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Abstract 
The G2PDeep-v2 server is a web-based platform powered by deep learning, for phenotype 

prediction and markers discovery from multi-omics data in any organisms including humans, 

plants, animals, and viruses. The server provides multiple services for researchers to create deep-

learning models through an interactive interface and train these models using an automated 

hyperparameter tuning algorithm on high-performance computing resources. Users can visualize 

the results of phenotype and markers predictions and perform Gene Set Enrichment Analysis for 

the significant markers to provide insights into the molecular mechanisms underlying complex 

diseases and other biological processes. The G2PDeep-v2 server is publicly available at 

https://g2pdeep.org/. 
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Background 
With the advances in molecular profiling technologies, the ability to observe large-scale multi-

omics data from patients or other biological samples has grown remarkably over the past decade. 

Genome-wide data encompassing various molecular processes, such as gene expression, 

microRNA (miRNA) expression, protein expression, DNA methylation, single nucleotide 

polymorphisms (SNP), and copy number variations (CNV), can be obtained for the same set of 

samples, resulting in multi-omics data for numerous disease and crop studies. Although each type 

of multi-omics data captures a portion of the biological information, integrating multi-omics data 

helps researchers comprehensively understand biological systems from different perspectives 

[1,2]. Researchers have utilized multi-omics data to address many significant breeding and 

biomedical problems, including plant breeding [3], drug target discovery [4], disease therapy 

[5,6], and survival analysis. Specifically, muti-omics data allows researchers to predict the 

phenotypes and identify biomarkers that affect the diversities of phenotypes. To effectively take 

advantage of complementary information in multi-omics data, it is important to have a one-stop-

shop platform for researchers to integrate multi-omics data, train customized deep-learning 

models for predicting phenotypes using high-performance computing resources and discover the 

potential biomarkers along with their biological relevance. 

 

Many approaches have been proposed over the past decade to perform one type of omics data 

analysis for various bioinformatics problems. Early attempts have employed supervised learning 

methods for biomedical classification tasks. For example, DeepGS [7] applies a deep 

convolutional neural network combined with a fully connected neural network to predict 

phenotype based on SNP. Blaise et al. [8] proposed an approach for the biological interpretation 

of deep learning models for phenotype prediction from gene expression data. However, these 

methods only consider one of the multi-omics data types and failed to utilize useful biological 

information from other types of multi-omics data. Recently, more supervised methods focused 

on exploiting the interactions across different omics data types for better prediction. MOGONET 

[9] integrates multi-omics data using graph convolutional networks for biomedical classification 

tasks such as Alzheimer’s disease patient classification and kidney cancer type classification. 

Sammut et al. [10] introduced an ensemble-based machine learning framework to integrate 

representations from different multi-omics data types for breast cancer therapy response. Some 

efforts focus on biologically informed deep learning models with multi-omics data to enhance 

the interpretability of models [11–13]. 
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Although these methods have shown some good performance, there are still challenges in 

adopting such models in different types of studies. The models used in these methods are typically 

designed for a specific study with a particular set of data, which means that researchers must 

invest considerable effort to adapt the model for other studies. Inappropriate hyperparameter 

optimization is a common issue, which often negatively affects the performance of model and 

analytical outcomes. In other words, manually tuning the optimal hyperparameters is challenging 

due to the vast number of possible combinations. These methods have steep learning curves and 

often require complicated installations. Furthermore, training models with large-scale multi-

omics data requires computing resources and storage exceeding the capacities of most potential 

users. Moreover, few of existing methods integrate functionalities to identify significant multi-

omics signatures and biomarkers related to the biomedical and biological studies, resulting in 

researchers spending additional time on confirming evidence for the findings. 

Introduction 
Along this line of research, we have been developing the deep learning method G2PDeep. The  

first original model was made available in 2019 [14], followed by the web server published in 

2021 [15]. In its first version, G2PDeep enabled the quantitative phenotype prediction and marker 

discovery by using a dual-CNN model trained from scratch using only SNP. This work has gained 

a lot of interest from researchers worldwide, with more than 500 submissions for model training 

conducted via the web-based access. To address issues discussed above, we have further 

developed G2PDeep-v2, a comprehensive web-based platform for phenotype prediction using 

multi-omics data and biomarkers discovery. Unlike the previous version of G2PDeep, the new 

version, G2PDeep-v2, now supports multiple inputs for multi-omics data, offers a broader array 

of model selection options, advanced settings for tuning model hyperparameters, and includes 

comprehensive Gene Set Enrichment Analysis (GSEA) functionalities. The difference between 

the previous and the new version of G2PDeep is depicted in Table 1. Precisely, compared with 

other available applications, G2PDeep-v2 provides end-to-end management of machine learning 

projects from multi-omics dataset creation through to model interpretation, which also supports 

individual omics or any combination of up to 3 multi-omics data for the predictions. It is equipped 

with a fully automated pipeline to process and organize multi-omics data such as gene expression, 

miRNA expression, DNA methylation, protein expression SNP, and CNV. It provides an 

interactive web interface enabling machine learning and deep learning models to be created and 

customized predictions according to different research tasks. It also provides automated 

hyperparameters search with Bayesian optimization algorithm, discovering a top-performing 

model configuration from huge number of combinations of hyperparameters, without any manual 

effort necessary beyond just the initial set-up. It supports real time monitoring for ongoing model 

training and optimization history through a real-time web dashboard.  

