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Abstract: In this proof-of-concept study, the antioxidant activity of phytocannabinoids, namely
cannabidiol (CBD) and ∆9- tetrahydrocannabinol (THC), were investigated using an in vitro system
of differentiated human neuronal SY-SH5Y cells. The oxidative stress was induced by hydrogen
peroxide, as reactive oxygen species (ROS). Alzheimer’s disease (AD)-like pathological conditions
were mimicked in vitro by treating the differentiated neuronal cells with amyloid-β1–42 (Aβ1–42) in
the presence of Cu(II). We showed that THC had a high potency to combat oxidative stress in both
in vitro models, while CBD did not show a remarkable antioxidant activity. The cannabis extracts
also exhibited a significant antioxidant activity, which depended on the ratio of the THC and CBD.
However, our results did not suggest any antagonist effect of the CBD on the antioxidant activity of
THC. The effect of cannabis extracts on the cell viability of differentiated human neuronal SY-SH5Y
cells was also investigated, which emphasized the differences between the bioactivity of cannabis
extracts due to their composition. Our preliminary results demonstrated that cannabis extracts
and phytocannabinoids have a promising potential as antioxidants, which can be further investigated
to develop novel pharmaceuticals targeting oxidative stress therapy.

Keywords: antioxidant; SY-SH5Y cells; cannabinoid; THC; CBD; reactive oxygen species; oxidative stress;
amyloid-β

1. Introduction

One of the oldest known medicinal plants to mankind, Cannabis sativa L. (C. sativa L.), has been
used for various applications spanning over thousands of years [1]. C. sativa L. is an annual, dioecious
flowering plant. Its first occurrence is believed to be in central Asia [2]. Although the written records
of cannabis use both medicinally and recreationally have been found dating back to the 13th Century,
extensive interest started in the 19th Century for the preparation of various aliments with anticonvulsive,
analgesic, antianxiety and antiemetic properties [3]. Cannabis contains more than 500 natural compounds
including oils, proteins, metabolites and fibers [4], of which, more than 200 are metabolites including
terpenoids, flavonoids, alkaloids and phytocannabinoids [5]. Phytocannabinoids, a chemical class of
C21 terpenophenolic compounds produced uniquely by cannabis, are the most bioactive metabolites of
cannabis. They have a lipid structure featuring alkylresorcinol, which is classified as neutral cannabinoids
(without carboxyl group) and cannabinoid acids (with carboxyl group). Cannabinoids are accumulated as
cannabinoid acids and decarboxylated into their neutral forms. Trans-∆-9-tetrahydrocannabinol (THC;
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Figure 1) is one of the most potent cannabinoids responsible for the psychoactive effects [6], whereas
cannabidiol (CBD, Figure 1) is non-psychoactive [7]. Apart from these, other known phytocannabinoids
are cannabinol (CBN), cannabichromene (CBC) and cannabigerol (CBG) (Figure 1), among others [8,9].
Cannabinoids activate a group of receptors in the body called cannabinoid receptors, CB1 and CB2,
which are responsible for various physiological processes, including memory, appetite, mood and pain
perception. Prandi et al. [10] provided a comprehensive review of the structure-activity relationship (SAR)
mechanisms between cannabinoids and their receptors.
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THC is a partial agonist to cannabinoid receptors CB1 and CB2 [11,12]. The CB1 receptor is mainly
found in the central nervous system, while CB2 is predominant in the immune system [13]. THC is
readily absorbed and also passes through the blood-brain barrier due to its lipophilic nature [11].
On the other hand, CBD exerts an anti-inflammatory effect by inhibiting NF-kB and interferon-β
along with analgesic actions in cancer [14]. CBD has a low binding affinity towards CB1 with
the capacity to antagonize CB1 at nM levels [12]. THC and its analogs have been shown to reduce
glutamate toxicity by activating the cannabinoid receptors and reducing the influx of calcium through
voltage-sensitive calcium channels [15,16]. We have recently reported on the radical scavenging activity
of THC and CBD in the absence of SH-SY5Y cells using UV-Vis assays based on the colorimetric
reactions between reactive oxygen species (ROS) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH),
2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and hypochlorous acid (HOCl) [17].
We also applied electrochemical techniques to evaluate the antioxidant activity of THC and CBD
using voltammetry [17].

