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Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive
lung diseases, including asthma and chronic obstructive pulmonary disease
(COPD). The pathology manifests itself in the form of significant, progressive,
and (to date) seemingly irreversible changes to distinct respiratory structural
compartments. Consequently, AR correlates with disease severity and the
gradual decline in pulmonary function associated with asthma and COPD.
Although current asthma/COPD drugs manage airway contraction and
inflammation, none of these effectively prevent or reverse features of AR. In this
review, we provide a brief overview of the features and putative mechanisms
affecting AR. We further discuss recently proposed strategies with promise for
deterring or treating AR.
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Airway remodeling in obstructive lung diseases
Airway remodeling (AR) can be defined as a progressive patho-
logical reorganization of the cellular and molecular constitution 
of the airway wall. While the onset and rate of progression of 
structural changes in the airways have been subjects of immense 
debate, AR has been associated with each of the asthmatic  
phenotypes1. Furthermore, the gradual deleterious transformation 
in lungs can affect airways of all sizes along the bronchial tree.  
Although the strategies for reversing airway contraction and 
mitigating airway inflammation have been mainstays of asthma  
therapy, AR has been clinically intractable. Consequently, a 
pressing need exists for defining the fundamental pathways  
contributing to AR pathology and for empowering both basic 
and clinical research to address this problem. For a comprehen-
sive understanding of the conceptual and practical challenges 
in AR research, readers are encouraged to review the official  
research statement of the American Thoracic Society2. In this 
current report, we provide an overview of the limitations of  
currently approved anti-asthma/chronic obstructive pulmonary 
disease (COPD) drugs in addressing AR and further describe the  
therapeutic potential of recently proposed approaches for targeting 
AR.

AR was first described in 1922 in patients whose death was 
attributed to asthma. Necropsy specimens from these patients  
revealed extensive bronchial mucus plugs and thickening of 
the airway wall3. Numerous subsequent clinical investigations 
have revealed that AR encompasses broad structural changes in 
the airway that includes thickening of the airway wall, airway  
smooth muscle (ASM) hyperplasia and hypertrophy, edema,  
subepithelial fibrosis, increased extracellular matrix (ECM) depo-
sition, immune cell and fibroblast accumulation, angiogenesis, 

altered matrix composition, goblet cell metaplasia, and mucus 
hypersecretion2. A consensus has emerged that multiple cell 
types (including epithelium, ASM, fibroblasts, and immune cells) 
contribute to the development of AR in asthma and COPD4,5  
(Table 1).

The role of the airway epithelium in triggering initial responses 
and sustaining architectural changes in asthmatic lungs is  
evident6,7. In asthma, repetitive damage to the epithelium from 
exposure to noxious environmental agents and immune modu-
lators promotes shedding of the epithelium. Consequently, the 
underlying epithelial-mesenchymal trophic unit may be persist-
ently active and in a reparative state, thus promoting chronic and  
progressive remodeling of the airway8. Remodeling manifests 
in the form of thickening of the epithelial layer, loss of cilia,  
compromised barrier function, mucus hypersecretion, and ECM  
remodeling of the subepithelial space6,7,9–17. Moreover, the number 
of mucus-secreting goblet cells also increases in asthmatics18,19. 
These features collectively contribute to anatomical changes that 
cause airway narrowing, increased fixed resistance, and mucus 
plugging of the bronchial lumen.

Physiological ASM function is crucial for maintaining  
adequate airflow. Changes in both ASM responsiveness and  
morphology occur with asthma, which affects airway resistance  
and airflow. A critical feature of AR is an increase in ASM mass 
that contributes significantly to asthma pathology20,21. Furthermore, 
the increased ASM mass and increased airway wall thickness 
reduce airway lumen area, resulting in increased dynamic and  
fixed resistance21–26. Asthmatic ASM can also acquire a syn-
thetic phenotype, which is characterized by increased secretion 
of ECM, cytokines, and growth factors. Clinical outcomes  

Table 1. Contribution by distinct cell types to the overall pathology of airway 
remodeling in obstructive lung diseases.