 

The datasets and well-trained models are serialized and stored in user accounts to protect privacy 

of research information from unauthorized parties. The well-trained models can be retrieved from 

a pool of models to predict the phenotype and discover the significant biomarkers associated with 

the phenotype, making the models reusable and reproducible. The predicted results of phenotype 

are summarized in an interactive figure and its raw results can be downloaded as a comma-

separated values (CSV) file. The GSEA can be performed using significant biomarkers, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [16] and Reactome [17] pathway information, 

providing insights into pathways underlying the phenotype. The publications strongly associated 

to significant biomarkers in phenotype of user’s interest are listed in a table along with their 

abstracts and URL links, identifying the newest evidence from relevant research for the 

researchers.  
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Here, we present our multi-omics datasets studies for 23 different cancer with long-term-survival 

labels, originally provided by The Cancer Genome Atlas (TCGA) project [18]. We have utilized 

G2PDeep-v2 to train models with automating hyperparameters search on different combinations 

of multi-omics data and identified multiple sets of significant biomarkers. All these datasets, 

models, biomarkers with GSEA results are retrievable for all users and visitors. To the best of 

our knowledge, G2PDeep-v2 is the first web-based deep-learning framework available for 

phenotype prediction, biomarker discovery and annotation for multi-omics data. Users can apply 

G2PDeep-v2 not only to human disease studies but also to other organisms including research in 

plants, animals, bacteria, and viruses. The G2PDeep-v2 server is publicly available at 

https://g2pdeep.org. The Python-based deep-learning model is available at 

https://github.com/shuaizengMU/G2PDeep_model.  

Results 

Overview of the web server 
The overview of G2PDeep-v2 is depicted in Fig. 1. Starting from a multi-omics dataset, 

G2PDeep-v2 integrates samples from each type of multi-omics and splits merged samples into 5 

equally sized sets with 5-fold cross-validation. G2PDeep-v2 provides a variety of machine 

learning and deep learning models, including our proposed multi-CNN, Logistic Regression (LR), 

Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The platform 

also features a web-based interactive interface that allows users to create, train, and monitor the 

performance of these models, which is a unique aspect of bioinformatics. All models are trained 

using our high-performance computing resources and stored in the database for future inference. 

G2PDeep-v2 provides prediction for large-scale datasets, and visualization for predicted results 

and biomarkers associated with corresponding phenotypes. The results of Gene Set Enrichment 

Analysis (GSEA) for these biomarkers are generated automatically. It also provides complete 

documentation on the website, including a user guide describing all these tools, examples, and 

frequently asked questions. To accelerate scientific research for survival analysis in cancer 

studies, we utilized G2PDeep-v2 and established biomarkers associated with long-term survival 

for 23 cancer studies.  

Dataset creation 

Initiating the use of G2PDeep-v2, the pivotal first step involves creating datasets. G2PDeep-v2 

allows users to create datasets with two options: uploading a CSV file or transferring data from 

a link (see Fig. 2A). For a small dataset (up to 50 MB), users can create a dataset by uploading 

their own data from their local machine. For a large dataset (up to 10 GB), users can enter a 

shared link of data from Google Drive, OneDrive, CyVerse Data Store [19,20], or other public 

repositories. Users can upload multi-omics data, including gene expression, miRNA expression, 

DNA methylation, protein expression SNP, and CNV. Once the files are uploaded, G2PDeep-v2 

performs z-score normalization for each expression sample and imputes missing values 

automatically. To merge multi-omics data from various sources, it requires data containing a 

column with unique IDs for each sample. By combining data from multiple sources, users can 

create more comprehensive datasets that may be better suited to their research questions. Users 

can also enter the type of data source to indicate the dataset is from human, animal, plants and 

other. The G2PDeep-v2 validates uploaded files to guarantee the data can be used in model 

creation. For any invalid format or unsupported data, it has a function to stop data creation and 

show a corresponding error message. It also shows a progress bar with duration and percentage, 

allowing users to monitor the status of the dataset creation. The created datasets are private and 

only retrievable by the owners of the datasets. G2PDeep-v2 supports sharing data with the 

community in after anonymization by removing identifiable information for samples, making it 

available to other researchers to work on same data and share insights while protecting dataset 
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privacy. G2PDeep-v2 also integrates the publicly available datasets, such as 23 TCGA cancer 

datasets, SoyNAM datasets [21] and Bandillo's SNP datasets [22] (see Fig. 2B). Comprehensive 

details for each dataset, including links to data, type of data, number of samples, and features, are 

retrievable from the website. Once the datasets are created, users can build their models for the 

datasets. 