Oxidative stress refers to an imbalance between the production of ROS and the antioxidant defense
mechanism causing timely clearance from the biological system [18]. Oxidative stress processes create
a significant amount of free radicals. These free radicals are unstable due to the presence of unpaired
electrons, which can react freely with biomolecules (lipids, protein, nucleic acid and carbohydrates),
causing susceptibility to irreversible damage [19].

Studies performed in vitro have shown that CBD has anti-inflammatory and antioxidant
properties [20], as well as reducing tau phosphorylation related to Alzheimer’s disease (AD) [21]
and improving cell viability [22]. The ratio of administered CBD to THC significantly influenced these
possible effects [23,24]. Different ratios of THC and CBD were utilized in assays such as the estimation
the GABA (gamma-aminobutyric acid, a neurotransmitter) levels, Nissl-stained neurons and the mRNA
level of antioxidant enzymes such as superoxide dismutase (SOD-1) to judge the neuroprotective effects
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on the neurons [23,24]. The changes introduced in the expression levels of SOD-1 by 3-nitropropionic
acid (3-NP) were completely reversed by using THC and CBD [23,24]. The commercially available
form of THC, Dronabinol™, has been used successfully to increase appetite in the case of AIDS
and as an antiemetic in the case of cancer chemotherapy [25]. Baker and Pryce [26] recently reviewed
the antioxidative and anti-inflammatory properties of CBD. THC has shown neuroprotective effects
in animal models of AD, Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) through
modulation in glutamatergic transmissions and synaptic plasticity, as well as the modulation of immune
response and the excitability of N-methyl-D-aspartate receptors [27].

The key role of cannabinoid receptors in AD makes cannabinoids and cannabis extracts a potential
therapeutic candidate for AD [28–30]. AD is a progressive degenerative disease of the brain. It is
characterized by memory decline, disruption of cognitive ability and eventual loss of bodily function
control [31]. Our current understanding of the pathological mechanism of the disease includes aspects
such as the involvement of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles,
along with oxidative stress and inflammatory events, eventually leading to neuronal injury and synaptic
loss [32]. For more than two decades, the Aβ hypothesis has been the primary pathophysiology behind
AD [33]. According to the amyloid hypothesis, an imbalance between the generation and clearance
of Aβ from the brain is the major contributor to the progression of AD pathogenesis [34]. Aβ leads
to neuronal lipid peroxidation, protein oxidation and DNA oxidation [35]. Lyras et al. [36] tested
different regions of the human brain to assess the level of protein and DNA oxidation. Their results
were conclusive concerning the role of oxidative stress in key regions of the human brain implicated
in AD. Among other leading causes of AD, metal ion imbalance plays a major role. At the synaptic
clefts of AD brains, Aβ1–42, Cu(II) (400 mM) and Fe(III) (1 mM) were detected at anomalous levels,
causing Aβ aggregation and ROS production [37,38]. Protease resistance, reversible precipitation
and the O2-dependent production of H2O2 and concomitant toxicity are all mediated by the affinity of
Cu(II) and Zn(II) towards Aβ [39]. Studies have shown that Aβ peptides cause cellular toxicity by
generating H2O2 and O2

− radicals in vitro [40,41]. Post-mortem AD brain tissue has shown plaques
enriched with Aβ1–42 in combination with Cu/Zn, and these Aβ-metal complexes were solubilized
with the selected metal chelators [42,43]. Furthermore, the interaction of Cu(II) with tau protein also
lead to ROS formation and neuronal death [44,45].

Since AD is a multifactorial disease, the therapeutic approach should be targeted at various levels.
Most of the experimental evidence as discussed above is available from both cellular and animal models
with regard to the potential of cannabinoids. One of the clinical results has shown that treatment with
THC analogs resulted in decreased severity in the cognitive behavior of AD patients [46] and increased
their appetite [46,47]. Another cellular studies showed that cannabinoids lowered the Aβ levels,
inhibited their aggregation and increased mitochondrial function [48,49].

In this study, we investigated the effect of the cannabis extracts, as well as THC and CBD, two
main bioactive phytocannabinoids, to combat oxidative stress, one of the hallmarks of AD, using
an in vitro model of the neurons. We evaluated the effect of cannabis extracts on the cell viability
of the differentiated SH-SY5Y neuronal cell line using fluorescence-based techniques. Our aim in
this study was to lay a background for future research with regard to the potential applications of
cannabinoids and their synthetic analogs as a novel therapeutic approach to oxidative stress in AD.