Lung cell type Contribution to the pathophysiology of airway remodeling

Epithelial cells Epithelial shedding

Mucus secretion

Subepithelial fibrosis

Goblet cell hyperplasia

Stimulating airway smooth muscle (ASM) proliferation through release 
of growth factors

Recruitment of pro-inflammatory cells

Promoting extracellular matrix (ECM) deposition

Promoting angiogenesis

ASM cells Increased ASM mass

ASM migration and invasion of the epithelium

Adoption of synthetic phenotype (for example, secretion of transforming 
growth factor-beta, chemokines, and ECM components)

Interaction with immune cells through cell adhesion molecules

Fibroblasts Differentiation into myofibroblasts and secretion of ECM components

Accumulation in subepithelial regions
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associated with bronchial thermoplasty intervention (application 
of controlled radiofrequency energy to the airway wall) suggest  
that reducing ASM area is sufficient to improve outcomes in  
asthmatics27.

Fibroblasts can contribute to AR through increased secre-
tion of ECM28,29. Beyond contributing to increased airway wall  
thickness, ECM components can modulate cellular prolifera-
tion and migration. However, the role of fibroblast and ECM  
components in AR in the context of obstructive lung diseases is  
not fully understood.

The structural changes may contribute toward a gradual decline 
in lung function and potentially in loss of pulmonary elas-
ticity, leading to hyperinflation and air trapping in lungs.  
Moreover, remodeling reduces effectiveness of bronchodilatory  
treatments5,30–32. A correlation between AR and disease sever-
ity has been established, but the clinical consequences of AR 
are yet to be fully understood33–38. This lack of knowledge also  
impacts drug discovery efforts. In the subsequent sections, 
we review the efficacy of current therapeutics in blunting or  
reversing AR and discuss novel therapeutic approaches to regulate 
progression of AR.

Overview of current therapeutics and their limitations
Current management of asthma focuses on reversing ASM  
contraction and mitigating airway inflammation. None of these 
approaches directly addresses the progressive pathology that  
causes remodeling in the lung (Table 2).

As noted earlier, bronchial thermoplasty has been shown to reduce 
ASM mass in conducting airways of some, but not all, severe  
asthmatics undergoing the procedure27,39,40. This procedure has 
been shown to significantly reduce collagen deposition in the  
basement membrane. Although bronchial thermoplasty has been 
shown to improve quality of life for severe asthmatics in the 
short term, the cost of the procedure, post-procedure exacerba-
tions, and questions regarding long-term efficacy have limited its  
application41.

Among pharmacological options, β-agonists are the drug of choice 
for evoking bronchorelaxation in attempting to reverse an acute 

asthma attack or for providing bronchoprotection when used in 
combination with an inhaled corticosteroid as a maintenance 
therapy. However, there is no compelling evidence that β-agonists 
deter or reverse AR5. Signaling through cysteinyl leukotriene  
receptors (CysLTRs) and muscarinic acetylcholine receptors 
(mAChRs) has been established to promote outcomes that con-
tribute to AR42–44. Antagonists of both receptors have shown some 
utility in preventing AR. Treatment with the CysLTR antagonist  
montelukast reversed ovalbumin-induced AR by decreasing  
goblet cell metaplasia, ASM mass, and subepithelial collagen  
deposition45,46. In a cohort of mild asthmatics, montelukast 
treatment showed reduced accumulation of myofibroblasts in 
the airway wall, suggesting some potential to mitigate AR47.  
Similarly, the long-acting mAChR antagonist, tiotropium, has  
demonstrated a robust ability in preventing AR in rodent (guinea 
pig and mouse) models of ovalbumin-induced asthma and 
lipopolysaccharide-induced COPD48–52. Overall, although some  
evidence suggests that mAChR and CysLTR antagonists may  
have utility in deterring AR, additional studies in humans are  
necessary to establish the true effectiveness of these drugs in  
preventing or reversing AR5.

