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Abstract: The medulla oblongata, located in the hindbrain between the pons and the spinal cord,
is an important relay center for critical sensory, proprioceptive, and motoric information. It is
an evolutionarily highly conserved brain region, both structural and functional, and consists of a
multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the
functional anatomy and developmental program of this structure can help elucidate potential role(s)
of the medulla in neurological disorders. Here, we have described the early molecular patterning of
the medulla during murine development, from the fundamental units that structure the very early
medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to
the neuronal clusters derived from these progenitors that ultimately make-up the different medullary
nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate
of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This
schematic overview can further be used to help in the explanation of medulla-related symptoms of
neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn
syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these
syndromes, we can use our model to predict which medullary nuclei might be affected, which can be
used to quickly direct the research into these diseases to the likely affected nuclei.
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1. Introduction

The medulla oblongata, often shortened to medulla, is a brain structure located at the
caudal portion of the brain stem and has an important role in the regulation of various
cardiovascular, respiratory, and autonomic functions [1,2]. It is positioned between the
pons and the spinal cord, and functions to relay basic but critical regulatory information
between the brain and the rest of the nervous system, including sensory, proprioceptive,
and motoric information [1]. Being of such vital importance, damage to the medulla
can lead to serious problems, including respiratory failure, paralysis, loss of involuntary
reflexes (e.g., swallowing, gagging, and sneezing), and loss of sensation (e.g., pain and
temperature sensation) [1,2].

The medulla is an evolutionary highly conserved structure that can be identified in
all vertebrates, with a similar organization and developmental program [1,3]. It is a com-
plex structure that contains multiple medullary nuclei, densely populated heterogeneous
neuronal cell populations, which can be defined based on the expression of evolutionary
highly conserved transcription factors (TFs). These medullary nuclei have distinct functions
and contain multiple ascending sensory columns, as well as several motor and interneuron
populations, each involved in a particular process or functional circuit [4–6]. Specific devel-
opmental genes have been identified for the development of the medullary nuclei, as well
as for some of the various neuronal cell types located outside of these nuclei, which make
up the so-called reticular formation [4,6,7]. This suggests that all anatomical (sub-) regions
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of the medulla exhibit a highly stereotyped developmental logic with a strong underlying
genetic organization. Although the neuroanatomy, functionality, and chemical identity of the
medulla and medullary nuclei largely overlap between mice and humans, most medullary
areas have a more complex architecture and connectivity in humans [8]. However, due to this
high structural and functional conservation, the murine medulla provides an excellent study
modality to obtain insight in the development and functioning of the human medulla [8].
Understanding the functional anatomy and developmental program of this structure can help
elucidate the potential role(s) of the medulla in neurological disorders. Studies described
in this review are mainly based on research to the murine medulla. Extrapolation of these
findings to humans should, however, still be made with caution.

Much research has been performed to investigate the structure and function of the
medulla. However, the details of molecular patterning and how neurons derived from
different progenitor domains eventually reach the correct nuclei remain unclear [7,9]. With this
review, we aim to provide a complete overview of the existing data on molecular patterning
of the medulla during murine development and describe how this patterning ultimately leads
to the development of functionally distinct medullary nuclei in the adult medulla.

2. Early Developmental Organization

The basis of the medulla is laid down during early mammalian development, when
the embryonic central nervous system starts to emerge from the neural plate, which folds
into the neural tube [10]. The neural tube expands into three primary vesicles; the forebrain
(prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon); the latter
being divided along the rostral–caudal axis into 12 molecularly distinct rhombomeres
(r0–r11), (r0 defining the isthmus (ist)) [10,11]. The rhombencephalon further divides into
two secondary brain vesicles; the metencephalon (prepontine, pontine, and retropontine
hindbrain) comprising r0–r6, from which the cerebellum (r0–r2), pons (r3–r4), and retropon-
tine region (r5–r6) arise [12,13], and the myelencephalon (medullary hindbrain) comprising
r7–r11, which ultimately make up the medulla [11]. Through further specification of neu-
ronal diversity, and the organizational architecture of neural components, the medulla
grows out to a fully functioning adult structure.

The hindbrain shows a strong genetic organization, formed by the emergence of
longitudinal zones and transverse bands (r0–r11), which delimit 3D radially arranged
developmental domains, so-called fundamental morphological units (FMUs), each with
their own distinct properties and gene expression profiles [1,7]. In the mouse brain, FMUs
appear in the hindbrain starting from embryonic day 9–11 (E9–11), under the influence
of gradients of morphogens, such as dorsalizing WNT- and BMP-signaling from the roof
plate (rp) and ventralizing SHH-signaling from the floor plate (fp), produced by signaling
centers located in the neural tube of the surrounding tissue (Figure 1B) [12,14]. Expression
of Lmx1a/b and Gdf7 are thought to determine rp identity (Figure 1B) [15,16]. These early
patterning domains have been observed in embryonic and larval stages of numerous
anamniote species, suggesting that all vertebrates share this basic organizational plan and
underlining the evolutionary age of this structure [3].