2. Results and Discussion

2.1. Antioxidant Activity

To investigate the antioxidant activity of the phytocannabinoids and cannabis extracts, we developed
an in vitro model of AD-like oxidative stress using the differentiated SH-SY5Y cells. We followed two
approaches to mimic the AD-like oxidative stress by treating the differentiated SH-SY5Y cells with H2O2

and also with Aβ1–42 and Cu(II) to provide an in vitro model of AD-like oxidative stress.
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The in vitro model of AD-like oxidative stress was developed by treating the differentiated
SH-SY5Y neuronal cells with two known oxidative stress inducers, namely hydrogen peroxide
(H2O2) [50–52] and Aβ1–42 in the presence of Cu(II) (Aβ1–42-Cu(II) complex) [53,54]. To determine
the level of ROS produced by the inducers, DCFDA, a cell-permeable reagent, was used. This reagent
was deacetylated by the cellular esterase to an intermediate compound, which was later oxidized by
reactive oxygen species (ROS) to 2′,7′-dichlorofluorescein (DCF). This highly fluorescent compound
(DCF) was then measured spectrophotometrically at an excitation of 495 nm and an emission of 529 nm.

The effect of H2O2 is largely mediated by hydroxyl radicals (OH•) generated by the Fenton
reaction, which is catalyzed by Fe2+ [55]. Previous studies have shown that Cu(II) also has an important
role in the Fenton reaction to generate ROS [44,45,56]. Postmitotic brain cells such as glial and neuronal
cells are particularly sensitive to these free radicals, leading to brain damage [57]. Differentiated
SH-SY5Y cells provided us with an ideal model to test the effectiveness of cannabinoids against
the oxidative stress environment in pathological conditions. Our previously reported UV-Vis studies
showed that THC and CBD had a similar potency using the DPPH, ABTS and HOCl radical scavenging
assays [17]. However, the result of this study indicated that THC (IC50 = 0.4 µg mL−1) had a higher
potency in combating the ROS induced by H2O2 in the SY-SH5Y cells compared to CBD with an IC50

of 42.7 µg mL−1 (Table 1).

Table 1. ROS detection assay in differentiated SH-SY5Y cells using H2O2 as the oxidative stress inducer.

Test Compound CBD% THC% IC50 (µg mL−1) *

Ascorbic Acid — — 0.25

THC — 98 0.44

10:90 10 90 2.54

25:75 25 75 0.44

50:50 50 59 0.54

75:25 75 25 14

90:10 90 10 54

CBD 98 — 42.71

E3 N.D.# 71.08 0.44

E8 50.34 3.9 0.54

E2 N.D.# 81.1 0.7

E7 64.34 11.54 0.64

E1 N.D.# 72.88 1.24

* Results are expressed as the mean of triplicates. Average values followed by different numbers (subscript
numbers:1–4) differ by the Bonferroni test at p < 0.05. # Not detected.

The cannabis extracts were also tested using the DCFDA assay to detect their ability to decrease
ROS levels after H2O2 treatment for 24 h (Figure 2A). Table 1 shows the IC50 of all the tested extracts
and cannabinoid compounds. Ascorbic acid (AA) was applied as a positive control with a known strong
antioxidant effect [58,59]. Among all the cannabis extracts, E3 with 71.08% THC and no detectable
CBD showed the highest antioxidant activity by reducing the ROS level by 80% (Figure 2A). The other
cannabis extracts (E1) that also contained a close amount of THC (72.88%) and no detectable CBD
reduced the ROS by more than 70%. Notably, these two extracts also showed similar neurotoxicity
(Table 2). Interestingly, extracts E7 and E8, which were poor in THC (11.5% and 3.9%, respectively),
were also effective at reducing the ROS by more than 60%. We also examined the effectiveness of
the CBD:THC compounds at different proportions (Figure 2B). As expected, the sample mixture with
the lowest amount of THC (90:10 of CBD:THC) was less effective at decreasing the ROS level. Our results
showed that pure THC (98% pure) reduced the ROS at the same level of AA with an IC50 of 0.4 µg mL−1,
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while pure CBD only reduced the ROS by 50% with an IC50 of 42.7 µg mL−1 (Table 1). These results
suggest that other metabolites in the cannabis extracts might be associated with antioxidant activity.
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Figure 2. Concentration-response curve for monitoring the ROS level in differentiated SH-SY5Y
cells using the 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) assay after treatment (A) with
cannabis extracts (tested concentrations for the extracts: 0.0, 0.8, 2.5, 7.4, 22.2, 66.7 and 200.0 µg mL−1)
and (B) the inset; and CBD:THC (C) solutions with different ratios of CBD and THC (tested concentrations
for the CBD:THC ratios: 0.0, 0.4, 1.2, 3.7, 11.0, 33.0 and 100.0 µg mL−1) and along with (D) the inset.
In all experiments, H2O2 was used as the ROS inducer (100% fluorescence intensity), and ascorbic acid
(AA) was tested in vehicle only (DMSO) as the positive control. Data show the average of the mean
values determined in triplicate measurements (n = 3). Control (from vehicle only, DMSO) vs. response
data (from cannabinoids) are shown using the Bonferroni test at p < 0.0001.