Persistent asthma is commonly treated with inhaled corti-
costeroids either as a monotherapy or in combination with a  
β-agonist or mAChR antagonist. In epithelial cells, corticoster-
oids limit the inflammatory response and induce apoptosis53,54.  
In vitro, multiple corticosteroids have been shown to signifi-
cantly inhibit fibroblast proliferation either alone or in combina-
tion with β-agonists55,56. Similar anti-proliferative effects have also 
been reported with corticosteroids in ASM cells stimulated with  
distinct mitogenic agents57,58. However, others have shown that 
corticosteroids have no effect on ASM proliferation59,60. While  
corticosteroids inhibit growth factor–stimulated proliferation of 
ASM cells sourced from healthy controls, this effect was lacking 
on ASM cells from asthmatics59. In animal models, dexametha-
sone has been shown to reduce goblet cell metaplasia; however, 
this treatment showed no effect on ASM mass and subepithelial  
fibrosis45. In humans, in conjunction with limiting inflamma-
tion and airway hyperresponsiveness, corticosteroid treatment 
can also reduce mucin secretion and limit ECM deposition and  
AR61–64. However, others have shown that corticosteroids have 
a mixed effect on the resolution of subepithelial fibrosis65–70.  

Table 2. Current therapeutic targets for asthma management and their effect on airway remodeling.

Class of 
therapeutic 
drugs

Target Effect on airway remodeling

β-agonists β2-AR (beta 2 
adrenergic receptor)

Limited effect on airway remodeling5. Combination therapy with inhaled 
corticosteroid limits angiogenesis and fibroblast proliferation55,56,71. 

Inhaled 
corticosteroids

Glucocorticoid 
receptor

Combination therapy with β-agonists limits angiogenesis71. Mixed anti-
proliferative actions on airway smooth muscle cells and human fibroblasts55,56. 
Reduced mucin secretion and limited extracellular matrix deposition61–64.

Anti-leukotrienes CysLTR (cysteinyl 
leukotriene receptor)

Moderate effect on airway smooth muscle mass, goblet cell metaplasia, and 
subepithelial collagen deposition45,46,62. Decreased accumulation of fibroblasts 
in lungs47.
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Collectively, studies to date indicate a need for developing better 
therapeutic drugs for targeting AR pathology in obstructive lung 
diseases.

New targets and approaches for airway remodeling
In recent years, basic science research has begun to provide 
insight into the mechanisms, mediated by multiple cell types, that  
promote AR and these studies help to inform potential strategies 
for managing AR. Certain approaches that show promise in  
mitigating features of AR have recently been proposed (Table 3).

(Other) G protein–coupled receptor ligands
G protein–coupled receptors (GPCRs) play a substantial role in 
numerous normal physiological functions. Unsurprisingly, they 
can contribute towards the pathophysiology of various diseases. 
As noted earlier, GPCR agonists (of the β2-adrenergic receptor) 
and antagonists (of the mAChRs and CysLTR) are principal 
drugs in the management of asthma and COPD. In this section, 
we provide a brief overview of novel targets, the drugs that  
modulate them, and the potential of such drugs to address AR  
pathology.

E-prostanoid receptor agonists. The role of prostaglandin  
E

2
 (PGE

2
) and E-prostanoid (EP) receptor subtypes in mitigating 

AR has been a subject of recent research. Early studies  
demonstrated that autocrine PGE

2
, generated as a consequence 

of cytokine-induced cyclooxygenase-2 induction, significantly  
suppresses mitogen-induced ASM proliferation in vitro72.  
Furthermore, studies of cultured human ASM in our laboratory 
have demonstrated that exogenous PGE

2
 shows relatively supe-

rior anti-mitogenic activity in comparison to multiple β-agonists 
with anti-mitogenic effects corresponding to drug efficacy in  
activating the cyclic adenosine monophosphate/protein kinase A 
(cAMP/PKA) axis73,74. Application of PGE

2
 in humans has been 

hindered by the ability of PGE
2
 to signal through multiple recep-

tor subtypes (EP1–4)75–79, which contributes to undesirable side 
effects. It is now known that the cough response is mediated by 
PGE

2
 activation of the EP3 receptor on vagal sensory nerves80.  