Model creation 

Transitioning to model creation, G2PDeep-v2 emphasizes customization as a key feature. 

Hyperparameters, critical components influencing machine learning model performance, can be 

tailored by users on the Model Creation page (See Fig. 3). The range of suggested 

hyperparameters and training parameters for models in G2PDeep-v2 are shown in Supplementary 

Table S1. Users can also select up to three different types of data as input and determine whether 

the model is designed for quantitative phenotype prediction or categorical phenotype prediction.  

 

To strike a balance between training speed and model performance, G2PDeep-v2 provides three 

strategic options for setting hyperparameters. The first involves using default pre-tuned 

hyperparameters based on models created using data from 23 different TCGA studies, enabling 

users to quickly generate models without additional tuning. Alternatively, users can opt for the 

second strategy, customizing hyperparameters through an interactive interface, aligning their 

models with specific datasets and research questions. The third strategy employs an automated 

hyperparameter search using a Bayesian optimization algorithm [23], efficiently exploring a large 

search space to identify optimal hyperparameters challenging to pinpoint through manual tuning. 

 

Once users complete model creation, G2PDeep-v2 automatically saves the model as a private 

entry in the database. Users can conveniently access and manage their private and public models, 

along with corresponding configurations. Additionally, the platform supports model sharing 

within the community, fostering collaboration and knowledge exchange. 

Project for model training and evaluation 

Once the dataset and model are prepared, users can seamlessly leverage G2PDeep-v2 to train 

models using the uploaded datasets. On the Project Creation page, users can conveniently access 

all publicly available models as well as their private models, categorized based on the type of 

multi-omics data they are interested in. To initiate a new project of models training, users are 

prompted to select a dataset for each type of multi-omics data to serve as input for the model. 

After dataset selection, users have the flexibility to experiment with different hyperparameter-

setting strategies to identify the optimal configuration for their specific data. Upon submission of 

the project, it enters a task queue, awaiting allocation of computing resources. The project settings 

and model configurations are securely stored in the database. Notably, for cancer data, the server 

typically takes around 2 hours to train a model using automated hyperparameter tuning settings, 

involving 400 training samples across three types of multi-omics data and CPU resources. 

 

Users can track progress via a detailed summary page throughout the model training process. A 

progress bar with duration and percentage is displayed on the summary page, along with the 

estimated time to completion and model information. Further insights into the model, dataset, 

and training information are accessible on the Detail page, as illustrated in Fig. 4. Dataset details 

include names, omics types, number of samples, and features, presented in a clear tabular format. 

Model information encompasses the model type and a diagram illustrating the kernel size and 

number of filters for each layer. The learning curve graphically portrays the performance of 

model on both training and validation datasets, aiding in assessing overfitting or underfitting. 
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Additionally, the optimization history plot for automated hyperparameter tuning provides 

valuable insights into the efficacy of different hyperparameters. 

 

Once the model reaches optimal training, G2PDeep-v2 provides interactive plots illustrating 

predicted results and model performance on both training and validation datasets. For categorical 

phenotype prediction tasks, a bar chart depicts the frequency of predicted labels alongside ground 

truth. Receiver Operating Characteristic (ROC) curves and Precision-Recall curves offer a visual 

representation of the diagnostic capabilities of model. In cases of quantitative phenotype 

prediction tasks, a scatter plot compares predicted values with ground truth, accompanied by 

metrics like the Pearson correlation coefficient (PCC) and coefficient of determination (R 

squared). All predicted results and interactive plots are downloadable as CSV files and PNG 

images. 

Prediction and significant biomarkers discovery 

Users can utilize G2PDeep-v2 to make predictions and visualize results using multi-omics data 

and a well-trained model. The predictions take, on an average, less than 30 seconds to predict 

phenotype and marker significance for 1,000 samples. Precisely, users can effortlessly input data 

by uploading a CSV file directly to the server for each type of multi-omics data. The system 

performs thorough validation, ensuring adherence to the required format, and promptly notifies 

users of any invalid input data through error messages. Notably, the system accommodates up to 

10,000 samples, and a user-friendly progress bar allows for real-time monitoring of prediction 

status. All predicted results are securely stored in the database, readily retrievable for future 

analysis and comparison. 

 

Upon submission, G2PDeep-v2 generates a bar chart illustrating predicted values and a plot 

highlighting significant biomarkers (shown in Fig. 5A). Users retain the flexibility to adjust the 

number of displayed biomarkers by setting a threshold based on the highest saliency values, 

focusing on the most relevant biomarkers for their specific research requirements. The plot 

presents significant biomarkers sorted by decreasing saliency values, and this information can be 

conveniently saved as a CSV file. G2PDeep-v2 also provides GSEA for significant biomarkers. 