Over time, multiple longitudinal zones have been identified within the vertebrate
brain which follow its overall curvature and represent structural as well as functional
entities (Figure 1A depicts only the FMUs of the future medulla). At first, the developing
hindbrain was thought to consist of two of these homogenous zones. These include the
primarily motor basal plate (bp), which is ventrally located, and the primarily sensory
alar plate (ap), located on the dorsal side, the boundary of which (a/b) can be marked
within the hindbrain by a ventricular groove termed the sulcus limitans [1] (red dashed
line in Figure 1A,B). Together, they can be further transversally subdivided into four
morphological zones called the ventral area (V), ventrolateral area (VL), dorsolateral area (DL),
and dorsal area (D) [1]. Their features refer directly to functional and behavioral aspects,
corresponding with four functional zones defined over a century ago by Herrick and
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Johnston, namely: the somatomotor, visceromotor, viscerosensory and somatosensory columns,
respectively [1] (Figure 1B).
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Figure 1. Location of FMUs in the developing medulla oblongata (A) Sagittal view of the developing
medulla (r7–r11) showing the corresponding FMUs from dorsal to ventral. Different progenitor
zones (A1–v3l) are shown with different colors. (B) Coronal view of developing the medulla showing
the corresponding FMUs. Different progenitor zones (A1–v3l) are shown with different colors.
Dorsalizing WNT and BMP signaling from the rp and ventralizing SHH signaling from the fp
influence the development of the different FMUs. Expression of Lmx1a/b and Gdf7 defines the roof
plate. Figures are based on Nieuwenhuys and Puelles (2016) [17] and Di Bonito and Studer (2017) [12].
a/b—sulcus limitans, boundary between alar and basal plate; rp—roof plate; ap—alar plate; bp—
basal plate; fp—floor plate; RL—rhombic lip; D—dorsal area; DL—dorsal-lateral area; VL—ventral-
lateral area; V—ventral area.

More recently it has been shown that the developing hindbrain can be dorsoventrally
divided into at least 16 hypothetical longitudinal domains based on the presence of pro-
genitor cell populations and discrete patterns of gene expression [12,17]. They arise in
the developing neural tube as a consequence of dorsoventral patterning by gradients of
signaling molecules secreted by the rp (WNT, BMP) and fp (SHH) that, dependent on
the concentration and duration of the exposure, control the expression of transcriptional
activators and repressors in responding cells (Figure 1B) [12]. Eight alar (dorsal) domains
(dA1–dA4 & dB1–dB4) have been described with strong evidence, whereas the eight basal
(ventral) domains (v0d, v0d, v0c, v1, v2a, v2b, MN, and v3l) have merely been described
based on estimations and are largely homologous to the domains present in the spinal cord
(Figure 1B) [4,7].

Within the medulla, 15 of these progenitor domains are present, as it is lacking the
dB2 progenitors [4,7]. Each of them has a unique genetic developmental organization that
lay the foundation of the generation of diverse neuronal components essential for adult
medullary organization and function [18]. These progenitor domains ultimately give rise
to multiple genetically distinct neuronal subpopulations with distinct migratory paths,
neurotransmitter phenotypes, and axonal projection patterns, thereby contributing to the
establishment of neuronal diversity and functional nuclei in the adult medulla [7,11].

As briefly mentioned previously, besides the longitudinal segmentation, the develop-
ing hindbrain can be rostral–caudally subdivided into 12 transverse segments along the
longitudinal axis, called rhombomeres [13] (r0–r11). These rhombomeres show regional
diversity, but share the same primary dorsoventral zones, as a consequence of dorsoventral
patterning (Figure 1A) [12,14]. Through the expression of specific combinations of devel-
opmental genes that control detailed differential specification, they behave as relatively
self-contained proliferative and histogenetic units during the course of development [1].
The 12 rhombomeres of the hindbrain include the isthmus (ist/r0) and 11 rhombomeres
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(r1–r11), which are distinct developmental regions that correlate with specific hindbrain
motor nuclei and nerve roots [11]. Sections r2–r6 can easily be distinguished visually during
development as they appear as distinct bulges along the neural tube wall separated by
constrictions and ridges [6]. Among other genes, various TFs belonging to the Homeobox
(Hox) family have been linked to them, which provide a combinatorial code for specifying
their unique regional identities [6].

Contrastingly, r7–r11, corresponding to the future medulla oblongata, lack observable
outer transverse constrictions, appearing almost continuous with the spinal cord [5,6,19].
The segmentation of this region has proven to be more difficult, and has therefore been
strongly debated over time [5,6,19]. Classically, the medullary territory was proposed to
either consist of one enlarged r7 segment or a smaller r7 and enlarged r8 segment [5]. The
hypothetical boundaries of these rhombomeres, however, lacked cellular and molecular
characteristics of typical inter-rhombomeric boundaries [5,6,19]. Furthermore, their size
differed significantly from the easily definable rhombomeres 2–6, with the r8 segment being
four times larger than the others, suggesting that more segments should be present [5,6].

The segmentation of the caudal hindbrain was first examined in chick embryos,
which showed that it could actually be subdivided into five different segments, ‘pseudo’-
or ‘crypto’- rhombomeres (r7–11), based on their parametric position or on the stepped
expression of Hox genes, corresponding to morphological transverse limits of a number
of medullary nuclei [5,19]. With the use of chick–quail graft experiments, Cambronero
and Puelles (2000) showed that neurons born in specific medullary domains become part
of distinct medullary nuclei delineated by the boundaries of the pseudorhombomeres.
A clear example of this is that, when grafting the r8 segment, the caudal r8 portion of
the magnocellular nucleus is made up from these quail-derived neurons, whereas when
grafting the r9 segment this nucleus is completely void of these neurons, showing that
neurons derived in specific domains are very unlikely to cross the (pseudo-)rhombomeric
boundaries [19]. Following avian studies, a similar rostrocaudal segmentation was shown
for the murine caudal hindbrain as well, based both on morphological and molecular
features [5,6]. The rostrocaudal segmentation of the medulla is highly dependent on the
correct expression and combination of Hox-genes in the hindbrain [6]. Tomás-Roca and
colleagues (2016) showed that the medulla area can be separated in 7 rhombomeres based
on the combination of Hox-gene expression, which is summarized in Figure 2, similar to
avian studies [5]. This resulted in the formation of a more complete segmental map of the
hindbrain including all 12 rhombomeric regions (ist/r0–r11), which in turn helped to more
precisely locate the position of major structures within the medulla (Figure 2) [5,6,11].
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Figure 2. Location and gene expression of progenitor domains in the developing medulla oblongata.
Overview of the location and gene expression of progenitors present in the developing medulla.
R7–r11 are specified by a unique combination of Hox-genes, each combination defining a different
rhombomere. Across the rhombomeres, each FMU harbors a unique progenitor population, which
can be identified based on a specific combinatorial code of gene expression. Interestingly, progenitors
of the dB2 are not present in the developing medulla, although neurons derived from this progenitor
domain can be detected in medullary nuclei of the adult medulla. Colors correspond to the colors of
the FMUs in Figure 1.