Additionally, studies in our lab have shown that EP3 receptor 
signaling has a pro-mitogenic role in ASM74. To overcome the  
heterogeneity of PGE

2
 signaling, the development of EP  

receptor subtype–specific modulators that specifically promote 
Gs-cAMP-PKA axis activity (via EP2 and EP4 subtypes) has been  

Table 3. Anti-remodeling effects of novel therapeutic approaches (in vitro, animal, and human studies).

Class of therapeutic drugs Target Potential effect on airway remodeling (AR)

G protein–coupled receptor 
modulators

E-prostanoid receptors Suppression of airway smooth muscle (ASM) proliferation72–74.

Bitter taste receptors (TAS2Rs) Regulation of ASM proliferation81,82. Reversal of allergen-
induced AR features, including ASM mass83. Alteration of 
mitochondrial function and induction of autophagy84.

Biologics Interleukin-5 (IL-5) cytokine Reduced subepithelial fibrosis and extracellular matrix (ECM) 
deposition85,86.

Immunoglobulin E Reduced thickening of reticular lamina87.

Mitogen-activated protein 
kinase (MAPK) inhibitors

MEK1 (MAPK kinase) Regulation of mucus secretion88,89. 

p38 Reduced ASM mass and goblet cell metaplasia90.

c-Jun N-terminal kinases (JNKs) Reduced mucus secretion and expansion of goblet cells91,92. 
Reduced proliferation of ASM and epithelial cells93.

Transforming growth factor-
beta-activated kinase 1 (TAK1)

Reduced synthesis of IL-8 in ASM cells and reduced 
proliferation94,95. 

Receptor tyrosine kinase 
inhibitors

Epidermal growth factor 
receptor

Reduced proliferation of ASM and epithelial cells96–98.

Regulation of mucus secretion99–102. 

Reduced ASM thickening and goblet cell metaplasia103.

Platelet-derived growth factor 
receptor

Reduced ASM proliferation104. 

Stem cell growth factor receptor 
(c-kit)

Attenuated collagen accumulation in lungs105.

Non-receptor tyrosine kinase 
inhibitors

Spleen tyrosine kinase (Syk) Reduced bronchial edema106.

Janus kinase (JAK) Reduced expression of Gob-5107. 

Other kinase inhibitors TGF-β receptor type I (T-βRI) 
kinase

Diminished collagen deposition and reduced proliferation of 
ASM and epithelial cells in lungs108. 

Rho-associated protein kinase 
(ROCK)

Curtailed ECM remodeling process109.

Phosphodiesterase (PDE) 
inhibitors

PDEs Marked reduction in subepithelial fibrosis and epithelial layer 
thickening110. Reduced proliferation of ASM111.
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purposed84,112–114. Currently, our lab is evaluating various strategies  
of targeting specific EP receptor subtypes in pre-clinical models  
of allergen-induced asthma84.

Bitter taste receptors. Recently, our laboratory showed that  
bitter taste receptor (TAS2R) agonists can limit proliferation of 
ASM cells in vitro81,82. Mechanistically, TAS2R agonists restrict 
ASM proliferation by inhibiting (1) the growth factor–activated 
protein kinase B (Akt) phosphorylation; (2) transcription factors 
AP-1, STAT3, E2 factor, and NFAT; and (3) genes associated with 
cell cycle progression.

