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A B S T R A C T   

Objective: Invasive lung adenocarcinoma（ILA） with micropapillary (MPP)/solid (SOL) com-
ponents has a poor prognosis. Preoperative identification is essential for decision-making for 
subsequent treatment. This study aims to construct and evaluate a super-resolution（SR） 
enhanced radiomics model designed to predict the presence of MPP/SOL components preoper-
atively to provide more accurate and individualized treatment planning. 
Methods: Between March 2018 and November 2023, patients who underwent curative intent ILA 
resection were included in the study. We implemented a deep transfer learning network on CT 
images to improve their resolution, resulting in the acquisition of preoperative super-resolution 
CT (SR-CT) images. Models were developed using radiomic features extracted from CT and SR- 
CT images. These models employed a range of classifiers, including Logistic Regression (LR), 
Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest, Extra Trees, 
Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and 
Multilayer Perceptron (MLP). The diagnostic performance of the models was assessed by 
measuring the area under the curve (AUC). 
Result: A total of 245 patients were recruited, of which 109 (44.5 %) were diagnosed with ILA 
with MPP/SOL components. In the analysis of CT images, the SVM model exhibited outstanding 
effectiveness, recording AUC scores of 0.864 in the training group and 0.761 in the testing group. 
When this SVM approach was used to develop a radiomics model with SR-CT images, it recorded 
AUCs of 0.904 in the training and 0.819 in the test cohorts. The calibration curves indicated a 
high goodness of fit, while decision curve analysis (DCA) highlighted the model’s clinical utility. 
Conclusion: The study successfully constructed and evaluated a deep learning（DL）-enhanced 
SR-CT radiomics model. This model outperformed conventional CT radiomics models in pre-
dicting MPP/SOL patterns in ILA. Continued research and broader validation are necessary to 
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fully harness and refine the clinical potential of radiomics when combined with SR reconstruction 
technology.   

1. Introduction 

Lung cancer remains the foremost cause of cancer-related deaths worldwide. Lung adenocarcinoma, which is the most common 
histological subtype, accounts for nearly half of all lung cancer cases [1]. This subtype of lung cancer is characterized by significant 
heterogeneity in terms of molecular features, pathological presentation, prognostic outcomes, and treatment approaches. The Inter-
national Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS), and the European Respiratory Society 
(ERS) have collaborated to develop and publish a revised histological classification system for lung adenocarcinoma, acknowledging 
its heterogeneous nature [2]. The updated classification provides a framework for prognostic stratification based on histological 
patterns. The classification system distinguishes lepidic, papillary, acinar, micropapillary (MPP), and solid (SOL) patterns, which are 
predominant invasive lung adenocarcinoma (ILA) subtypes. It is common for ILA tissue to exhibit a combination of these subtypes 
within a single patient [3,4]. 

Within the spectrum of ILA subtypes, MPP and SOL patterns are closely associated with a poorer prognosis. These particular 
subtypes correlate with increased rates of recurrence and metastasis in ILA [5–7]. Even if the proportion of MPP/SOL is less than 5 % of 
ILA tissue, patients still face a significantly increased risk of recurrence or metastasis after surgery [8–12]. This critical insight indicates 
the potential need for revising treatment approaches. Specifically, for those patients undergoing conservative resection for lung cancer, 
the existence of MPP/SOL subtypes is recognized as an independent prognostic factor for local recurrence [13,14]. Consequently, 
precisely identifying micropapillary (MPP) and solid (SOL) components in lung adenocarcinoma before surgery plays a vital role in 
determining the most effective treatment approach. However, the challenge persists, as preoperative histological evaluations (like 
CT-guided percutaneous biopsies) often fall short of fully characterizing the tumor’s heterogeneity [15,16]. In light of these limita-
tions, preoperative CT imaging assessment may provide a more inclusive appraisal of the patient risk and thus inform subsequent 
treatment decisions or follow-up protocols. 

As an innovative approach, radiomics enables non-invasive quantification of tumor heterogeneity by analyzing a wide range of 
advanced quantitative features extracted from medical imaging data. This methodology comprehensively examines the radiological 
attributes and spatial arrangement within tumor tissues [17], allowing for a comprehensive and quantitative evaluation of tumor 
heterogeneity [18]. Studies have demonstrated that radiomics can improve diagnostic precision and prognostic forecasting by 
revealing disease characteristics that are difficult to capture with traditional imaging. This advancement holds promise for refining 
patient management and clinical decision-making processes [19,20]. It has shown its unique value in evaluating lung adenocarcinoma 
[21]. Recent research has demonstrated that employing radiomics on CT scans, which involves extracting complex quantitative 
features, provides a non-invasive method for forecasting MPP/SOL patterns in lung adenocarcinoma [22,23]. Nonetheless, radiomics 
analysis faces challenges due to current medical imaging technology limitations, such as non-uniform spatial resolution and restricted 
voxel data, which can compromise the accuracy of the extracted radiomic features [24]. Integrating images with superior resolution 
during the model development process is crucial to addressing these challenges and improving the stability and dependability of 
radiomics models. 

Super-resolution (SR) techniques seek to improve the spatial detail of digital imagery by generating high-resolution versions from 
lower-resolution source images. This field has seen considerable advancements since it was first proposed in the 1980s [25]. The 
integration of deep learning (DL) technologies has significantly propelled the effectiveness of SR techniques in the realm of medical 
imaging [26]. According to Park and colleagues, DL-driven CT slice de-thickening technology can markedly improve the effectiveness 
of computer-aided detection (CAD) systems in identifying subsolid pulmonary nodules [27]. SR technology exhibits remarkable 
stability and reliability in processing images with varied spatial gradients. Moreover, the radiomic features derived from SR-enhanced 
images have also shown significant consistency and robustness [24]. Even so, DL-enhanced SR technology within radiomics, especially 
for identifying of radiomic biomarkers for clinical use, remains relatively rare [28]. This research seeks to create and validate a 
radiomics model enhanced by SR technology. The model’s objective is to forecast the presence of MPP/SOL components before 
surgery, enabling the implementation of more accurate and tailored treatment approaches. 

2. Material and methods 

This study was retrospective. 

2.1. Patients 

This research was conducted in full compliance with the ethical guidelines outlined in the Declaration of Helsinki (2013 revision). 
The Human Research and Ethics Committee of Zhejiang Hospital approved this study protocol (approval number 2023-37K). Given the 
study’s retrospective design, the need for informed consent was waived. The study population comprises patients diagnosed with lung 
adenocarcinoma, as confirmed by pathological examination, at our institution’s two centers between March 2018 and November 2023. 