3. Molecular Patterning of the Medulla Oblongata and Neuronal Development

As the basic cellular and molecular mechanisms of embryonic hindbrain patterning
and development were being unraveled, it slowly became evident that the location of a
neuron’s birth is an important deciding factor for its ultimate functional identity [20]. It is
now widely accepted that the broad diversity of medullary cell populations results from
a combinatorial code of TF expression corresponding to the neuron’s location along the
rostral–caudal (R-C) and dorsal–ventral (D-V) axes of the developing hindbrain. Thereby,
each progenitor D–V domain produces neurons that share major aspects of neural identity,
such as projection pattern and neurotransmitter identity [4,7], and R–C domains define
further functional peculiarities or specializations among them [1,12].

This process is regulated by the expression of specifying TFs and signaling molecules
during development, that function as instructive signaling molecules that determine the
basic developmental characteristics of neurons fundamental to their ultimate functionality,
including their anatomical, chemical, and electrophysiological properties [20]. Even though
distinct progenitor domains can express similar TFs and signaling factors, each neuronal
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group is defined by a unique combination of TF and signaling factors, specifying the unique
cell-fate and suppressing neighboring fates [7] (Figure 2). The cellular diversity that results
from this process is crucial for the correct establishment of functional circuits that ultimately
shape the adult medulla oblongata.

The first essential aspect of neuronal specification of the medulla is the establishment
of progenitor domains (E9–E11 in mouse) containing relatively large lineage populations
with a constrained location extending the entire or part of the length of the hindbrain [1,7].
Once the progenitor domains have been established, their neural derivatives move to
their final location through a series of direct and indirect migrations from their specialized
periventricular germinal zones [20]. Cells destined to become specific motor and sensory
deep nuclei of the medulla migrate radially from the ventricular zone within their FMU
(E9.5–E11.5 in mouse) [20]. During this process, cells from adjacent rhombomeres obtain
distinct cellular interaction properties, including differences in cell adhesion and affin-
ity, which segregate them into discrete compartments, so they remain lineage-restricted
throughout neurogenesis [1,20]. Within each rhombomere, neurons that originate from
a specific dorsoventral division obtain a corresponding function. As only a small set of
medullary neurons migrate across rhombomere boundaries, the localization of a significant
number of these nuclei is largely consistent with their progenitor domain [20].

In contrast, a number of other lineages show overlapping localization with other
populations as a result of tangential migration [21]. They are derived from another special
proliferative zone called the rhombic lip (RL) located at the superior–lateral aspect of the
developing brain stem corresponding to part of the alar plate [22,23]. The RL was first
defined by His in 1890 based on the morphological features of the hindbrain [24]. Currently,
it is thought that the early domain of Wnt1 expression delineates the RL and that subpop-
ulations of progenitors are further defined by restricted expression of different TFs [24].
From this region, a somewhat later set of long indirect migrations occurs (E11.5–E13.5 in
mouse), through which cells leave their respective FMU, causing significant alterations to
the anatomy of the medulla [1,13,21]. This results specifically in the formation of a number
of so-called precerebellar nuclei, to which neurons migrate interrhombomerically [23]. As
defined by molecular studies, the RL is divided into three longitudinally arranged micro-
zones, termed A1, A2/3 and A4, based on local expression of Atoh1, Ngn1/2 (Neurog1/2)
and Ptf1a, respectively [1,25–27], which will be further discussed below. These microzones
preferentially give rise to precerebellar neuroblasts of a specific migratory stream [1]. Of
the more caudal medullary RL derivates, two migratory streams originate; the extensive
A1-derived posterior extramural migratory stream (ems) and the A4-derived intramural mi-
gratory stream (ims) [27]. Consequently, even though nuclei that arise from these streams
are positioned more ventromedially in respect to their origin, they are considered alar
plate-derived and either Atoh1 or Ptf1a-dependent [27,28].