The anti-mitogenic effects of TAS2R agonists further trans-
late to pre-clinical asthma models as well. In a chronic allergen  
(ovalbumin or house dust mite) challenge model, treatment with 
bitter taste compounds (chloroquine and quinine) significantly 
reversed remodeling features83. Specifically, treatment with  
bitter compounds inhibited the expression of calponin, smooth 
muscle alpha-actin, and smooth muscle myosin heavy chain in 
lungs. Furthermore, levels of matrix metallopeptidase-8 (MMP-8)  
(neutrophil collagenase), pro-MMP-9 (gelatinase), and MMP-12 
(macrophage metalloelastase) were significantly reduced in 
lungs following treatment with TAS2R agonists. Finally, aller-
gen-induced expression of pro-fibrotic cytokine transforming 
growth factor-beta (TGF-β) as well as phospho-mothers against 
decapentaplegic homolog 2 (pSmad2) and fibronectin in the 
lung tissue was also curtailed by TAS2R agonists. Collectively, 
these studies indicate that TAS2R agonists, unlike current GPCR  
ligands used to treat asthma, address multiple features of asthma 
pathology, including AR. Advancements in the development 
of selective ligands for TAS2R subtypes will allow for a refined  
therapeutic approach in the near future.

Bitter tastants have also been shown to modulate function of  
ciliated epithelial cells115. Specifically, the motile cilia on human  
airway epithelia express TAS2Rs (T2R4, T2R43, T2R38, and 
T2R46). The organization of TAS2Rs on cilia with the distribu-
tion of the signaling machinery along the ciliary shaft and within 
the attached epithelial cell presents an interesting mechanical  
apparatus for signal transduction. Stimulation of TAS2Rs with  
bitter tastants induces transient Ca2+ flux within the epithelial  
cells and increases ciliary beat frequency. Functionally, pro-
moting increased ciliary movement could be beneficial in the  
removal of excess mucus from the airways.

In recent years, the role of mitochondrial dysfunction in disease 
states, including obstructive lung diseases, has become increas-
ingly clear116,117. Specifically, a role for autophagy/mitophagy in  
regulating mitochondrial function in pathophysiology of  
obstructive lung diseases is emerging. As noted earlier, our stud-
ies show that activation of TAS2Rs can promote anti-mitogenic 
activities. Further explorations into the mechanisms that underlie 
the anti-mitogenic effects of TAS2R agonists have uncovered 
an interesting role for bitter tastants in altering mitochondrial  
function and inducing autophagy82. TAS2R agonists can induce 
changes in mitochondrial membrane potential, increase reac-
tive oxygen species generation, and promote mitochondrial 
fragmentation. These observations provide insight into the  
broader therapeutic potential of targeting mitochondrial function 
and promoting autophagy to restrict cellular proliferation.

Biologics
Asthma pathology is orchestrated by multiple immunologic  
mediators (cellular and secreted)118. Consequently, in recent years, 
therapies that target specific cytokines or immune cells to disrupt 
immune networks responsible for asthma pathology have gained 
significant interest. Targeting key cytokines with specific anti-
bodies—biologics, including antibodies targeting interleukin-4 
(IL-4), IL-5, and IL-13—can significantly limit recruitment of  
inflammatory cells to the lungs or blunt their pleiotropic effects. 
For instance, anti–IL-5 treatment can significantly reduce the 
number of circulating eosinophils in asthmatics and improve lung  
function119–121. Anti–IL-5 treatment has been shown to prevent 
the development of subepithelial fibrosis in a murine model of  
asthma and reduce incorporation of proteoglycans in the human 
airway wall85,86. However, antibodies targeting other cytokines 
or their receptors have not been studied in the context of AR122.  
Collectively, the data on the effects of biologics on AR are  
lacking and this is possibly due to the relatively recent develop-
ment of these drugs. Future longitudinal studies that evaluate  
biologics in the context of remediation of AR features are needed  
to address the utility of these drugs as anti-AR agents.