It performs GSEA analysis based on KEGG [16] and Reactome [17] pathway databases (shown 

in Fig. 5B), which are widely used and comprehensive resources for pathway information. In 

cases where the biomarkers are not genes, such as CpG islands identified from methylation data, 

G2PDeep-v2 converts these markers to the corresponding genes that they regulate to fetch 

significance. It also provides users with a scatterplot for top 10 enriched pathways from KEGG 

and Reactome for the gene sets, making it easy to gain insights into the molecular mechanisms 

underlying complex diseases and other biological phenomena. Detailed information on enriched 

pathways is presented in tabular form, including corresponding p-values, adjusted p-values, and 

gene sets. Additionally, a table listing literature evidence associated with significant biomarkers 

and relevant cancer or other studies enhances the interpretability of the results. 

 

Study results in G2PDeep-v2 

We regularly update and share the outcomes of cancer studies on the Study Results Page within 

G2PDeep-v2. Users can effortlessly access and retrieve results tailored to their specific interests, 

thereby facilitating enhanced accessibility for subsequent analysis and exploration. 

 

As of now, G2PDeep-v2 provides comprehensive studies on cancer, with our investigation 

delving into 23 TCGA cancer studies encompassing six distinct types of multi-omics data 

independently. The diverse array of multi-omics data, including gene expression, miRNA 
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expression, DNA methylation, protein expression SNP, and CNV, was downloaded from the 

Broad Institute Fire Browse portal [24]. To ensure a robust analysis, we systematically created 

41 datasets for each cancer study. These datasets include individual types of omics (6 datasets), 

combinations of two omics (15 datasets), and combinations of three omics (20 datasets). The 

phenotypes of these studies are long-term survival (LTS) and non-long-term survival (non-LTS) 

groups. The LTS is defined as survival > 3 years after diagnosis, and the non-LTS is defined as 

survival ≤ 3 years. Individuals who survived with the last follow-up of ≤ 3 years are excluded 

from further analysis. 

 

To make 23 TCGA studies applicable to both ideal scenarios and real-world conditions, we 

categorized them into two types: studies with uniform multi-omics data and those with non-

uniform multi-omics data. In the context of ideal scenarios, uniform data denotes that patient 

cohorts in these studies encompass all six types of multi-omics data, while non-uniform data for 

real-world conditions indicates that cohorts may lack some types of multi-omics data. Precisely, 

the uniform data can be considered a subset of the non-uniform data. The studies with uniform 

omics data are tailored to investigate the significance of multi-omics data combinations. Due to 

limitations in the cohort of patients, we specifically designated 6 out of the total 23 studies as 

studies with uniform omics data. On the other hand, studies with non-uniform data are designed 

to explore biomarkers under scenarios that more closely mirror the complexities of real-world 

conditions. We finally made a total of 23 studies specifically with non-uniform data. The specifics 

of uniform and non-uniform multi-omics data for each cancer study, including information such 

as sequencing platforms, the number of features, and samples, are comprehensively listed in 

Table 2 and 3 respectively. 

 

The G2PDeep-v2 conducted a thorough analysis of phenotype prediction using both studies with 

uniform and non-uniform multi-omics data. Various models, including our proposed multi-CNN, 

LR [20], SVM [21], DT [22], and RF [23], were employed for predictions. To ensure 

reproducibility, the data for each cancer study underwent a systematic division into a training 

dataset (60% of the entire data) for model training, a validation dataset (20% of the entire data) 

for hyper-parameter tuning, and a test dataset (20% of the entire data) to evaluate model 

performance. The model was constructed in each cross-validation iteration and rigorously 

evaluated on the designated test set. Quantification of predictive performance was achieved by 

calculating the mean area under the curve (AUC) over a 5-fold cross-validation framework. The 

Fig. 6 illustrates that G2PDeep-v2 using our proposed multi-CNN outperforms other ML models 

in predicting phenotypes for the Skin Cutaneous Melanoma (SKCM) study with uniform multi-

omics data. Based on the metrics recorded for models applied to both studies with uniform and 

non-uniform multi-omics, as depicted in Supplementary Table S2 and S3 respectively, G2PDeep-

v2 using our proposed multi-CNN also outperforms or competes effectively with other ML 

models across the majority of cancer studies. All performance details are conveniently accessible 

on the Study Result Page, providing a consolidated view of the effectiveness of models across 

various multi-omics data scenarios for user convenience. Furthermore, we expand upon the study 

results by incorporating significant biomarkers and conducting corresponding GSEA analysis. 

 

 

Application of G2PDeep-v2 

Use case #1: Long-term-survival prediction and markers discovery for cancer. 