The study included patients who met the following criteria: (1)Underwent chest CT scanning within a week before surgical 
intervention; (2)Had CT images with thin sections (≤1.5 mm) suitable for analysis; (3)Received a pathological confirmation of lung 
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adenocarcinoma, accompanied by a comprehensive pathology report detailing the subtypes; (4) Had not previously received 
chemotherapy or radiotherapy; (5) Had clinical records gathered within a week prior to the surgery; (6)Were diagnosed with tumors 
not exceeding stage II. Patients were excluded from the study if they: (1) Exhibited multiple focal lesions; (2) Underwent biopsy to 
collect tissue samples rather than surgical removal; (3)Were diagnosed with additional malignant tumors; (4)Had undergone radio-
therapy or chemotherapy before CT scanning; (5)Were identified as having microinvasive adenocarcinoma. Fig. 1 illustrates the 
specific inclusion and exclusion criteria and the patient recruitment process. 

Patient information, including demographic data, laboratory test results, and clinical characteristics, was extracted from the 
electronic medical records system. The gathered clinical data included a variety of metrics and details: Demographic attributes such as 
gender and age; physical dimensions like height, weight, Body Mass Index (BMI), and body surface area (BSA); details concerning 
smoking habits, including smoking status, years of smoking, and daily cigarette intake; and a range of tumor markers and biomarkers. 
These markers included Cytokeratin fragment 19 (CYFRA 21-1), Thyroglobulin (TG), Alpha-fetoprotein (AFP), Carcinoembryonic 
antigen (CEA), Neuron-specific enolase (NSE), various Carbohydrate antigens (CA125, CA15-3, CA19-9, CA242, CA50, CA72-4), and 
the Squamous cell carcinoma antigen (SCC). 

2.2. Pathological evaluation 

All tissue samples underwent neutral formalin fixation and paraffin embedding. These samples were then cut into 4-μm thick 
sections and stained with hematoxylin and eosin (H&E). Two pathologists collaboratively re-evaluated the slides using a multi-headed 
microscope. Any discrepancies in their assessments were resolved through mutual discussion. ILA histological subtypes were classified 
according to the multidisciplinary guidelines established by IASLC, ATS, and ERS [2]. Each histological subtype was quantified using 5 
% increments. In the specific case of the micropapillary (MPP) and solid (SOL) subtypes, when their combined component comprised 
less than 5 % of the total tumor volume, the pathologists provided a more precise measurement using 1 % intervals. Tumors were 
categorized as having an absent MPP/SOL pattern if these components comprised less than 1 % of the total tumor. The participants in 
the study were categorized into two groups depending on whether they exhibited an MPP/SOL growth pattern: one group consisted of 
individuals with ILA but without MPP/SOL components, whereas the other group comprised individuals with ILA that featured 
components of MPP/SOL. 

2.3. Image acquisition 

Chest CT images were acquired with six multi-row spiral CT scanners (SIEMENS SOMATOM Force; SIEMENS SOMATOM Defini-
tion; GE MEDICAL SYSTEMS Revolution; GE MEDICAL SYSTEMS CT 540; UNITED CT 510; NeuCT Extra 2) at two centers. The CT 
scanning parameters were configured as follows: detector collimation,1–1.5 mm; field of view: 20–38 cm; beam pitch, 0.800 to 1.5; 
beam width, 10–40 mm; gantry speed, 0.5 or 0.8 s per rotation; 100–130 kV; 47–351 mA; reconstruction interval, 0.39–0.6 mm; 
matrix, 512 × 512, and soft-tissue kernel. All imaging was conducted with patients lying supine at full inspiration, spanning from the 
thoracic inlet down to the base of the lungs. The CT data were retrieved from the Picture Archiving and Communication System 

Fig. 1. Flow chart of the patient recruitment process.  
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(PACS). 

2.4. Data preprocessing 

The CT images underwent preprocessing steps to improve the consistency of feature extraction and minimize the influence of 
varying image acquisition parameters on analytical outcomes. Z-Score normalization was applied to the data. Linear interpolation was 
used to resample the image voxels, uniformly adjusting them to a standard voxel size of 1 × 1 × 1 mm3. The images underwent 
grayscale quantization, discretizing the grayscale values and setting each grayscale interval (bin width) to 25 units [29,30]. 

2.5. Super-resolution reconstruction 

The NSCLC-Radiomics dataset is a publicly available and extensively validated collection of data. It comprises computed tomog-
raphy (CT) scans from 422 patients diagnosed with non-small cell lung cancer (NSCLC). This dataset is accessible through The Cancer 
Imaging Archive (TCIA) website (https://www.cancerimagingarchive.net/collection/nsclc-radiomics/). This dataset contains 1,265 
imaging series consisting of 52,073 images. For our SR reconstruction study, we carefully chose a subset of CT scan series characterized 
by their high consistency. This subset included 142 CT scan series, amounting to 17,938 CT images. The CT images in this dataset have 
a resolution of 512 × 512 pixels. They feature an in-plane pixel spacing of 0.98 mm and a slice thickness of 3.00 mm. All CT scans in 
this subset were reconstructed using the B19f convolution kernel. In the preprocessing stage of our super-resolution reconstruction 
workflow, the initial step involved denoising the original high-resolution CT (HRCT) images, known as RAW CT, and eliminating any 
artifacts. The noise reduction method we utilized is Non-Local Means Denoising [31]. This method reduces noise by comparing the 
similarity between small areas around each pixel and other regions within the image while preserving the details and structure of the 
image. Regarding parameter settings, the search window size is 21 × 21 pixels, and the similarity window is 11 × 11 pixels. These 
parameters have been carefully selected to optimize the denoising effect and prevent excessive smoothing of image details. Artifact 
removal is achieved using an adaptive threshold technique, which identifies brightness anomalies in local areas of the image caused by 
various reasons [32]. We apply slight Gaussian blurring for local smoothing for these identified abnormal areas, with a Gaussian kernel 
standard deviation set at 1.5. This step helps mitigate artifacts’ impact on the final image quality. 