Allergen-specific immunoglobulin E (IgE) isotype antibodies can 
cross-link on mast cells and basophils, causing degranulation and 
release of histamine, cytokines, and growth factors123. Biologics 
that block the interactions of IgE antibodies to the high-affinity  
FcεRI receptors on mast cells and antigen presenting cells can 
curtail the sensitization profile in asthmatics and reduce exacer-
bations. In severe asthmatics evaluated for 36 months, blocking  
IgE activity was sufficient to reduce the thickening of the  
reticular lamina, thereby having an impact on AR87.

Although biologics have become an increasingly important 
tool in the management of severe asthma, their application in 
the clinic has some drawbacks124–126. Application of cytokine- 
specific antibody therapy is limited by the heterogeneity of  
asthma phenotypes127. Non-atopic asthmatics are also not suitable 
for certain therapy (for example, anti-IgE). Biologics can also 
cause side effects such as hypersensitivity reactions, although 
the underlying mechanisms are unclear. Finally, there is also  
significant cost associated with the use of biologics.

Kinase inhibitors
Kinase enzymes modulate multiple cellular functions by  
regulating various signaling networks, including those regulat-
ing cellular proliferation and growth. Consequently, inhibitors 
that target various kinases have received increasing attention. 
Modulators of kinase functions account for one third of drugs 
in the development pipeline, and the majority of these repre-
sent cancer therapeutics128. In this section, we provide a brief 
overview of drugs that target distinct kinases. For a more  
comprehensive discussion of targeting kinases in the context of 
obstructive lung diseases, the reader is referred to129.

Mitogen-activated protein kinase inhibitors. Mitogen-activated 
protein kinases (MAPKs) have been studied extensively for their 
contribution to inflammatory gene expression and activation 
of multiple networks that contribute to the pathophysiology of  
obstructive lung diseases130. Extracellular signal-regulated  
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kinases (ERK1/2) are particularly interesting given that they 
are activated in multiple cell types that contribute to asthma and  
COPD pathology88,131,132. Inhibition of ERK kinase (MAPK1, or 
MEK1) which is upstream of ERK1/2 can significantly reduce 
mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expres-
sion in cultured human bronchial epithelial cells subjected to 
chronic mechanical stress at the air-liquid interface88,89. Other 
MAPKs, such as p38, c-Jun N-terminal kinase (JNK), and trans-
forming growth factor beta-activated kinase 1 (TAK1), are acti-
vated in asthma and COPD129, and inhibitors of these targets can 
mitigate various features of AR in both cell and animal asthma  
models90–95. However, to date, no studies in humans have evalu-
ated these inhibitors. Another limitation of kinase inhibitors 
is that these compounds are predominantly inhibitors of ATP- 
competitive and catalytic sites and block all enzymatic activity, 
including MAPK functions important for normal physiologi-
cal activity in cells. Given the ubiquitous functions of the MAPK 
signaling pathway, development of substrate-selective MAPK  
inhibitors with the goal of targeting specific kinase functions  
associated with disease, while preserving kinase functions in 
normal cells, appears necessary to overcome limitations of off- 
target effects.

Receptor tyrosine kinase inhibitors. Receptor tyrosine kinases 
(RTKs) occupy a central role in critical signaling networks 
that promote asthma pathology, including remodeling133. With  
inflammation, distinct RTKs and their ligands (for example, 
epidermal growth factor) are upregulated in human asthmatic  
airways and show a strong correlation with disease severity134–143. 
RTKs can stimulate pathophysiological functions in ASM and 
epithelial cells. Thus, significant interest in advancing tyrosine  
kinase inhibitors for targeting RTKs has developed.