The motivation for this use case is to highlight the advantages of G2PDeep-v2 for long-term 

survival prediction and biomarker discovery in Breast Invasive Carcinoma (BRCA) cancer. We 

used G2PDeep-v2 to predict the phenotype of BRCA patients based on their multi-omics data, 
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including gene expression, miRNA expression, DNA methylation, protein expression, SNP, and 

CNV data. We created and trained deep learning models to accurately predict the long-term 

survival of BRCA patients. According to our results (See Supplementary Table S2), the best 

model trained on three combinations of omics is the CNN model, which achieved a mean AUC 

score of 0.907. The three combinations of omics are gene expression, miRNA expression, and 

SNP. We generated significant biomarkers and sorted them by saliency values. We selected the 

biomarkers with the top 100 highest saliency values and compared these biomarkers with 

oncogenes from the OncoKB database [25]. We found that 6 out of the 100 genes are oncogenes 

(see Supplementary Fig. S1A). We then performed GSEA analysis on these 100 genes and found 

seven pathways with p-values lower than 0.05. We noticed that most of the enriched pathways 

are related to breast cancer development (see Supplementary S4 Fig. 1B). Todd et al. [26] have 

reported that breast cancer with aberrant activation of the PI3K pathway can be identified by 

somatic mutations, suggesting potential dependence on the phosphatidylinositol signaling system 

pathway. Klara et al. [27] reported that N-glycosylation of breast cancer cells during metastasis 

is observed in a site-specific manner, highlighting the significance of high-mannose, fucosylated, 

and complex N-glycans as potential diagnostic markers and therapeutic targets in metastatic 

breast cancer. The Notch signaling pathway promotes tumor progression and survival and 

induces a breast cancer stem cell (CSC) phenotype [28]. These evidences support the relevance 

of the identified biomarkers and their contribution towards these predictions.  

Use case #2: Disease Resistance prediction for Soybean Cyst Nematode (SCN) in 

Soybean 1066 lines. 

In this use case, we tested G2PDeep-v2 for Soybean Cyst Nematode with Copy Number 

Variation (CNV) data gathered from WGRS datasets publicly available for 1066 Soybean lines. 

There was a total of 228 samples of SCN with two classes Susceptible (S) and Resistant (R). We 

trained and evaluated multi-CNN model, and the performance of the model was evaluated on 5-

fold cross-validation using area under the ROC curve. We performed the saliency map for 

genomic selection and selected the top 100 most significant biomarkers for SCN phenotype. The 

results of the saliency map suggested a novel gene Glyma.13g030200 ranked tenth in saliency 

list, protein from the same family was previously published as a candidate for nematode 

resistance in rice [29]. Upon investigation using SNPViz [30,31] we found some big indels in the 

promotor region, these indels can potentially regulate the function of this gene. We performed 

enrichment analysis with GO and KEGG pathway on these biomarkers and found evidence 

related to abiotic stresses and defense response. 

Discussion 
G2PDeep webserver is developed as a one-stop-shop platform that addresses the need for 

efficient and accurate phenotype predictions from multi-omics data with customizable deep 

learning and machine learning models. G2PDeep-v2 is the first web server that allows models to 

be created, trained with automated hyperparameter tuning, and used for inference on multi-omics 

data uploaded by researchers. Performance, compatibility, usability, and interpretability are 

central principles of G2PDeep-v2. G2PDeep-v2 integrates numerous deep learning and machine 

learning models that are well-trained on 23 different TCGA cancer studies, SoyNAM, and 

Bandillo's SNP datasets, allowing researchers to reuse these models to predict phenotypes and 

identify significant biomarkers. It has applications for predicting phenotypes in a wide range of 

research domains, including human diseases, agriculture, animal, and viral studies. It can also 

further help uncover the specific multi-omics data types that may be best suited for respective 

phenotype predictions. 
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In many real-world scenarios, such as medical research and rare disease studies, obtaining 

sufficient labeled data can be challenging. In the future, we plan to employ meta-learning 

techniques to enable models to learn from small amounts of data by leveraging prior knowledge 

learned from other tasks or experiences. To reduce the batch effect in multi-omics datasets, we 

also plan to utilize contrastive learning to learn feature representations that are invariant to batch 

effects. By comparing different representations of data from different batches, our models can 

identify common patterns that are independent of the batch effect. We are also planning to 

enhance G2PDeep-v2 by enabling models to cater to multi-class prediction scenarios. We will 

also deploy G2PDeep-v2 on a server equipped with both CPU and GPU resources to expedite 

model training and inference processes. Currently, we are working on combining scRNA-seq 

with bulk RNA-seq to improve the accuracy and resolution of transcriptomic analysis. By 

integrating scRNA-seq and bulk RNA-seq data, we can identify cell-type-specific gene 

expression patterns in complex tissues, enabling a deeper understanding of cellular heterogeneity 

and the identification of new biomarkers. G2PDeep-v2 will continue to expand and develop in 

response to the evolving needs of the research community. 