Fig. 2a. Depicts the process of using transfer learning to achieve super-resolution reconstruction of SR-CT images. Fig. 2a: Initially, high-resolution 
CT scans (RAW-CT) undergo a preprocessing step, which includes the removal of noise and artifacts, as well as the normalization of intensity values. 
These images are then processed with Gaussian white noise and Gaussian blur, effectively reducing the resolution in the plane orthogonal to the 
imaging plane by a factor of four, resulting in down sampled, low-resolution CT images (LR-CT). These LR-CT images and synthetic high-resolution 
CT (HR-CT) counterparts are employed to train a compact parallel generative adversarial network (GAN). Upon successful training, this GAN model 
is applied to actual patient CT images via transfer learning, enhancing their spatial resolution. As a result, the original pixel volume of 1 × 1 × 1 
mm3 is refined to a higher resolution of 0.25 × 0.25 × 1mm3, thereby generating the corresponding super-resolution CT images (SR-CT). 
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Then, we normalized the intensity values across all images to achieve a consistent scale, which is essential for uniformity in the later 
processing stages. To normalize the intensity values in our images, we utilized a Min-Max Normalization method [33,34], which 
adjusts the range of the original image data to a standard scale of [0, 1]. The normalization equation is expressed as follows: 

Inormalized=
I − Imin

Imax − Imin  

Inormalized is the normalized pixel intensity. I is the pixel intensity in the original image. Imin represents the lowest pixel intensity in 
the original image, while Imax denotes the highest pixel intensity. 

This normalization method effectively standardizes the pixel intensities across all images, eliminating variations due to different 
scanning parameters or devices. Thus, it ensures consistency and comparability of the image data during the super-resolution 
reconstruction process. 

Moreover, we subjected the images to Gaussian white noise and Gaussian blur, intentionally downgrading the resolution to one- 
quarter of the original along the X and Y axes, thereby generating low-resolution CT images (LR-CT) for the super-resolution process. 

We combined generative adversarial network (GAN) and deep transfer learning network in our super-resolution reconstruction 
[28]. The objective is to transform low-resolution CT images into high-resolution versions, thereby improving spatial resolution. 

The 3D SR reconstruction method employs a Generative Adversarial Network (GAN) as its fundamental architecture. GANs are a 
deep learning model consisting of a generator network and a discriminator network [35]. The generator accepts low-resolution images 
(128 × 128) as input and processes them through multiple convolutional layers (Conv2D) with batch normalization (BatchNorm) and 
ReLU activation functions to extract image features. In the final layer of the generator, the Tanh activation function is used to generate 
high-resolution images (512 × 512). The discriminator accepts high-resolution or generated images (512 × 512) as input and uses 
multiple convolutional layers (Conv2D) with LeakyReLU activation functions and Dropout layers to determine the authenticity of the 
images. Finally, the discriminator uses a Sigmoid activation function to output a binary classification (natural or generated). These two 
networks undergo training in an adversarial manner. The generator aims to create images that can deceive the discriminator, while the 
discriminator seeks to accurately distinguish between authentic and generated images. This adversarial training process allows the 
generator network to learn the relationship between low-resolution and high-resolution images effectively. The result of this training is 
a GAN model. The method of CT image super-resolution reconstruction using generative adversarial networks is illustrated in Fig. 2a. 

Using the trained GAN model, low-resolution CT images can be converted into high-resolution images, significantly enhancing their 
spatial resolution. This process includes three main steps:  

1. Segment the input image: The original CT image is segmented into 128 × 128 patches, each serving as an input. 
2. Create high-resolution images: The generator inputs each low-resolution patch measuring 128 × 128 pixels, producing a corre-

sponding high-resolution image of 512 × 512 pixels.  
3. Combine high-resolution images: All generated high-resolution patches are merged according to their original positions to 

reconstruct the complete high-resolution CT image. 

This approach optimized the voxel size, refining it from the original dimensions of 1 × 1 × 1mm3 to a more detailed resolution of 
0.25 × 0.25 × 1mm3. This enhancement step resulted in super-resolution CT (SR-CT) images via SR reconstruction, exemplified in 
Fig. 2b. The quality evaluation of the SR-CT images was performed using two metrics: the Structural Similarity Index (SSIM) and the 
Normalized Root Mean Square Error (NRMSE) [36]. The SSIM achieved a high score of 0.980, and the NRMSE registered at a low 
0.636 %, signifying that the resolution enhancement was substantial. Yet, alterations to the image structure and intensity remained 
minimal. 

2.6. Image segmentation and feature extraction 

For each patient, a radiologist with over six years of experience will manually segment both the CT and SR-CT images using ITK- 
SNAP software (version 3.8.0, available at www.itksnap.org). During the contouring process, the radiologist will carefully exclude 
areas of necrosis, calcification, cavities, vasculature, and bronchial structures. A senior radiologist with 26 years of professional 

Fig. 2b. Original CT images and super-resolution reconstructed CT images (SR-CT). With the increased resolution, SR-CT images are visually almost 
indistinguishable from the original CT images, yet they exhibit less blurriness, finer texture details, and sharper edges. 

X. Xing et al.                                                                                                                                                                                                            

http://www.itksnap.org


Heliyon 10 (2024) e34163

6

experience will review and validate all lesion delineations. Any disagreements will be resolved thoroughly. The regions of interest 
(ROI) identified will be saved in NIfTI (NII) format and prepared for subsequent analysis. 

All radiomics features are extracted using an in-house feature analysis program implemented in Pyradiomics (version 2.2.0, 
available at http://pyradiomics.readthedocs.io). The workflow for radiomics feature extraction and model construction is depicted in 
Fig. 3. The types of features analyzed encompass first order, shape, and various texture matrices such as gray-level co-occurrence 
matrix (GLCM), gray-level size zone matrix (GLSZM), gray-level run length matrix (GLRLM), gray-level dependence matrix (GLDM), 
and neighboring gray tone difference matrix (NGTDM). The transformations used encompass logarithmic, wavelet, local binary 
pattern (LBP), exponential, square, square root, and gradient methods. Apart from shape-based characteristics, all radiomic features 
incorporate these extraction types with designated transformation techniques. Feature selection is conducted on the training cohort. 
Radiomic features are screened using the Mann-Whitney U test, with only those yielding a p-value below 0.05 being retained for 
further analysis. Features exhibiting high redundancy were analyzed using the Pearson correlation coefficient to determine inter- 
feature correlations. Only one feature was retained from pairs of features with a correlation coefficient greater than 0.9. In our 
approach to feature filtering, we implemented a greedy recursive elimination strategy to improve the representation of distinct fea-
tures. Each iteration systematically removes the feature with the highest redundancy in the current set. The dimensionality of the 
selected features was reduced using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. LASSO shrinks all 
regression coefficients towards zero based on regulation weights λ and precisely sets the coefficients of irrelevant features to zero. To 
determine the optimal λ value, we used 10-fold cross-validation, choosing the λ that resulted in the minimum cross-validation error. 
Features that maintained non-zero coefficients after LASSO regularization were incorporated into the regression model fitting, 
resulting in a combined radiomics signature. Subsequently, a formula based on the weighted sum of the chosen radiomics features was 
used to compute a radiomics score (rad-score). We conducted LASSO regression modeling using the scikit-learn package in Python. 