The dorsal (or apical) segment of the developing hindbrain involves two sets of pro-
genitor domains: the dorsal-most class A progenitors (present in the RL, Figure 1B), and the
more ventrally located class B progenitors [7] (Figure 1). Class A progenitors define four
progenitor subdomains (dA1–dA4) through the expression of the basic helix–loop–helix
(bHLH) factor Olig3 [4,29,30] (Figure 2). Of these, dA1 progenitors are further characterized
by the expression of Atoh1 (Math1) and Msx1 [4,25,30,31] (Figure 2). They generate two sub-
populations of excitatory glutamatergic proprioceptive relay neurons involved in sensory
information processing; one characterized by the expression of BarHL1 and VGlut1, and
the other hallmarked by the expression of Lhx2 and Lhx9, FoxP2, and VGlut2 [4,7,25,30,32]
(Figure 3). Neurons expressing BarHl1 and VGlut1 make up part of the lateral reticular
nucleus (LRN) in r9 [7,28,33], involved in motor control in mice [34] (Figures 3–5) and the
(external) cuneate nucleus ((E)Cu) (r9–r11) [4,7,33,35,36], with the ECu being involved in
forelimb proprioception [36] and the Cu involved in tactile feedback modulation of dexter-
ous movement [37] (Figures 3 and 5). Neurons expressing Lhx2, Lhx9, Foxp2, Pou4f1 and
VGlut2 make up 3 separate nuclei; (1) the gracile nucleus (GR) (r9–r11) [4,7,35], involved in
the relay of conscious proprioceptive sensations from the hindlimbs [38] (Figures 3 and 5),
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(2) the perihypoglossal nuclear complex (PHY) (r7–r8) [4,7], involved in the coordination of
tongue movement and autonomic responses to changes in posture [39] (Figures 3–5), and
(3) the vestibular nuclei (VNC) (r7–r10) [4,5,7,35], involved in body orientation awareness,
reflex control of eye movement, and body and head posture [40] (Figures 3 and 4). The VNC
is comprised of four different nuclei, namely the lateral vestibular nucleus (LVN), involved
in locomotion and postural control [41], the medial vestibular nucleus (MVN), involved in
maintenance of gaze and posture [42], the inferior vestibular nucleus (IVN), and the superior
vestibular nucleus (SVN) (brain-map.org [43]) (Figure 4). The specific function of the latter
two nuclei has not been described, to our knowledge. Interestingly, besides different nuclei
in the medulla, the specification of the choroid plexus has also been shown to be dependent
on the presence of Atoh1-expressing dA1 neurons, as this structure does not develop when
Atoh1 expression is lost [16].
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Figure 3. Location and gene expression of medullary nuclei in the adult medulla oblongata. Overview
of the location and gene expression of medullary nuclei present in the adult medulla. From each
progenitor domain, neurons are formed that belong to specific medullary nuclei in the adult medulla.
Colors of the nuclei correspond to the originating progenitor domain. Neurons derived from the
dA2 progenitor domain are characterized by the expression of Foxp2, Lhx1/5, and Foxd3, but which
nuclei these neurons become part of is currently undefined, as depicted by the ? symbol. Neurons
from different nuclei express a unique set of genes, which are highly related to the function of these
neurons in the nucleus. Some genes are expressed in neurons of multiple nuclei, shown in the white
boxes. Interestingly, some nuclei appear to be build-up from neurons derived from one progenitor
domain (e.g., Gr, VNC, SPV, GRN), whereas other nuclei contain neurons derived from multiple
progenitor domains (e.g., CN, Amb). The origin of some nuclei is hypothesized and not conclusively
shown (depicted in grey).
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Figure 4. Location of the medullary nuclei in the rostral adult medulla oblongata (r7–r8). (A) Location
of the medullary nuclei in the rostral adult medulla oblongata. Colors of the nuclei correspond to
the colors used as in Figure 3. The origin of the neurons of some nuclei has not been described (e.g.,
pgrnd, marn, ppy) and are thus shown in grey. (B) Overview of the location and overall function
of the medullary nuclei in the rostral adult medulla oblongata. Nuclei with a sensory function are
depicted in blue, nuclei with a motor function are depicted in yellow, and nuclei with a behavioral
function are depicted in red. Overviews are based on anatomical reference atlases from the Allen
Brain institute [43].

dA2 progenitors co-express Olig3 with Ngn1, Ngn2, and Msx1 [4,7,30,33] (Figure 2). They
give rise to excitatory glutamatergic neurons characterized by the co-expression of Foxp2
Lhx1, Lhx5, and Pou4fI [4,7,30,44] (Figure 3). However, it is currently undefined of which
nucleus/nuclei these neurons become a part (depicted by a question mark in Figure 3).

dA3 progenitors are characterized by the co-expression of Olig3, Ascl1, Ngn2, Lmx1b,
Gsx2 expression [4,7,30,45] (Figure 2). Neurons derived from the dA3 domain are either cat-
echolaminergic or glutamatergic and express the TFs Tlx3, Phox2b, Pou4f1, Prrxl1, Gad67 and
ChAT, the latter two are both involved in neurotransmitter identity, [4,7,9,46–48] (Figure 3).
These neurons make up the nucleus of the solitary tract (NTS) (both the A1/2 (noradrener-
gic) and C1/2 (adrenergic) cell groups) (r7–r11), characterized by the expression of VGlut2,
Th, Cart, and SST2aR [4,6,7,20,45,49] and involved in the integration of respiratory and car-
diovascular input, and gastrointestinal functions [50] (Figures 3 and 4), the area postrema
(AP) (r10), hallmarked by the expression of Dbh, and Cart [6,51,52] and involved in the
regulation of nausea, feeding behavior, and cardiovascular regulation [53] (Figures 3 and 5),
and the intermediate reticular zone (IRN) (r7–r11) [7], specifically the rostroventral lateral
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reticular nucleus (RVL) [7], (not depicted), hallmarked by the expression of Gad1, VGlut2,
Pitx2, and Th [4,7,54] and involved in the regulation of swallowing [55] and part of the
airway control network [56] (Figures 3–5).
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Figure 5. Location of the medullary nuclei in the caudal adult medulla oblongata (r10–r11). (A) Loca-
tion of the medullary nuclei in the caudal adult medulla oblongata. Colors of the nuclei correspond
to the colors used as in Figure 3. (B) Overview of the location and overall function of the medullary
nuclei in the rostral adult medulla oblongata. Nuclei with a sensory function are depicted in blue, nu-
clei with a motor function are depicted in yellow, and nuclei with a behavioral function are depicted
in red. Overviews are based on anatomical reference atlases from the Allen brain institute [43].

Lastly, dA4 progenitors, which express Ptf1a next to Ascl1, Olig3 and Ngn2, are unique
for the hindbrain as they cannot be found in the spinal cord [4,7,29,30,57] (Figure 2). A single
neuronal population derives from this domain, constituting glutamatergic neurons that
co-express Foxd3, Lhx1, Lhx5, Fev and VGlut2 [4,6,7,30] (Figure 3). This neuronal population
makes up the olivary nuclei (IO) (dorsal accessory olivary nucleus (IOda), the medial
accessory olivary nucleus (IOma), and the primary olivary nucleus (PO)) (r8–r10) [3,4,7,58],
involved in balance control and control of automatic movements [40] (Figures 3 and 5).
Furthermore, it has been hypothesized that neurons derived from the Ptf1a progenitors
from dA4 contribute to the Sst2aR-expressing population of the IRN, specifically the RVL
(not depicted), in r8 [7] (Figures 3–5).