Conclusions 
G2PDeep-v2 is a novel and comprehensive web-platform that enables researchers to perform 

phenotype prediction, biomarker discovery, and GSEA analysis for a range of applications in 

research in human disease and plant breeding. With its user-friendly interface, advanced machine 

learning algorithms and automated hyperparameter tuning, G2PDeep-v2 allows for easy 

customization and optimization of models without the experience of machine learning required. 

By integrating various multi-omics datasets and pre-trained models, G2PDeep-v2 enables the 

creation of robust and reproducible predictions and biomarkers, while also providing access to a 

wealth of downstream analysis tools and results from multiple studies. Overall, G2PDeep-v2 

represents a single one-stop-shop solution for phenotype predictions, with potential applications 

in precision medicine, drug discovery, precision agriculture, genomic epidemiology and other 

areas of research that rely on complex omics data. 

Methods 

Data pre-processing 
To enhance the scalability of the dataset, G2PDeep-v2 employs one-hot encoding and 

normalization individually on six different types of omics data: gene expression, miRNA 

expression, DNA methylation, protein expression SNP, and CNV. Regarding features in 

expression data, such as gene expression, miRNA expression, DNA methylation, and protein 

expression, the values in each sample undergo normalization through z-score normalization. 

Focusing on DNA methylation data, only CpG islands occurring in promoter regions or genes 

are included. For SNP data, the four genotypes (adenine (A), thymine (T), cytosine (C), and 

guanine (G)) and missing data undergo encoding through one-hot binary encoding. In the case of 

gene-level CNV data, the encoding includes homozygous deletion, single copy deletion, diploid 

normal copy, low-level copy number amplification, and high-level copy number amplification, 

utilizing one-hot binary encoding. Notably, missing values for expression data are set to 0, while 

none of the SNP and CNV datasets undergo any imputation process. 

 

Modeling in G2PDeep 

Multi-CNN 

Our proposed multi-CNN is an extended version of the dual-CNN reported in our previous work 

[14,15]. The multi-CNN model (as shown in Fig. 7) takes up to three types of omics data 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.10.612292doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612292
http://creativecommons.org/licenses/by-nc-nd/4.0/


combinations as input. The model consists of multiple parallel CNN layers and a fully connected 

neural network. The encoded genotypes for each type of omics are individually passed into 

multiple parallel CNN layers. These layers generate representations for each type of omics data 

to discover patterns and provide a better understanding of the biomarkers. The representations 

for each type of omics are concatenated, integrating the information of biomarkers from different 

perspectives. The concatenated representations are then passed into the fully connected neural 

network with an output layer for phenotype prediction. To prevent the model overfitting, a Batch 

Normalization [32] layer is added at the end of representation and Dropout [33] layers are added 

in each layer of fully connected neural network. The Leaky Rectified Linear Unit (Leaky-ReLU) 

[34] activation function is added to each layer of model. The loss function of the model is cross-

entropy and mean squared error for categorical phenotype and quantitative phenotype prediction, 

respectively. The model is optimized by Adam [35], an adaptive learning rate optimization 

algorithm. In TCGA cancer studies, the output of the model is a vector of probabilities converted 

by the Softmax function, representing the probability to LTS or non-LTS. In Juan’s rice study, 

the output of model is a single value representing the quantity of phenotype. 

 

Traditional machine learning models 

G2PDeep-v2 integrates various traditional machine learning methods, such as LR, SVM, DT, 

and RF for comparisons. The input for these models is a vector of values concatenated from each 

type of omics. For logistic regression, it uses an L2 penalty term to deal with multicollinearity 

problems and penalize insignificant biomarkers. The SVM model uses the radial basis function 

(RBF) kernel, which makes the data separable using a hyperplane by projecting non-linearly 

separable data into higher-dimensional space. The decision tree, a nonparametric machine 

learning algorithm, facilitates training the data without strong assumptions or prior knowledge. 

The random forest, an ensemble learning method, can handle both linear and non-linear types of 

data. 

 

Biomarkers discovery and annotation 
The significant biomarkers associated with phenotypes of interest to researchers are estimated 

using models in G2PDeep-v2. The saliency map algorithm is applied to the multi-CNN to 

estimate these significant biomarkers, and the coefficients of traditional ML models are utilized 

to identify them. Biomarkers with higher estimated values are considered significant. To facilitate 

the functional annotation of these identified significant biomarkers, the Gene Set Enrichment 

Analysis (GSEA) function of GSEApy [39], a Python library, is employed. 