2.7. Radiomics model construction and model performance evaluation 

After completing the Lasso feature selection process, we input the final set of features into various machine learning algorithms to 
construct the risk model. These algorithms included Logistic Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors 
(KNN), Random Forest, Extra Trees, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and 
Multilayer Perceptron (MLP). To establish the final radiomics profile, 10-fold cross-validation was employed. The diagnostic efficacy of 
the predictive model was assessed by generating the Receiver Operating Characteristic (ROC) curve and determining the Area Under 
the Curve (AUC) associated with it. The AUC quantitatively measures the model’s discriminatory ability. We determined the optimal 
threshold using this criterion by identifying the point with the maximum Youden index. Based on this threshold, we then analyzed each 
model’s accuracy, sensitivity, and specificity. To further evaluate the precision of the model’s predictions, we utilized calibration 
curves. The fit of these curves illustrates the agreement between predicted probabilities and observed outcomes. A non-significant 
result from the statistical test of the calibration curve indicates good model calibration. Furthermore, to assess the clinical utility of 
the model, we employed Decision Curve Analysis (DCA). DCA allows us to quantify the model’s benefits to clinical decision-making by 
calculating the net benefit across various threshold probabilities. This approach aids clinicians in discerning the net improvement the 
model may offer to patient outcomes when applied at different probability thresholds. 

Fig. 3. Workflow for radiomics feature extraction and model construction.  
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2.8. Statistical analysis 

Statistical analyses were conducted using IBM SPSS software (version 22.0, accessible at http://www.ibm.com) and Python 
(version 3.7.6). To compare continuous variables, we used the Student’s t-test or the Mann-Whitney U test. We reported continuous 
parameters as either the mean ± standard deviation or the median along with the interquartile range. Conversely, we used the χ2 test to 
compare categorical features. A p-value less than 0.05 was considered to indicate a statistically significant difference. We implemented 
bootstrapping with 1,000 iterations to calculate the 95 % confidence intervals (CIs), bolstering the robustness of our findings. To assess 
the performance of the radiomics models, we implemented 10-fold cross-validation during the training phase. Furthermore, the models 
underwent validation in an independent test cohort. 

3. Results 

3.1. Clinical characteristics 

The study examined 1453 patients who underwent CT scans for preoperative assessment between March 2018 and November 2023. 
All patients were diagnosed with lung adenocarcinoma through pathological examination at our institution’s two centers. 953 patients 
met the initial inclusion criteria. Patients were then excluded for the following reasons: (1) multifocal lesions (n = 84); (2) tissue 
specimens collected through biopsy instead of surgical procedures (n = 154); (3) presence of other malignant tumors (n = 19); (4) prior 
history of receiving radiotherapy and chemotherapy before the scanning session (n = 76); (5) microinvasive adenocarcinoma (n =
375). The final study cohort comprised 245 patients (118 males and 127 females) who met all inclusion criteria. The average age was 
63.53 ± 10.03 years, with a range from 21 to 83 years. In total, 245 pulmonary lesions underwent evaluation. In this study, 109 
patients exhibited ILA with MPP/SOL components, whereas 136 patients presented lesions lacking MPP/SOL components. For the 
purpose of analysis, patients with ILA were divided into two categories: ‘0′ indicating no MPP/SOL components, and ‘1′ signifying their 
presence. Using stratified randomization with a 7:3 ratio, patients were assigned to a training cohort (171 patients) and a validation 
cohort (74 patients). Fig. 1 illustrates the patient selection process. Independent sample t-tests, Mann-Whitney U tests, or chi-square 
tests were used as appropriate to evaluate clinical characteristics across various groups. The initial clinical characteristics of patients 
within each cohort are displayed in Table 1. 

Table 1 
Baseline characteristics of patients in cohorts.  

feature_name train-label = 0 train-label = 1 pvalue test-label = 0 test-label = 1 pvalue 

height 1.62 ± 0.08 1.64 ± 0.08 0.32 1.63 ± 0.08 1.66 ± 0.07 0.076 
weight 61.93 ± 9.02 62.46 ± 12.49 0.749 61.31 ± 9.32 67.00 ± 9.50 0.012 
BMI 23.44 ± 2.58 23.19 ± 3.45 0.598 23.10 ± 3.06 24.35 ± 3.50 0.105 
BSA 1.63 ± 0.15 1.68 ± 0.20 0.045 1.62 ± 0.14 1.75 ± 0.17 <0.001 
smoke_quantity 4.33 ± 8.22 10.04 ± 13.93 0.001 7.44 ± 12.10 8.52 ± 11.29 0.696 
smoking_years 9.20 ± 17.19 15.84 ± 19.03 0.018 10.49 ± 16.73 13.00 ± 17.10 0.527 
age 65.00 ± 8.64 61.69 ± 11.43 0.032 61.95 ± 10.22 65.61 ± 9.33 0.116 
CYFRA211 2.96 ± 1.53 3.23 ± 3.57 0.499 2.74 ± 1.36 3.06 ± 1.04 0.281 
TG 13.16 ± 14.16 12.64 ± 10.54 0.791 15.02 ± 14.37 15.39 ± 12.93 0.909 
AFP 3.20 ± 1.41 6.79 ± 29.23 0.237 2.90 ± 1.07 3.24 ± 1.55 0.268 
CEA 2.74 ± 1.60 4.62 ± 6.98 0.012 2.51 ± 1.36 6.00 ± 11.72 0.062 
NSE 10.91 ± 2.17 11.19 ± 2.66 0.445 11.25 ± 2.20 11.74 ± 2.44 0.365 
CA125 10.50 ± 6.36 14.28 ± 15.42 0.032 10.28 ± 4.89 12.82 ± 11.33 0.199 
CA153 10.84 ± 4.89 11.85 ± 8.33 0.328 9.27 ± 5.19 12.26 ± 6.72 0.034 
CA199 13.90 ± 20.98 42.39 ± 238.33 0.25 12.30 ± 8.70 19.55 ± 19.40 0.036 
CA242 6.85 ± 19.56 12.67 ± 50.48 0.305 4.67 ± 2.89 7.94 ± 8.90 0.03 
CA50 7.72 ± 9.53 8.85 ± 12.20 0.5 7.58 ± 5.13 54.14 ± 250.63 0.237 
CA724 2.70 ± 3.35 4.88 ± 5.97 0.003 3.41 ± 4.62 18.16 ± 63.34 0.141 
SCC 0.99 ± 0.49 1.22 ± 0.63 0.011 0.91 ± 0.40 1.62 ± 1.95 0.026 
smoke   0.004   0.332 
0 71 (75.53) 41 (53.25)  28 (68.29) 18 (54.55)  
1 23 (24.47) 36 (46.75)  13 (31.71) 15 (45.45)  
gender   0.072   0.047 
0 58 (61.70) 36 (46.75)  23 (56.10) 10 (30.30)  
1 36 (38.30) 41 (53.25)  18 (43.90) 23 (69.70)  