The dorsal class B progenitors involve another four progenitor domains (dB1-dB4)
(Figure 1). In contrast to the class A progenitors, they cannot be defined by one single
TF, but all generate neurons that express Ladybird homeobox 1 (Lbx1), which works
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antagonistically to Olig3 [4,44,59] (Figures 2 and 3). Of these progenitor domains, dB1, dB3,
and dB4 progenitors are present in all rhombomeres, and dB2 progenitors are present in
rhombomere 2 to 6 [4,44,59] (Figure 2). Since in this case rhombomere 7 corresponds to
the medulla, as defined by the traditional rhombomeric segmentation of the hindbrain,
progenitors of the dB2 domain are the only ones not found in the medulla when not
accounting for neuronal migration [20].

The most dorsal progenitors of the dB1 domain are further defined by the co-expression
of Ascl1, Ngn2, Ptf1a, and Gsx1/2 [4,7,9,26,59] (Figure 2). Neurons derived from this domain
during early neurogenesis (E9.5–E11.5 in mouse), assume an inhibitory fate and migrate
to various locations within the ventral medulla, where they are thought to modulate
local circuits [4,26,44,59]. Iskusnykh et al. (2016) showed that neurons derived from
this early dB1 domain make up part of the NTS and express both Pax2 and Gad67 [26].
It is hypothesized that these neurons become part of the dorsal part of the medullary
reticular nucleus (MDRNd) (r9–r11) [7], characterized by the expression of VGlut2 [7]
and involved in respiratory pattern formation (Figures 3 and 5). This has predominantly
been shown in rats [60], although some evidence points to a similar function in mice [61].
Furthermore, these neurons become part of the parvocellular reticular nucleus (PARN)
(r7–r11) [7], similarly hallmarked by the expression of VGlut2 [7] and involved in the
regulation of visceral and motor systems [62] (Figures 3 and 4). It has recently been
shown by Schinzel et al. (2021) that a subset of neurons found within the dorsal cochlear
nucleus (DCN) of the cochlear nucleus (CN) (r7–r9), arise from a Ptf1a-expressing lineage
of progenitors and express Lbx1, suggesting that these neurons potentially arise from the
dB1 progenitor domain [63] (Figures 3 and 4). The DCN is involved in the integration of
non-auditory with auditory stimuli [64], and is hallmarked by the expression of GlyT2 [65]
(Figure 3)

During late neurogenesis (E11.5–E13.5 in mouse), the dB1 progenitor domain expands
to generate a mix of two late progenitor domains, namely dBLa and dBLb, of which dBLa
progenitors are specifically characterized by the expression of Ptf1a [4,7,26,59]. Neurons
derived from these progenitor domains make up the inhibitory and excitatory interneurons
of the spinal trigeminal nucleus (SPV) (r7–r10), respectively [4,26,59] (Figures 3–5). dBLa-
derived inhibitory neurons co-express Lhx1 and Lhx5 and account for many inhibitory
neurons involved in sensory information processing [4,59]. Ptf1a-negative dBLb-derived
neurons become excitatory and co-express Prrxl1, Pou4fl, Tlx3 and Lmx1b [4,44,59]. The
SPV receives nociceptive signaling from the head and somatosensory signaling [64,66].
Furthermore, dBLa-derived neurons become part of the NTS, next to the neurons of the
dB1 domain, and specifically express Gad67 and Pax2 [26].

As stated previously, progenitors in the dB2 domain, expressing Phox2b and Atoh1, do
not arise in the rhombomeres of the future medulla, but can be found in r2–r6 [20,59,67]
(Figure 2). These neurons migrate and become part of medullary nuclei (Figure 3). Neurons
of the ventral cochlear nucleus (PVCN) (r7–r9) [51]) are thought to arise from progeni-
tor zones outside of the medulla (r2–r5) and migrate towards their final location in the
medulla [68,69] (Figure 2). These neurons are suggested to arise from Atoh1-expressing pro-
genitors, indicating that they may arise from the dB2 progenitor zone [35,68–70] (Figure 3).
The PVCN specifically expresses Mafb alongside GlyT2 [68,70] and is involved in the pro-
cessing of different auditory stimuli [71] (Figures 3 and 4). It is known that depletion
of both Lmx1a and Lmx1b (Lmx1a/b double knock out (DKO)) affects the development
of all auditory nuclei in r0–r5, which is assigned to the loss of Atoh1-expressing neurons
from the dA1 progenitor population (Chizhikov et al. 2021, Elliott et al. 2021). It is not
clear whether the part of the cochlear nuclei that reside in r7–r11 are also affected by the
loss of Lmx1a/b. However, these data could indicate that these nuclei are predominantly
build-up from neurons arising from the dA1 progenitor population, or that the loss of
Lmx1a/b expression also affects the expression of Atoh1 in the dB2 domain. Furthermore,
it is known that Pre-I neurons from the parafacial respiratory group of the retrotrapezoid
nucleus (RTN), which lies on the border between the medulla and the pons, are derived
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from the dB2 domain [7,28,72,73] (Figure 3). This nucleus is involved in chemosensitiv-
ity, the drive to breathe, and expiratory rhythm generation and can be identified by the
expression of Nmb, Phox2b, and GlyT2 [65,74–76] (Figure 3). These neurons express Egr2,
which also controls the formation of rhombomeric segments 3 and 5, alongside VGlut2 and
NK1R, and are therefore suggested to arise from r3 and/or r5 and subsequently migrate
caudally toward the ventral medulla, possibly into the B2 region within r7–r11 [72,73,77].
Interestingly, Rose et al. (2009) have shown that neurons from the facial motor nucleus
(VII) (r7–r8) [51], expressing Shox2, Phox2b, Isl1, and Lbx1 [73,78] and involved in motor
control of the face [78], and the paratrigeminal nucleus (PA5) (r10–r11) [51], expressing
Phox2b, Lbx1, and Nk1r and involved in apneic reflexes and jaw opening [73], arise from
Atoh1-expressing progenitors (Figures 3–5). As these neurons are known to express Lbx1,
they should arise from class B progenitors, from which we hypothesize that these nuclei
originate from the dB2 progenitors in r1-r6, as this is the only known progenitor pool in the
b-domain that also expresses Atoh1 [7].

