rare SNV was detected in exon 12. Despite
extensive segregation studies revealing that the SNP was inherited
from a healthy mother and was not present in a male sibling and two
maternal uncles, we could not rule out the pathogenicity of the SNV;
hence, it was classified as a variant of unknown significance.

4 | DISCUSSION

We report results from the first large-scale population carrier
screening for deletions and duplications in the DMD gene. Among
12,362 women, the carrier rate for pathogenic large deletions or
duplications, all involving multiple exons, was 1:1374.

Screening for DMD should be assessed according to the estab-
lished criteria for population screening.*?

The carrier rate of disease-causing deletions/duplications in our
cohort is well above the population frequency recommended for
screening, as the frequency of affected males with a dystrophinop-
athy related to a deletion/duplication in the DMD gene can be
translated to 1:2,748, similar to the risk of cystic fibrosis (CF) among
Caucasians.?’
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In addition, DMD/BMD carrier screening has some significant
limitations related to possible inconclusive genotype-phenotype
correlations; namely, our inability to predict the clinical phenotype
related to some of the detected deletions/duplications. DMD gene
variants have a wide phenotypic spectrum and since not all variants
follow the in-frame/out-of-frame rule, detection of a variant not
previously reported may pose a challenge in determining its related
phenotype, if any. The detection of a novel variant in women with no
family history of the disease may require familial segregation,
including clinical assessment and CK levels in family members, which
is not always informative. In some cases, unless we can find healthy
or affected male carriers, we may not be able to clearly determine the
pathogenicity of the variants. Also, some specific deletions/duplica-
tions were reported in both DMD and BMD patients and even in very
mildly affected individuals.?%?2

While DMD is considered relevant for population screening,
BMD pathogenic variants corresponding to the mild end of the
phenotypic spectrum do not unequivocally qualify for screening ac-
cording to the criteria regarding phenotype severity that may impact
decision-making.

Carrier screening is performed for the purpose of offering pre-
natal diagnosis and preimplantation genetic testing; hence, if the
predicted phenotype is not clearly appropriate for such testing, we
may be presented with a significant conflict. Overdiagnosis resulting
from detection and misclassification of variants that are not patho-
genic or related to a mild phenotype may lead to unnecessary pre-
natal diagnosis and pregnancy termination for an unsubstantiated
indication.

With that said, variants associated with variable expressivity are
not unique to DMD/BMD. For example, in the case of CF, there are a
number of CFTR related phenotypes, some severe enough to justify
carrier screening, such as classical CF (MIM 219700), while other
nonclassical CF phenotypes, such as congenital bilateral absence of
vas deferens (MIM 277180), are not considered relevant for peri-
conceptional carrier screening. It is not always possible to predict the
related phenotype for a specific variant and in many cases, the
phenotype will be determined by additional factors, mainly the
coexistence in cis configuration with another specific variant. The
issue of reporting variants of unknown significance is well known in
genetic testing. For variants detected for periconceptional carrier
screening, the ACMG has recommended that variants associated
with variable expressivity that are not currently classified as patho-
genic (P) or likely pathogenic (LP) by the laboratory should not be
reported unless they are detected in a partner of an individual who
carries a P/LP variant.3!

Another important aspect that presented after initiating the
DMD/BMD carrier screening is a technical issue with MLPA, which
may vyield a false positive result of a single exon deletion, due to an
SNV affecting probe hybridization. Though this technical issue is
well known and was also reported in CF testing using MLPA,3! it's
scale in the DMD carrier screening was surprising, as the rate of
cases with an MLPA result suggestive of a single exon deletion

related to an SNV detected using targeted sequencing was

significant. These SNVs require variant evaluation to exclude
pathogenicity. Some can be ruled out as pathogenic based on their
high prevalence in the population (or in many cases, a specific
ethnic group), while others require additional bioinformatics work-
up and familial segregation testing. Determining the relevance of
these findings requires generating databases and data sharing be-
tween laboratories. For example, following data accumulation, we
can now determine that the SNPs in exon 8 and exon 48 are
considered a common polymorphism in specific ethnic groups and
there is no need to perform sequencing or report these findings.
Hence, our experience is that there is an ongoing learning curve for
managing these findings and we predict that in the future, we will
have enough information to determine the clinical insignificance of
additional findings in specific populations without the need to
perform sequencing for these cases. Of course, this learning curve is
population specific; hence, each country that chooses to initiate
population screening will need to undergo a process of mapping
specific variants in the screened population.

Other issues with DMD MLPA screening are its high cost, the
burden of genetic counseling sessions required to assess findings
with uncertain significance,®? the need to test additional family
members, and the anxiety related to these processes.

All these issues should be considered when determining the
appropriateness of population screening.

Those in favor would argue that preventing even a few cases of
DMD justifies the price of overdiagnosis, resulting in unnecessary
testing, counseling, and challenging conflicts regarding preimplanta-
tion and prenatal testing.

Another important point to consider is that, due to novel ther-
apeutic options, newborn screening for DMD is considered a bene-
ficial approach by many experts, and a first test for such screening
was authorized by the FDA in December 2019.53-3¢ Hence, the issue
of presymptomatic screening for dystrophinopathies is already an
accepted concept.

We conclude that the yield for DMD population screening is
significant, with no reported family history dystrophinopathies in
most carriers. Screening should be adjusted to methodological limi-
tations and, in some cases, may require extensive genetic counseling
and work-up. A thorough review regarding the cost-effectiveness of
such screening is needed as well as a thorough discussion regarding

the best technology for such screening.
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