Clinical data includes gender, age, height, weight, Body Mass Index(BMI), body surface area(BSA), smoking status, daily smoking quantity 
（smoke_quantity）, years of smoking（smoking_years）, Cytokeratin fragment 19 (CYFRA 21-1), thyroglobulin(TG), alpha-fetoprotein(AFP), car-
cinoembryonic antigen(CEA), neuron-specific enolase(NSE), carbohydrate antigen 125(CA125), carbohydrate antigen 15-3(CA15-3), carbohydrate 
antigen 19-9(CA19-9), carbohydrate antigen 242(CA242), carbohydrate antigen 50(CA50), carbohydrate antigen 72-4(CA72-4), and squamous cell 
carcinoma antigen(SCC). 
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3.2. Radiomics feature processing and model development 

From the lesions on the CT scans, we extracted 1,835 radiomic features, which were segmented into seven groups as follows: 360 
first-level, 14 shape, 440 GLCM, 320 GLSZM, 320 GLRLM, 280 GLDM, 100 NGTDM. An identical feature extraction process was carried 
out on the SR-CT images. Fig. 4 displays the quantity and distribution of all manually crafted features extracted from CT and SR-CT 
images. Fig. 5a and b displays all the features from both CT and SR-CT, along with their associated p-value outcomes. From the features 
identified in the final selection step, a radiomics signature was developed. For each patient, a rad-score was computed. This score was 
calculated as a linear combination of the values of the selected features, with each value multiplied by its corresponding non-zero 
coefficient. Figs. 6a and b and 7a and b detail the coefficients and Mean Squared Error (MSE) derived from the 10-fold cross- 
validation. Specifically, Fig. 6a and 7a illustrate the coefficient values for the selected features with non-zero coefficients. Fig. 6b 
and 7b show MSE of 10-fold cross-validation over the CT data and the SR-CT data. The histogram in Fig. 8a and b depicts the dis-
tribution of the rad-score calculated from the selected features over the CT data and the SR-CT data. 

The rad-score for CT images is shown as follows: 
Rad-scoreCT = label = 0.4502923976608187 ++0.054967 * exponential_glcm_Correlation − 0.005154 * lbp_3D_k_ngtdm_Contrast 

+0.001985 * lbp_3D_m1_glcm_Idn − 0.007332 * lbp_3D_m1_gldm_SmallDependenceHighGrayLevelEmphasis − 0.015485 * 
lbp_3D_m2_gldm_DependenceNonUniformityNormalized +0.058883 * lbp_3D_m2_glrlm_RunVariance +0.009651 * 
lbp_3D_m2_glszm_GrayLevelVariance +0.006280 * wavelet_LLL_firstorder_Maximum +0.055371 * 
wavelet_LLL_glcm_DifferenceVariance 

The rad-score for SR-CT images is shown as follows: 
Rad-scoreSR-CT = 0.4502923976608187 + +0.096056 * exponential_glcm_Correlation − 0.027199 * exponential_glszm_LargeAr-

eaLowGrayLevelEmphasis − 0.005322 * exponential_glszm_SmallAreaLowGrayLevelEmphasis +0.020219 * lbp_3D_k_first-
order_Range +0.013698 * lbp_3D_k_glcm_Correlation − 0.011916 * lbp_3D_k_ngtdm_Contrast − 0.063876 * 
lbp_3D_m1_glrlm_GrayLevelVariance − 0.040256 * lbp_3D_m1_glrlm_ShortRunLowGrayLevelEmphasis +0.007501 * 
lbp_3D_m2_glcm_Correlation +0.001263 * lbp_3D_m2_glszm_GrayLevelVariance +0.006528 * lbp_3D_m2_glszm_ZoneEntropy 
+0.014452 * original_firstorder_10Percentile +0.005678 * square_gldm_LargeDependenceLowGrayLevelEmphasis − 0.025791 * 
square_ngtdm_Coarseness +0.018284 * squareroot_glszm_LargeAreaLowGrayLevelEmphasis +0.029836 * wave-
let_HHH_firstorder_Median +0.054224 * wavelet_LLL_firstorder_Maximum. 

3.3. Predictive performance of the models 

Models were constructed with radiomics features derived from CT images using a range of classifiers such as LR, SVM, KNN, 
Random Forest, Extra Trees, XGBoost, LightGBM, and MLP, as elaborated in Table 2. Fig. 9 illustrates the AUC for each radiomic model 
in the test cohort. The SVM model exhibited outstanding results in both the training and test cohorts, with AUC values reaching 0.864 
and 0.761, respectively, thereby proving to be the most proficient classifier for the radiomics model. Additionally, when employing 
SVM to construct a radiomics model using SR-CT images, the AUCs obtained were 0.904 in the training cohort and 0.819 in the test 
cohort. Fig. 10 illustrates the AUC performance of the radiomics models evaluated on the SR-CT test cohort. Fig. 11a and b compares 
the AUCs of the SVM models based on radiomic features derived from CT and SR-CT images. Table 3 provides comprehensive results 
detailing the model’s accuracy, sensitivity, and specificity. 

The calibration curves exhibited a high level of agreement between the models’ predicted probabilities and the actual observed 
outcomes in both the training and test cohorts, as shown in Fig. 12a and b. Additionally, we conducted DCA for each model to assess 

Fig. 4. Number and proportion of handcrafted features.  
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Fig. 5a. All the features from the CT images and the corresponding p-value results.  

Fig. 5b. All the features from the SR-CT images and the corresponding p-value results.  

Fig. 6a. Coefficients of the 10-fold cross-validation over the CT data.  
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their clinical utility. Fig. 13a and b illustrates the decision curves for the radiomics models derived from CT and SR-CT images, 
providing valuable insights to support clinical decision-making across a range of threshold probabilities. 

Fig. 14a and b illustrates CT images alongside the corresponding pathological findings of peritumoral lung tissue in two patients 
diagnosed with ILA, as verified through surgical resection. 