 

Web server implementation 
G2PDeep-v2 is developed using Model-View-Controller (MVC) architectural pattern and 

deployed in Docker. This Dockerized deployment is hosted on a server equipped with an Intel(R) 

Xeon(R) Gold 6248 CPU and 384 GB of memory, signifying a robust computing environment 

capable of efficiently handling the computational demands of G2PDeep-v2. G2PDeep-v2 is 

designed to provide users with a clean and orderly appearance of interface components, reducing 

the chances of faulty operations and improving user experience. It utilizes high-performance 

computing resources to guarantee efficient, sustainable, and reliable services with a high volume 

of tasks. The architectural framework of G2PDeep comprises four modules, complemented by a 

security policy as illustrated in Fig. 8. 
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Web interface module 

G2PDeep-v2 provides user-friendly web interface developed using ReactJS [36] and Material UI 

[37], enterprise-level user interface (UI) libraries. It is designed to be responsive and to render 

content freely across all screen resolutions on computer and tablet. The Plotly [38], a Python 

graphing library, is used for publication-quality graphs on cross-platform web browsers including 

Google Chrome, Firefox, Microsoft Edge, and Safari. High-quality interactive charts help users 

not only summarize the most interesting results easily, but also understand the omics-based 

finding comprehensively. 

 

Core backend module 

The core backend of G2PDeep-v2 is a middle platform connecting to web interface, database, 

and the AI platform. It is developed based on the Django REST framework [39], a Python-based 

powerful and flexible server-side web framework, for managing high volume of requests and 

tasks robustly. The Hypertext Transfer Protocol (HTTP) is used to communicate between web 

interface and backend. The backend integrates different pipelines for dataset creation, models 

training, and results summarization. It uses Python-based libraries, such as Pandas, NumPy [40] 

and SciPy [41], to perform a wide variety of mathematical operations on high-dimensional input 

data and results. The Celery [42], a Python-based extension of Django, schedules model training 

tasks in a queue and completes expensive operations of training asynchronously. 

 

AI platform module 

The AI platform is designed for construction, modification, training, and inference of deep 

learning neural networks and machine learning based models. The deep learning models and their 

mathematical optimization are developed based on TensorFlow [43] and Keras [44], high-level 

deep learning frameworks. The machine learning based models are implemented by scikit-learn 

[45], free software machine learning library for the Python programming language. The Optuna 

[46], an automatic hyperparameter optimization software framework, provides black box and 

hyperparameter optimization to maximize the performance of the deep learning and machine 

learning models.  

 

Database module 

MySQL [47] and Redis [48] databases are used in G2PDeep-v2. MySQL, a relational database, 

enables meaningful information by joining various organized tables. It manages various multi-

omics data, project information, modeling information, training information, and user 

information. Redis is a NoSQL database and in-memory database, extremely fast in reading and 

writing the data in random access memory. Redis stores the model training information and 

details of scheduler, bring the reliability of data storage and transactions during multiple tasks 

processing. 

 

Security policy 

The G2PDeep-v2 leverages JSON Web Token (JWT) token [49] to control the access to private 

datasets and models. The JWT token is a protocol providing authentication, authorization, and 

other security features for enterprise applications. Users can create an account by filling out a 

registration form on the sign-up page with the required information. The activation link for the 

new account is then sent to users. Users can log into G2PDeep using their registered username 
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and password. The login credential remains valid for 12 hours, providing access without having 

to prompt the user to log in again.  
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Figures 
 

 
 

Fig. 1. Overview of G2PDeep-v2. 
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Fig. 2. Dataset creation and retrieval in G2PDeep-v2. (A) Example of dataset creation by a shared 

link to data. (B) Publicly available datasets are shown with structured information. 
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Fig. 3. Interactive chart to configure the deep-learning model in G2PDeep-v2. (A) Options for 

inputting details such as the model, task, and input data. (B) Hyperparameters tuning options. 
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Fig. 4. Project page in G2PDeep-v2. (A) Model details show the type of model and corresponding 

training dataset; (B) Figure of multi-CNN model; (C) Learning curve for training and validation 

datasets; (D) Distribution of ground truth and predicted values for training and validation datasets; 

(F) ROC curve for phenotype prediction; (G) Optimization history shows improvement of the 

model during the automate hyperparameter tuning. 
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Fig. 5. Study Results page in G2PDeep-v2. (A) Panel to select study; (B) Upset plot shows 

overlapping significant biomarkers; (C) GSEA analysis with Reactome for significant 

biomarkers; (D) GSEA analysis with KEGG for significant biomarkers. 
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Fig. 6. Mean AUC of models on 41 datasets from the Skin Cutaneous Melanoma (SKCM) study. 

Models are trained on each dataset individually. The result indicates our proposed multi-CNN 

model outperforms other traditional machine learning models. 
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Fig. 7. An example architecture of the multi-CNN model designed for long-term survival 

prediction using input data with single, two combinations, and three combinations of multi-omics 

data. 
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Fig. 8. The architecture of G2PDeep. The architecture consists of four modules and these 

modules communicate with each other via appropriate APIs. 
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Tables 
 

Table 1. Comparison of functionalities between the previous and latest versions of G2PDeep. 