dB3 progenitors are defined by co-expression of Ascl1, Gsx1/2, Dbx2 and Lmx1b [4,7,44,59]
(Figure 2). Neurons derived from this domain become excitatory and are characterized by
the expression of Pou4fl, Prrxl1, Tlx3, VGlut2, and FoxP2 [4,7,44,59] (Figure 3). The exact fate
of these neurons is not known, but they are hypothesized to make up the ventral part of
the medullary reticular nucleus (MDRNv) (r9–r11) [7], which expresses Pitx2 [54], and func-
tions as a relay for sensory and/or higher-command-related modification of respiration [60]
(Figures 3 and 5). Similar as for the MDRNd the function of this nucleus has predominantly
been studied in rats [60], although some evidence points to a similar function in mice [61].

Lastly, the dB4 progenitor domain is defined by co-expression of Ngn1/2 and Dbx2 [4,44,59]
(Figure 2). Progenitors of the dB4 domain form glycinergic and GABAergic inhibitory interneu-
rons, hallmarked by the expression of Ptf1a, MafB, Glyt2, Wt1, bHLHb5, Dmrt3, Gad1, and
ChAT [4,6,44,59] (Figure 3). These neurons can be detected in the Bötzinger complex of the
compact ambiguus nucleus (AmbC BötC) (r7–r8) [7,20], hallmarked by the expression of GlyT2
and involved in regulation of expiration [79,80] (Figure 3), in the rostral ventral respiratory
group of the semicompact ambiguus nucleus (AmbSC rVRG) (r9) [81,82], characterized by
the expression of Gad1 and GlyT2 and involved in the activation of inspiratory motor neu-
rons [80,82] (Figure 3), and in the caudal ventral respiratory group of the retroambiguus nucleus
(RAmb cVRG) (r11) [81], also hallmarked by the expression of Gad1 and GlyT2 and involved in
the activation of expiratory motor neurons [80,82] (Figure 3).

Within the ventral hindbrain, another group of progenitor domains are present, which
have been described less extensively than the dorsal domains. These include the v0 class,
involving the v0d, v0v, and v0c domains, of which the progenitors are characterized by
Dbx1 expression [7] (Figure 2). They are present in all hindbrain rhombomeres and the
spinal cord [20] and give rise to a combination of glutamatergic, GABAergic, and cholinergic
neurons as well as glia cells [7]. From these progenitor domains, the fate of the neurons
derived from the v0v domain is best known, whereas the fate of neurons derived from
the v0d and v0c domain is undefined. Neurons of the v0v domain become part of the pre-
Bötzinger complex of the compact ambiguus nucleus (Amb) (r7–9, mainly r8), characterized
by the expression of VGlut2, ChAT, SST, SST2aR, and NK1R [6,7,74,82], and involved in
inspiratory rhythmogenesis and chemosensitivity [74,80] (Figure 3). Furthermore, they
make up part of the AmbSC rVRG (r9) [7,81,82], together with neurons of the dB4 progenitor
domain [81,82], and are characterized by the expression of VGlut2, ChAT, and SST2aR [6,7]
(Figure 3). The last population of neurons derived from this area becomes part of the IRN
(r8–9) [7,56], together with neurons of the dA3 and dA4 domains [7], hallmarked by the
expression of VGlut2.

Progenitors of the v1 domain are characterized by Engrailed 1 (En1) expression [7]
(Figure 2). Marrs et al. (2013) showed that neurons of the lateral nucleus of the trapezoid
body (NTB), hallmarked by expression of Sox2, FoxP1, and Mafb, medial NTB, hallmarked
by the expression of Sox2 and FoxP1, and ventral NTB, hallmarked by the expression of
Sox2, arise from this progenitor domain [70] (Figure 3). This nucleus is located on the border
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between the pons and the medulla (r6–r7) [51] and is involved in processing of auditory
information via direct contact with the cochlea [83].

The v2 cluster can be divided in a v2a and a v2b domain, of which the progenitors
all express Gata3 and Nkx6.1, but can be separated based on the co-expression of Lhx3 in
the v2a domain [84–88] (Figure 2). The fate of the neurons derived from the v2b domain
remains unclear, but neurons from the v2a domain form the gigantocellular reticular nucleus
(GRN) (r7–r8) [84,85], characterized by the expression of VGlut2, Lhx3, Nkx6.3, GlyT2, and
Chx10 [7,65,87] and involved in the regulation of locomotion [89] (Figures 3 and 4).

Progenitors from the MN domain express Olig1 and Olig2 alongside Nkx2.2, Nkx6.1,
and Nkx2.9 [7,86,88,90–92] (Figure 2). Although Olig1 and Olig2 are mainly linked to
the development of oligodendrocytes, this domain is known to first generate somatic
and visceral Phox2b-expressing motor neurons (E9–E10.5) and later oligodendrocytes
(E11.5–E13.5) [91,92]. Neurons derived from this progenitor domain are characterized
by the expression of ChAT and make up the hypoglossal nucleus (XII) (r9–r11) that
co-expresses Trh and Adam19 [6,93], involved in the control of tongue muscles and res-
piratory motor control [94] (Figures 3 and 5); the dorsal motor nucleus of the vagus
(DMX) (r8–r11) [6]; involved in the regulation of glucose homeostasis and gastrointestinal
function [95] (Figures 3 and 5); and the nucleus ambiguus (Amb) (r7) [6], co-expressing
Phox2b [91] and involved in the control of respiratory reflexes, swallowing, and cardiovas-
cular regulation [96] (Figure 3).