4. Discussion 

We included patients with stage II or lower lung adenocarcinoma because these individuals generally have no distant metastases 
and predominantly receive surgical treatments [37]. On the other hand, patients with stage III or higher lung adenocarcinoma undergo 
more complex treatment regimes, including chemotherapy and radiotherapy. These treatments can alter imaging characteristics, 
affecting the model’s accuracy and generalizability. By restricting our study to earlier stages of cancer, we ensure a collection of 
consistent, high-quality CT images and clinical data. This limitation minimizes confounding variables and establishes a robust data 
foundation, enhancing the precision in evaluating and validating the radiomics model [38]. 

Due to the significantly better prognosis of patients with microinvasive lung adenocarcinoma compared to those with more 
invasive forms [39], we intentionally excluded cases of microinvasive lung adenocarcinoma from our study. We also conducted a 
detailed review of the original pathology reports to ensure that no cases of microinvasive adenocarcinoma were included in our study 
cohort. 

MPP and SOL components are important biomarkers for forecasting the effectiveness of adjuvant chemotherapy in lung adeno-
carcinoma [40,41]. Additional research has suggested that MPP and SOL components can also guide the choice of surgical approach for 

Fig. 6b. MSE of 10-fold cross-validation over the CT data.  

Fig. 7a. Coefficients of the 10-fold cross-validation over the SR-CT data.  
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treating patients with lung adenocarcinoma. For patients with lung adenocarcinoma that includes MPP and SOL components, lo-
bectomy may be more advisable than limited resection [13]. Intraoperative frozen section analysis, though commonly used to guide 
surgical decisions, has shortcomings in accurately identifying the pathological subtypes of lung adenocarcinoma. Trejo Bittar et al. 
investigated the agreement between frozen and paraffin-embedded sections in a study involving 112 patients with early-stage lung 
adenocarcinoma. They reported a concordance rate of only 69.7 %, underscoring the difficulties associated with intraoperative 
diagnosis of these subtypes [36]. Preservation of lung function is critically important in patients with diminished cardiopulmonary 
capacity, advanced age, or those needing multiple resections for multifocal lesions, thereby necessitating minimal resection of lung 
tissue. Consequently, detecting MPP and SOL elements in lung adenocarcinoma preoperatively is crucial for selecting the optimal 
surgical plan and deciding on the necessity for early aggressive adjuvant therapy. For patients who are unsuitable for surgical 
intervention, identifying MPP and SOL components is essential. The thorough assessment of histological subtypes necessitates the 
examination of the entire tumor specimen. Although the criteria for pathological subtyping are well-defined, the potential for 
misdiagnosis persists in clinical practice. Therefore, it is crucial to accurately identify the presence of MPP/SOL components to develop 
tailored treatment strategies. 

Manual segmentation is crucial when precise delineation of the tumor outline, including its shape and size, is required [42]. We 
acknowledge that manual segmentation could introduce potential biases and affect the reproducibility of our results. To minimize 
these potential biases and ensure segmentation accuracy, we have implemented several measures: Initially, radiologists with over six 

Fig. 7b. MSE of 10-fold cross-validation over the SR-CT data.  

Fig. 8a. The histogram of the rad-score based on the selected features over the CT data.  
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years of experience performed the segmentation of both CT and SR-CT images using the well-known ITK-SNAP software. Subsequently, 
all segmentation results underwent review and validation by a senior radiologist with 26 years of experience, ensuring high accuracy 
and consistency in the segmentation process. Any inconsistencies were resolved through a comprehensive discussion to reach a 
consensus. 

While various imaging features have previously been suggested to assist in identifying different pathological subtypes and strat-
ifying patients, these characteristics, including tumor margins and the degree of solidity, often present considerable overlap among 
subtypes [43]. The efficacy of classifying subtypes based on these imaging features has yet to be comprehensively assessed, and there is 
notable interobserver variability in their interpretation. 

Initial investigations into radiomics applied to lung cancer subtypes have yielded significant insights. For example, Yang et al. 
demonstrated that, in a validation cohort of lung adenocarcinoma patients with high pathological purity (greater than 70 %), correctly 
classifying five pathological subtypes reached 83 %. In comparison, the accuracy for classifying three grades was 94 % [44]. Research 
by Park et al. has indicated that radiomics can distinguish between the main pathological subtypes and grades within adenocarci-
nomas, achieving an accuracy that is on par with the assessments conducted by radiologists [23]. Song et al. proposed that specific 
radiomic features, such as the minimum pixel value and the variance of positive pixel values within imaging data, could predict MPP 
components in lung adenocarcinoma [45]. In another study, Bae et al. differentiated various lung cancer subtypes successfully by 
analyzing radiomic features from dual-energy CT scans, resulting in AUC values of 0.93, 0.86, and 0.84 [46]. In our study, lung 
adenocarcinoma patients with less than 5 % micropapillary or solid components were categorized into the positive group to closely 
mirror real-world clinical conditions. 

With the advent of HRCT technology capable of achieving a resolution of 150 μm, there have been significant strides in the imaging 
of lung adenocarcinoma. A significant study in this field successfully predicted the invasiveness of lung adenocarcinoma using CT 
images with a 0.25 mm slice thickness and a 2048 reconstruction matrix. The research identified two critical indicators for predicting 
lung cancer invasiveness: the obliteration of the air bronchogram and a solid part diameter exceeding 0.8 cm. When these two features 
were combined, the resulting AUC was 0.94, demonstrating a high level of diagnostic accuracy. However, a notable limitation of this 
high-resolution imaging technique is the associated relatively high radiation dose, with an average exposure of 8.2 mSv [47]. 

Deep learning super-resolution (DL-SR) technologies have garnered significant interest in medical imaging. DL-SR techniques 
promise to reduce the loss of high-frequency details, minimize edge blurring, and enhance overall image resolution, which is essential 
for improving medical image quality and diagnostic value [48,49]. Recent studies have explored how DL-SR can transform radiological 
analysis. For example, Fan et al. examined the effectiveness of 2D super-resolution neural networks in enhancing medical image 
quality and improving diagnostic accuracy [50]. Farias et al. demonstrated that super-resolution techniques based on generative 
adversarial networks (GANs) could strengthen the robustness of crucial radiological features, leading to more consistent and reliable 
imaging analysis [24]. The foundational research in this area has revealed the vast potential for DL-SR techniques in radiomics. 