Categories Functionality G2PDeep-v1 G2PDeep-v2 

Dataset creation 

single nucleotide polymorphisms (SNP) / Zygosity ✔️ 
✔️ 

gene expression  
✔️ 

copy number variation (CNV)  
✔️ 

Protein expression  
✔️ 

microRNA (miRNA) expression  
✔️ 

DNA Methylation  
✔️ 

Custom models 

dual-CNN / multi-CNN ✔️ 
✔️ 

Support Vector Machine (SVM)  
✔️ 

Logistic Regression (LR)  
✔️ 

Random Forest (RF)  
✔️ 

Decision Tree (DT)  
✔️ 

Multiple inputs  
✔️ 

Task 
Regression ✔️ 

✔️ 

Classification  
✔️ 

Model training 

Online training ✔️ 
✔️ 

Training monitoring ✔️ 
✔️ 

Automate hyperparameter tunning  
✔️ 

Hyperparameter tunning monitoring  
✔️ 

Online prediction Prediction with test dataset ✔️ 
✔️ 

Marker discovery 

Identifying significant markers ✔️ 
✔️ 

GSEA with KEGG/Reactome  
✔️ 

Literatures related to significant markers  
✔️ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.10.612292doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612292
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Uniform dataset for 6 different TCGA cancer studies. 
Study # of samples 

(LTS/Non-

LTS) 

Number of features 

Gene 

expression 

miRNA 

expression 

DNA 

methylation 

protein 

expression 

SNP CNV 

BLCA 42 (15/27) 20,533 1,048 300,869 225 18,634 24,778 

HNSC 39 (14/25) 20,533 1,048 300,973 239 17,796 24,778 

LUAD 33 (16/17) 20,533 1,048 300,822 239 18,950 24,778 

LUSC 28 (15/13) 20,533 1,048 300,970 239 18,822 24,778 

SARC 26 (15/11) 20,533 1,048 299,776 219 12,422 24,778 

SKCM 41 (29/12) 20,533 1,048 300,455 225 19,488 24,778 
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Table 2. Uniform dataset for 6 different TCGA cancer studies. 
study Number of samples (LTS/Non-LTS) 

Gene 

expression 

miRNA 

expression 

DNA 

methylation 

Protein expression SNP 

ACC 62 (44/18) 63 (44/19) 63 (44/19) 36 (28/8) 73 (50/23) 

BLCA 248 (87/161) 250 (89/161) 252 (89/163) 215 (76/139) 252 (89/163) 

BRCA 506 (437/69) 344 (296/48) 364 (314/50) 410 (351/59) 455 (395/60) 

CESC 146 (91/55) 146 (91/55) 146 (91/55) 65 (44/21) 138 (86/52) 

CHOL 26 (11/15) 26 (11/15) 26 (11/15) 22 (9/13) 26 (11/15) 

COAD 126 (78/48) 91 (56/35) 130 (81/49) 133 (79/54) 172 (101/71) 

ESCA 86 (17/69) 87 (18/69) 87 (18/69) 51 (12/39) 86 (18/68) 

HNSC 327 (144/183) 298 (128/170) 331 (145/186) 230 (89/141) 318 (135/183) 

KICH 53 (47/6) 53 (47/6) 53 (47/6) 51 (45/6) 53 (47/6) 

KIRC 404 (293/111) 177 (132/45) 228 (157/71) 246 (173/73) 226 (173/53) 

KIRP 127 (100/27) 127 (100/27) 120 (94/26) 95 (75/20) 120 (94/26) 

LIHC 195 (91/104) 195 (92/103) 199 (94/105) 109 (35/74) 189 (89/100) 

LUAD 270 (133/137) 223 (109/114) 230 (112/118) 204 (102/102) 269 (133/136) 

LUSC 305 (149/156) 196 (95/101) 222 (111/111) 204 (106/98) 302 (146/156) 

MESO 80 (14/66) 80 (14/66) 80 (14/66) 58 (8/50) 76 (14/62) 

PAAD 108 (20/88) 108 (20/88) 114 (21/93) 70 (11/59) 112 (21/91) 

READ 38 (27/11) 33 (23/10) 40 (29/11) 46 (30/16) 49 (36/13) 

SARC 177 (108/69) 177 (108/69) 179 (109/70) 150 (87/63) 159 (96/63) 

SKCM 335 (227/108) 322 (219/103) 336 (227/109) 236 (152/84) 334 (226/108) 

STAD 196 (48/148) 184 (47/137) 189 (49/140) 170 (38/132) 208 (49/159) 

THCA 208 (199/9) 209 (200/9) 210 (201/9) 169 (160/9) 205 (198/7) 

UCEC 69 (44/25) 183 (127/56) 193 (137/56) 217 (163/54) 273 (208/65) 

UCS 42 (12/30) 41 (12/29) 42 (12/30) 36 (8/28) 42 (12/30) 
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