Progenitors from the v3l (v3-like) domain express Nkx2.2 and Lmx1b (Figure 2) and
ultimately become serotonergic neurons of the nucleus raphe magnus (RMg), nucleus raphe
obscures (ROb), and the nucleus raphe pallidus (RPa) of the medullary raphe nuclei (RN)
(r7–r11) [7,20,97], involved in regulation of behavior [98] (Figures 3–5). The v3l domain
arises from the same NK2 homeobox 2 (Nkx2.2)-expressing region as the MN to generate
serotonergic neurons (E11.5 in mouse), whereby Fox2a specifically serves as a determinant
of serotonergic identity [99].

Although the origin of most nuclei is relatively established, the developmental ori-
gin of the parapyramidal nucleus (PPY) (r7–r8) [51], the magnocellular reticular nucleus
(MARN) (r7–r8) [51], the inferior salivatory nucleus (ISN) r7 [51], and the paragigantocellu-
lar reticular nuclei (dorsal and lateral) (PGRNd/l) (r8–r9) [51] remains unknown. To our
knowledge there are currently no known specific genetic markers for the PPY, which is
involved in chemosensory control of breathing [100] (Figure 4), or for the MARN (Figure 4),
of which the function is also unclear. For the ISN, also, no markers are currently known;
however, it is established that it is involved in the integration of information of oral recep-
tors and the control of von Ebner salivary glands [101] (Figure 4). The PGRN is hallmarked
by the expression of Gad67 and ChAT67 [47]. The dorsal part (PGRNd) is involved in
sleep-wake regulation in rats [102], whereas the lateral part (PGRNl) is involved in sleep-
wake regulation and heart-rate regulation in rats [103] (Figure 4). Currently there is no
information on the function of the PGRNd and PGRNl in mice.

4. The Medulla Oblongata in Health and Disease

Much of what we know about the function of medullary nuclei in humans comes
from studying medullary infarctions in humans and induced lesions in experimental
animals [8,104]. However, it is known that defects in genes involved in the development of
the medulla can result in phenotypic consequences related to specific medullary functions.
Insight into the molecular background of these disorders and medullary nuclei that may
be affected by these genetic defects can help in the development of specific treatments
for these types of diseases. Here, we describe the current status of disorders related to
medullary dysfunction and/or with a genetic cause linked to medullary development, and
show which nuclei may be affected based on what we know from the cell-fate of different
groups of progenitors.

Congenital central hypoventilation syndrome (CCHS) has been linked to a genetic
defect in 3 genes involved in early medullary development, namely; Phox2b [105,106],



Int. J. Mol. Sci. 2022, 23, 9260 13 of 20

Ascl1 [107] and Tlx3 [108], although Tlx3 may only be indirectly involved in the develop-
ment of CCHS via formation of a DNA-binding complex with Pbx3 [109]. CCHS is a rare
disorder that is hallmarked by generally normal ventilation during wake, but alveolar
hypoventilation during sleep [110]. Most patients with CCHS have a mutation in Phox2b
that leads to a loss-of-function protein [105,106]. Phox2b is expressed in progenitors of the
B2 domain, in neurons of the A3, and B2 domains, and in neurons of the Amb derived
from the MN-domain [4,7,20,47,91], whereas Ascl1 is expressed in progenitors of the A4,
B1, and B3 domains [4,7], and Tlx3 in neurons of the A3, B1 (unique for SPV), and B3 do-
mains [4,7,47]. Although the development of the medulla has not been thoroughly studied
in these patients, neurons derived from these domains make-up a large set of nuclei that are
involved in regulation of breathing, such as the NTS and IRN from the A3 domain [4,6,7,20],
the MDRNd from the B1 domain [7], the RTN and Pa5 from the B2 domain [28,73], the
MDRNv from the B3 domain [7], and the Amb from the MN-domain [91,96]. A thorough
study of the function of these nuclei and neurons within these nuclei is necessary to obtain
more insight in the underlying neuroanatomical deficits within this syndrome and possible
therapeutic targets. In mice it has been shown that loss of Phox2b-expressing neurons in
the NTS results in an impaired hypercapnic ventilatory response and could point to a
function of this medullary nucleus in CCHS [111], but this is yet to be shown in human
subjects. Other possible effects on the development of medullary nuclei upon loss of Phox2b
in relation to CCHS have, to our knowledge, not been described

Msx1 has been linked to Wolf–Hirschhorn syndrome (WHS) [112], a multi-organ
syndrome that is hallmarked by intellectual disability, craniofacial abnormalities (wide
nose-bridge and forehead), microcephaly, abnormal tooth development, heart defects, and
seizures [113]. Msx1 is expressed in progenitors of the A1 and A2 domains [4,7], which
ultimately form the PHY, LRN, GR, (E) Cu, and VNC [4,7,28,36]. These nuclei are mainly im-
portant for balance, gait, and proprioception, and cannot directly be linked to the symptoms
characteristic for WHS. However, some patients suffer from heart and hearing defects, two
processes strongly regulated by medullary nuclei (e.g., by the AP and CN respectively) [113].
The ultimate fate of neurons derived from the A2 domain is currently still unknown and it
is possible that these neurons make-up part of the nuclei involved in the regulation of these
processes. Further studies to the fate of the Msx1-expressing progenitors are necessary to
obtain more insight into a possible role for medullary nuclei in WHS.

Lastly, Gata3 has been linked to a DiGeorge-like syndrome, called hypoparathyroidism,
sensorineural deafness, and renal insufficiency syndrome (HDRS) [114], characterized by,
amongst others, low levels of parathyroid hormone, hearing loss, renal disease, facial
abnormalities, autism, cognitive disabilities, and congenital heart disease [115]. Gata3 is
expressed in progenitors of the V2 domain, which ultimately form the GRN [84,85,87].
However, much is still unclear about which medullary nuclei are build-up from neurons
of the different V-domains, so it remains possible that other medullary nuclei involved in
hearing and regulation of cardiovascular processes may (partially) be formed from these
neurons. Studies to the function of Gata3 have shown that loss of one allele of Gata3 leads
to morphological degeneration of the cochlea, but has no clear effect on the brainstem,
cerebral cortex, or outer and middle ear, suggesting that hearing loss in HDRS is a result of
peripheral abnormalities [116–118]. However, complete loss of Gata3 results in major mal-
formations of the spinal cord and brainstem [119], suggesting that the underlying molecular
cascade in Gata3 heterozygous mice may still be affected in the medulla and future research
to HDRS could still focus on a possible role for this structure in the phenotypical symptoms
of this syndrome.