However, the translation of these techniques into clinical practice necessitates additional validation. D. Wessling and collaborators 
have effectively combined DL algorithms with SR and partial Fourier reconstruction methods to enhance the image quality and 
sharpness of abdominal MRI scans while simultaneously reducing breath-hold durations [51]. B. Kim and his team have applied deep 
learning-based imaging reconstruction techniques for evaluating rectal cancer post-radiochemotherapy, significantly enhancing MRI 
image quality and diagnostic accuracy for complete pathological remission [52]. J.A. Steeden and others developed a rapid 
whole-heart CMR technique utilizing residual U-Net for super-resolution reconstruction. This effectively restores high-resolution 

Fig. 8b. The histogram of the rad-score based on the selected features over the SR-CT data.  
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Table 2 
The optimal model was obtained by using rad features compared with an LR, SVM, KNN, Random Forest, Extra Trees, XGBoost, LightGBM, and MLP classifier. SVM achieved the best value of AUC in the 
train and test cohort reached 0.864 and 0.761，respectively.  

model_name Accuracy AUC 95 % CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task 

LR 0.731 0.804 0.7391–0.8688 0.662 0.787 0.718 0.740 0.718 0.662 0.689 0.480 label-train 
LR 0.676 0.749 0.6309–0.8665 0.606 0.732 0.645 0.698 0.645 0.606 0.625 0.641 label-test 
SVM 0.754 0.864 0.8107–0.9179 0.649 0.840 0.769 0.745 0.769 0.649 0.704 0.261 label-train 
SVM 0.689 0.761 0.6503–0.8707 0.636 0.732 0.656 0.714 0.656 0.636 0.646 0.553 label-test 
KNN 0.749 0.816 0.7556–0.8766 0.727 0.766 0.718 0.774 0.718 0.727 0.723 0.600 label-train 
KNN 0.649 0.686 0.5623–0.8087 0.636 0.659 0.600 0.692 0.600 0.636 0.618 0.600 label-test 
RandomForest 0.965 0.999 0.9974–1.0000 0.922 1.000 1.000 0.940 1.000 0.922 0.959 0.500 label-train 
RandomForest 0.662 0.682 0.5554–0.8083 0.576 0.732 0.633 0.682 0.633 0.576 0.603 0.600 label-test 
ExtraTrees 1.000 1.000 1.0000–1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 label-train 
ExtraTrees 0.676 0.665 0.5371–0.7933 0.455 0.854 0.714 0.660 0.714 0.455 0.556 0.600 label-test 
XGBoost 0.994 1.000 0.9991–1.0000 1.000 0.989 0.987 1.000 0.987 1.000 0.994 0.540 label-train 
XGBoost 0.649 0.689 0.5623–0.8161 0.576 0.707 0.613 0.674 0.613 0.576 0.594 0.564 label-test 
LightGBM 0.789 0.900 0.8559–0.9438 0.688 0.872 0.815 0.774 0.815 0.688 0.746 0.471 label-train 
LightGBM 0.676 0.731 0.6122–0.8504 0.576 0.756 0.655 0.689 0.655 0.576 0.613 0.587 label-test 
MLP 0.743 0.805 0.7394–0.8696 0.636 0.830 0.754 0.736 0.754 0.636 0.690 0.483 label-train 
MLP 0.703 0.752 0.6335–0.8713 0.576 0.805 0.704 0.702 0.704 0.576 0.633 0.677 label-test  
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Fig. 9. The AUC of each radiomics model on the CT test cohort.  

Fig. 10. The AUC of each radiomics model on the SR-CT test cohort.  

Fig. 11a. The comparison of the AUC for SVM models of CT radiomics and SR-CT radiomics in the training cohorts.  
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features and boosts diagnostic confidence, all while markedly shortening scanning times [53]. S. Dencks and partners implemented 
super-resolution ultrasound imaging to detect breast cancer, proving its feasibility and efficacy in this application [54]. R.R. Sood and 
his team improved image resolution and registration accuracy using super-resolution volumetric reconstruction for preoperative 
prostate MRI and histopathological image registration, contributing to precise prostate cancer diagnosis and treatment planning [55]. 

Our current study has advanced beyond prior work by developing a GAN-based SR-CT model, specifically focusing on its clinical 
application for predicting MPP and SOL components within lung adenocarcinoma. Our study demonstrated that the SR-CT model, 
enhanced by DL techniques, outperformed the conventional CT model regarding diagnostic accuracy. Specifically, in the training and 
test cohorts, the SR-CT model recorded AUC values of 0.904 and 0.819, respectively. This enhancement is likely due to the DL-SR 
method’s capacity to provide more detailed information through precise interpolation, enabling a more sensitive radiomic analysis 
to discern nuanced morphological and pathophysiological tumor changes. 

SR reconstruction technology, while offering significant advantages, also has certain limitations. This technique, which enhances 
image resolution through algorithms, may introduce reconstruction errors, particularly in handling image edges and details. Moreover, 
it is essential to recognize that the quality of SR images fundamentally relies on the quality of the original CT images. Poor-quality 
original images can adversely affect the quality of SR images, which can subsequently impact the reliability of radiomic analysis. 
The utilization of this technology is further constrained by differences in scanning equipment and operational protocols between 
institutions, which can affect the consistency and reproducibility of images, limiting their broader application. SR technology typically 
requires high computational resources and processing time, which may pose a barrier in emergency clinical settings. Moreover, 
enhanced images may display non-traditional visual features, requiring additional training for radiologists to interpret accurately [56, 
57]. Therefore, it is necessary to conduct more extensive clinical trials to further validate the effectiveness and feasibility of SR 
technology in actual clinical applications. 

Moreover, the GAN model itself is a highly intricate and non-linear system, which underscores the importance of your work. Its 
sensitivity to initial parameters and randomness during training can lead to fluctuations in the calibration curves, even if the model 
performs well in the training cohort. Unseen data distributions or features in the test cohort can significantly impact the model’s 
performance, necessitating adjustments and optimizations of model parameters during training [58,59]. 

Our study incorporated data from six models of CT machines produced by four different manufacturers, enhancing our dataset’s 
representativeness and diversity and consequently improving our findings’ reliability. We introduced innovative techniques such as 
super-resolution image technology and multiple machine learning algorithms, which have significantly advanced the accuracy of 
predicting the histological structure of lung adenocarcinoma. Various machine learning classifiers were selected based on their 
extensive utilization in medical image processing and their proven effectiveness in prior research [60–63]. For instance, SVM was 
chosen for its exceptional performance with high-dimensional data [64]. Moreover, we favored tree-based models, including Random 
Forest, XGBoost, and LightGBM, due to their proficiency in handling intricate data structures [65,66]. We conducted systematic 
hyperparameter tuning for each model, primarily using grid search combined with cross-validation to ensure optimal performance and 
prevent overfitting [67,68]. In addition, data normalization was performed to ensure better stability and efficiency in the training 
process. Our objective was to determine the most effective model by evaluating the performance of various algorithms on our research 
dataset. Upon assessing the AUC scores and other performance metrics, including precision and recall, we observed that SVM 
consistently outperformed other models, leading us to select it as the final model. 