Activation of epidermal growth factor receptor (EGFR) is essen-
tial for mucus secretion and goblet cell metaplasia144. It is also 
responsible for sustaining oxidative damage in the epithelial  
compartment through recruitment of neutrophils in a TGF-β–
dependent manner145–148. EGFR inhibitors tyrphostin AG1478 and 
BIBX1522 have been evaluated in vitro and in animal models of 
lung inflammation99–101. Collectively, these studies report signifi-
cant reductions in expression of mucus-associated MUC5AC gene 
and mucin secretion. More importantly, there is a concomitant  
reduction in collagen deposition and ASM proliferation96–98. 
Although these observations are encouraging, some inhibitors 
of EGFR have failed to produce similar outcomes in clinical 
studies149. Activation of platelet-derived growth factor receptor 
(PDGFR) has been shown to stimulate ASM proliferation  
in vitro and in vivo138,150,151. Multiple drugs targeting PDGFR can 
mitigate ASM proliferation in vitro, although animal and human 
studies that address AR are lacking104. In severe corticosteroid- 
dependent asthmatics, treatment with the tyrosine kinase inhibitor 
mastinib has shown improved outcomes; however, some adverse 
effects, including skin rash and edema, have also been reported152. 
During airway inflammation, multiple cell types (immune 
and resident) can be stimulated to secrete angiogenic factors, 
including vascular endothelial growth factor (VEGF)153–159. 
These angiogenic factors can further stimulate increase in  
formation of new blood vessels from endothelial cells in the sub-
epithelial mucosa160–162. Although the contribution of neovasculari-
zation in AR is unclear, it has been suggested that newly formed  

vasculature is permeable, thus contributing to edema and limiting 
airflow71,161,163,164. An antagonist of VEGFR-1 and VEGFR-2 
(SU5416) has been shown to limit inflammatory responses in 
animals165, although its impact on AR is unknown and studies in 
humans are lacking.

Because multiple RTKs contribute to pathology of AR, a novel 
strategy that targets multiple RTKs has gained momentum. In a  
pre-clinical murine model of ovalbumin-induced asthma, treat-
ment with nintedanib—a small-molecule inhibitor that targets 
multiple RTKs (VEGFR, fibroblast growth factor receptor, and  
PDGFR)—significantly improved indices of remodeling and 
airway inflammation166. This approach could be useful in  
targeting multiple redundant RTK networks that contribute to 
AR. Finally, inhibitors of non-RTKs, such as stem cell growth 
factor receptor (c-kit), spleen tyrosine kinase (SYK), the proto- 
oncogene tyrosine-protein kinase Src, and Janus kinase (JAK),  
have also been investigated in rodent models of asthma but  
have not yet progressed to studies in humans105,106,167–171.

Other kinase inhibitors. Diverse stimuli (cytokines, viruses, 
growth factors, free radicals, and so on) can activate the transcrip-
tion factor nuclear factor-kappa B (NF-κB) in multiple airway cell 
types. This transcription factor plays a key role in orchestrating 
immune responses and thus multiple intra- and inter-cell inflam-
matory signals129. Although inhibitors that target activation of  
NF-κB have been shown to suppress certain synthetic functions 
of ASM172 and modulate pro-inflammatory outcomes in epithe-
lial cells173, specific NF-κB inhibitors have not translated into 
clinical trials for asthma and this is due to their multiple side  
effects129. Inhibitors of phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI-3K) that regulate cellular lipids and coordinate  
inflammatory pathways have undergone extensive inves-
tigation in asthma and COPD174,175. However, data assess-
ing AR indices are lacking. TGF-β plays an important role 
in cellular proliferation and differentiation and its expression 
increases in asthmatic airways, especially in the submucosal  
compartment176–178. TGF-β has also been implicated in AR and 
can promote proliferation in ASM179,180. TGF-β activates TGF-β 
receptor type I (T-βRI) kinase, which in turn activates Smad-
dependent signaling that regulates expression of various genes.  
Small-molecule inhibitors of (T-βRI) kinase have yielded mixed 
results in studies assessing their effects on mechanisms mediat-
ing AR. T-βRI kinase inhibitors have been shown to diminish  
collagen deposition in lungs of rats challenged repeatedly with an  
allergen108. In vitro, T-βRI inhibitors have demonstrated the  
ability to limit ASM proliferation, although their use in ani-
mal studies failed to inhibit TGF-β–induced increases in ASM  
mass108,181. Clinical application of these inhibitors has been  
limited due to adverse effects, including cardiotoxicity in  
clinical trials for cancer therapy182. Protein kinase C (PKC) 
is another target of interest given its ability to promote con-
tractile signaling in ASM following activation of Gq-coupled 
GPCRs. PKC is also relevant to AR because of its role in ASM  
proliferation183 and mucus secretion in epithelium148. Owing to 
severe toxicity, non-selective inhibitors of PKC have not pro-
gressed to clinical trials129,184. Selective inhibitors of PKC isoforms 
have been developed for clinical studies for treatment of cancer, 
metabolic diseases, and psychiatric disorders, although adverse 
effects have been problematic and no clinical trials have been  
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conducted for treatment of obstructive lung diseases in  
humans129,184. Finally, Rho-associated protein kinase (ROCK) 
inhibitors have been shown to mitigate multiple features of 
asthma, including AR in guinea pig and murine models109,185. 
Although ROCK inhibitors have been approved for certain indi-
cations, clinical trials in asthma or COPD are lacking129 as issues  
regarding selectivity and toxicity have limited progression of  
these inhibitors to clinical application in airway diseases129.