Next to syndromes with a genetic cause that are already known to be involved in
development of the medulla, there are several neurodevelopmental disorders that show
symptoms related to medullary function (e.g., sleep-wake cycle, breathing regulation) [120],
but the genetic cause of has not clearly been linked to medullary development.

Of these neurodevelopmental disorders, the role of the medulla has been most exten-
sively studied in Rett syndrome. Rett syndrome is a severe X-linked neurological disorder,
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which is caused by a defect in the MeCP2 gene [121]. Patients with Rett syndrome have been
reported to experience sleepiness throughout the day and suffer from poor normal sleep
and have severe breathing abnormalities suggested to contribute to the high incidence of
sudden death [122,123]. As these patients suffer from severe brainstem-related symptoms,
there have been several studies published examining the effects of MeCP2 on brainstem
development and functioning. MeCP2 is strongly expressed during postnatal development
in neurons of the brainstem, including the pons and medulla [121]. In a mouse model for
Rett syndrome (MeCP2–deficient) an increased susceptibility for hypoxia in the brainstem
has been found that could arrest breathing [124]. However, stimulating 5-HT1A receptors
was able to protect against the breathing arrest as a consequence of hypoxia, making them
a potential therapeutic target in these patients [124]. Interestingly, oral administration of
desipramine, a norepinephrine uptake inhibitor, to Mecp2-deficient mice similarly relieves
severe apnea displayed by these animals [125], suggesting that different types of neurons,
possibly in different medullary nuclei, contribute to the affected breathing regulation seen
in these animals. MeCP2 could affect the development of medullary nuclei and the associ-
ated neurons early in neuronal development. In the murine cortex it has been shown that
loss of MeCP2 affects cell fate refinement and causes a delay in neuronal maturation [126], a
feat that has also been described for during adult neurogenesis in the murine hippocampus,
which is dependent on phosphorylation of S421 in MECP2 [127] and during neuronal
differentiation in zebrafish [128]. This function of MeCP2 could be regulated by its function
as a TF or by its function in regulation of the chromatin state of the DNA, resulting in
transcriptional repression of genes important for neuronal differentiation [127,129]. To-
gether, this could point to an affected medullary development during early embryogenesis,
resulting in a general negative effect on the development of neurons and medullary nuclei
related to respiratory control. However, this has, to our knowledge, not been extensively
studied in the animal model for Rett syndrome.

Children with trisomy 21 (Down’s syndrome) have been reported to suffer from in-
somnia and sleep breathing disorder [120,130], which is thought to be related to a more
unstable ventilatory control [131]. It has been found that children with Down’s syndrome
also display a smaller pons and medulla than age-matched controls [132]. Furthermore,
Down’s syndrome cell adhesion molecule (DSCAM), a gene strongly linked to the develop-
ment of Down’s syndrome, is expressed in the developing medulla [133], which could point
to a possible underdevelopment of the medulla in Down’s syndrome and consequently an
affected regulation of breathing and sleeping. Unfortunately, not much is known about the
developmental and molecular consequences of trisomy 21 on medullary development.

Lastly, patients with Pitt–Hopkins syndrome (PTHS) suffer from severe breathing
irregularities, such as hyperbreathing and apnea, which can occur both dependent and
independent of each other [134]. PTHS is caused by haploinsufficiency of the E-box protein
Tcf4 gene, which results in a smaller corpus callosum, affected cortical and hippocampal
development, and has recently been shown to affect the development of the parafacial
neurons (RTN Pre-I) of the medulla [135–138]. Although the genetic cause for PTHS has
been known since 2007, there is very little known of the role of this factor in development
of the medulla and medullary nuclei. Cleary et al. have shown in 2021 that heterozygous
Tcf4 mutants show similar respiratory problems as seen in PTHS patients and that Tcf4
heterozygous animals have an affected development of Phox2b-expressing neurons in the
RTN Pre-I, which show an increase in Nav1.8 channels [136]. Blocking Nav1.8 in brainstem
slices of these animals resulted in an increased baseline activity of chemoreceptors in the
RTN pre-I, and also improves baseline breathing in the Tcf4 heterozygous animals [136]. A
study by Ekins et al. showed that when Nav1.8 function is blocked in Tcf4 heterozygous an-
imals, social behavior, nesting, fear-conditioning, self-grooming, and anxiety is normalized
to WT levels in these animals [139]. Although breathing was not studied here, this study
and the research of Cleary et al. (2021) show great therapeutic promise for these types of
treatment [136,139]. Interestingly, TCF4 is suggested to form functional heterodimers with
the bHLH protein ATOH1 in the rhombic lip [140]. Atoh1 is expressed in progenitors of the
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A1 progenitor domain within the RL and the B2 progenitor domain, from which the RTN
pre-I is formed [7,28,73]. Although the functional interaction between TCF4 and ATOH1
has not been shown in the medulla or in the B2 progenitor domain, an affected interaction
of these TFs could be at the base of the affected development of the RTN Pre-I as described
by Cleary et al. [136].

Taken together, although many neurodevelopmental disorders show problems in
basic brainstem-related behavior, much is unknown about the development of the medulla
in these disorders. Insight in the development of medullary nuclei, from progenitor to
neuron, could help in understanding where the problems seen in these disorders arise
and whether there are other nuclei that may be affected that have been overlooked until
now. We strongly suggest the use of a more patterning-based approach to determine which
neurons of which nuclei may be affected in these disorders and work from there to improve
current therapeutics and pinpoint possible novel therapeutic targets to relieve these severe
and impactful symptoms in patients.
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