A Rad-score is a composite quantitative measure that amalgamates various radiomic features derived from computational models 
like linear regression to reflect a tumor’s biological properties accurately. Offering a higher predictive accuracy, a Rad-score signif-
icantly augments the prediction of tumor behavior, which is vital for clinical practice. It assists in diagnosis and prognostication and 

Fig. 11b. The comparison of the AUC for SVM models of CT radiomics and SR-CT radiomics in the test cohorts.  
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Table 3 
Predictive performance of CT and SR-CT radiomics.  

Signature Accuracy AUC 95 % CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Cohort 

CT_SVM 0.754 0.864 0.8107–0.9179 0.649 0.840 0.769 0.745 0.769 0.649 0.704 0.261 Train 
SR-CT_SVM 0.819 0.904 0.8579–0.9506 0.779 0.851 0.811 0.825 0.811 0.779 0.795 0.546 Train 
CT_SVM 0.699 0.767 0.6561–0.8775 0.656 0.732 0.656 0.732 0.656 0.656 0.656 0.553 Test 
SR-CT_SVM 0.781 0.819 0.7194–0.9193 0.750 0.805 0.750 0.805 0.750 0.750 0.750 0.518 Test  
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serves as a foundation for formulating personalized treatment strategies. Furthermore, Rad-score exposes a link between the het-
erogeneity exhibited by tumors in CT imaging and their potential for invasiveness and unfavorable prognosis [69]. These findings 
provide a valuable tool for more accurately predicting the clinical progression of lung cancer in patients, enabling the development of 
more targeted and effective treatment strategies. 

Patients can be stratified into risk categories based on the model’s predictions [70,71]. Those identified with a high likelihood of 
having MPP/SOL components can be flagged for more aggressive or tailored treatment plans. The predictive information can assist 

Fig. 12a. The calibration curves in the train and test cohort over CT and SR-CT data. Calibration curves are presented based on two models for 
predicting the micropapillary and solid components of invasive lung adenocarcinoma. The x-axis represents the predicted micropapillary and solid 
components probabilities based on the radiomics signature. At the same time, displays the actual probabilities of these components. The 45◦ di-
agonal line symbolizes the ideal prediction, with the blue, yellow lines representing the predictive performance of the CT radiomics and SR-CT 
radiomics, respectively. Fig. 12a: Comparison of the calibration curves for CT and SR-CT radiomics in the training cohorts. The calibration 
curves demonstrated good calibration of the models in both cohorts. 

Fig. 12b. Comparison of the calibration curves for CT and SR-CT radiomics in the test cohorts in both cohorts. The calibration curves demonstrated 
good calibration of the models in both cohorts. 
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clinicians in making better-informed decisions about the need for further preoperative investigations, potential adjustments to surgical 
techniques, and the consideration of adjuvant therapies following surgery [72]. 

The training cohort and test cohort may differ in sample size and sample distribution, particularly in the distribution of key fea-
tures. This can lead to inconsistencies in the model’s performance across different datasets, resulting in fluctuations in the calibration 
curves. The test cohort may include features or noise absent in the training cohort, potentially impacting the model’s predictive 
performance and causing fluctuations in the calibration curve [73,74]. 

This study presents several limitations. The retrospective, single-center design may introduce selection bias, potentially affecting 
the generalizability of the results. To address potential confounding factors, future studies should adopt a prospective, multicenter 
approach. Such studies would also allow rigorous testing of the model’s stability and practical applicability across various clinical 
settings. Second, the radiomics model’s reliance on manually delineated regions introduced additional complexity to the segmentation 
process, which was further amplified by using fourfold super-resolution reconstruction techniques. Future research could incorporate 
automated segmentation processes, which may identify more discriminating features when combined with radiomic analysis and DL. 
This integration promises to streamline the workflow and enhance the robustness of super-resolution reconstruction methods in 
medical imaging. Lastly, determining the most effective model remains an open question requiring additional investigation. Future 
research directions include increasing the sample size to enhance statistical power and integrating more sophisticated technological 
advancements to refine radiological diagnostic accuracy further. 

5. Conclusion 

The study successfully established and verified a DL-enhanced SR-CT radiomics model. This model outperformed conventional CT 
radiomics models in predicting MPP/SOL patterns in lung adenocarcinoma. Continued research and broader validation are necessary 
to fully harness and refine the clinical potential of radiomics when combined with super-resolution reconstruction technology. 

Fig. 13. The DCA curves in the training and test cohort over CT and SR-CT data. The x-axis delineates the threshold probability, while the y-axis 
quantifies the net benefit. The black line represents the assumption that no patients with invasive lung adenocarcinoma have micropapillary and 
solid components. In the training cohort (A) and the test cohort (B), the DCA curve of the SVM model for SR-CT radiomics is higher than that for CT 
radiomics, indicating that the SVM model for SR-CT radiomics can provide a more significant net benefit than the SVM model for CT radiomics. 
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Fig. 14. CT images and corresponding pathology of peripheral invasive lung adenocarcinoma in two patients: (a) A 64-year-old woman with a 
diagnosis of invasive lung adenocarcinoma. CT shows a solid nodule in the lower lobe of the left lung, with a diameter of 25 mm. High-power 
histologic image (hematoxylin and eosin, × 200) shows that the tumor has irregular glandular-like structures, abundant eosinophilic cytoplasm, 
and significant cellular atypia. The primary pathological type is acinar, accompanied by papillary structures. The SR-CT radiomics SVM model 
predicts a probability of 0.24 for containing MPP/SOL components. (b) A 60-year-old man with a diagnosis of invasive lung adenocarcinoma. CT 
shows a solid nodule in the upper lobe of the left lung, with a diameter of 27 mm. High-power histologic image (hematoxylin and eosin, × 200) 
shows that the tumor appears as solid sheets with cells of varying sizes and significant pleomorphism. The cytoplasm is abundant, with some cells 
displaying clear cytoplasm and visible nucleoli. Nuclear division is also observed. The stroma shows substantial infiltration of inflammatory cells. 
The final pathological classification is 40 % micropapillary, 14 % solid, and 11 % papillary. The SR-CT radiomics SVM model predicts a probability 
of 0.76 for containing MPP/SOL components. SR-CT, super-resolution CT; SVM, Support Vector Machines; MPP, micropapillary; SOL, solid. 
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