In summary, in vitro studies of pharmacological inhibition of 
multiple kinases that contribute to dysfunction in ASM and  
epithelium have yielded promising results181,186. However, certain 
limitations have stalled progression of many drugs for clinical 
use. Specificity, efficacy, solubility issues, and poor pharmacoki-
netic profiles plague drug development187. With chronic inhibi-
tor treatment, compensatory signaling by other kinases may 
limit drug efficacy; this appears to be the case with p38 isoform  
inhibitors129,188. Inhibition of any widely expressed kinase  
runs the risk of adverse effects. For example, given that NF-κB 
is crucial for mounting an immune response to microbial patho-
gens, blocking its activation could render patients susceptible to 
life-threatening infections129. Current challenges in developing  
effective and safe kinase inhibitors hinge on improving the poor 
solubility, selectivity, and targeting of the current versions of  
these drugs129.

Other small-molecule inhibitors
Phosphodiesterase (PDE) inhibitors have a beneficial effect of 
promoting ASM relaxation by increasing intracellular cAMP 
resulting in PKA-mediated ASM relaxation. In murine models of 
asthma, PDE inhibitors have also been shown to curtail inflam-
mation and reduce AR110. Inhibition of PDE3 (but not PDE4) 
has anti-proliferative action on mitogen-activated human ASM 
cells in vitro, but as with most potential anti-AR drugs, useful 
in vivo data are lacking111. More recently, an inhibitor of PDE8  
(PF-04957325) has been shown to regulate proliferation of  
ASM cells by enhancing cAMP accumulation generated specifi-
cally from the β2-AR/AC6 pathway189.

The rapamycin derivative SAR-943 has been shown to limit 
the mitogen-induced proliferation of human ASM cells (but not  
human epithelial cells) in vitro and mitigate inflammation and  
AR in vivo in ovalbumin-challenged mice190, yet no clinical studies 
for asthma or COPD have been reported.

Conclusions
The correlation between AR and obstructive lung disease severity 
suggests a strong pathogenic role of AR in these diseases. Thus, 
remediation of AR appears critical for improving the severity and 
progression of these diseases. A growing arsenal of small-molecule 

inhibitors and biologics in conjunction with non-pharmacological 
interventions such as bronchial thermoplasty has shown prom-
ise in addressing this unmet clinical need. As our understanding 
of mechanisms underlying AR improves, so will the drug devel-
opment approaches as well as the phenotyping capabilities that 
accurately assess AR in humans. These advances will undoubt-
edly fulfill our need for more refined, efficacious, and safer drugs 
that enable us to finally control the entire spectrum of asthma  
pathology.
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