Other constituents of the tested extracts. i.e., CBN, CBG, etc. could either enhance the effects of
THC or be reduced by CBD in their antioxidant properties [7]. Studies have shown that in the mixed
proportion of CBD and THC, sometimes, CBD hindered the effect of THC, and in other cases, it
could potentiate its effect, making it difficult to establish a fixed ratio with the desired potency [24].
Our results also showed that the ratio of CBD:THC at 25:75 showed a high potency with an IC50 of
2.5 µg mL−1 and was found to be more potent than a CBD:THC ratio of 10:90 with an IC50 of 5 µg mL−1.
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Table 2. IC50 of THC, CBD, cannabinol (CBN) and cannabis extracts (E) against differentiated SH-SY5Y
cells as determined by the MTT assays.

Test Compounds CBD% THC% IC50 (µg mL−1) *

THC — 98 0.6

E3 N.D.# 71.80 0.6

E1 N.D.# 72.88 0.7

CBD 98 — 5

CBN — — 6.5

E2 — 81.10 7

E7 64.34 11.54 11

E8 50.34 3.90 11

* Results are expressed as the mean of triplicates. Average values followed by different numbers (1–4) differ by
the Bonferroni test at p < 0.05. # Not detected.

It has been shown by several researchers that the interaction of Cu(II) with peptides and proteins
leads to ROS formation [44,45,56,60,61]. Therefore, the Aβ-Cu(II) system can be used as an oxidative
stress inducer in the SH-SY5Y in vitro model to mimic the AD-like oxidative stress condition [62,63].
Among the Aβ isoforms, Aβ1–42 is more hydrophobic and fibrillogenic than Aβ1–40 due to the addition
of two hydrophobic residues at the N-terminus [64]. Aβ1–42 in combination with Cu(II) catalyzes
reactive oxygen species production [65]. The high binding affinity of Cu(II) to three histidine residues
at positions 6, 13 and 14 facilitates the aggregation of Aβ1–42 [66]. The neurotoxicity of Aβ1–42 is
significantly increased in the presence of Cu(II) compared to Aβ1-40, correlating with the capacity to
reduce Cu(II) to Cu(I), while forming H2O2 and oxidative stress [67]. In order to find the concentration
level of the Aβ1–42-Cu(II) system that produces the highest neurotoxicity, the differentiated SH-SY5Y
cells were treated with different concentrations of Aβ1–42, Cu(II) and Aβ1–42-Cu(II) (molar ratio 1:1).
The cell viability of differentiated SH-SY5Y cells after 24 h of treatment was examined by the MTT assay
(Figure 3). Figure S1 displays the phase-contrast images. The MTT results confirmed the neurotoxicity of
Aβ1–42 and Aβ1–42 -Cu(II) (molar ratio 1:1). As expected, treatment with Aβ1–42 -Cu(II) reduced the cell
viability more than Aβ1–42 (with the same concentration). This observation emphasized the possible
role of Aβ1–42-Cu(II) in ROS formation, and this was in agreement with previous studies [67,68].
The 10 µM Aβ1–42-Cu(II) (molar ratio 1:1) cell viability was decreased by more than 50% after 24 h of
treatment. Therefore, this concentration was chosen as the ROS inducer in the SH-SY5Y in vitro model.
A cannabis extract (E2) (see Table S1 for the details of the composition), which contained 81.08% THC,
with no detectable CBD, and hemp seed oil (HSO) containing 80% CBD was chosen as the natural source
of THC and CBD, which allowed us to compare the effectiveness of THC and CBD to study the oxidative
stress induced by the Aβ1–42 -Cu(II) system. Irakli et al. [69] recently investigated the nutritional,
phytochemical composition and antioxidant properties of hemp seeds. The differentiated neuronal
cells were treated with various concentrations of E2 and HSO after pre-treating the SH-SY5Y cells with
a 10 µM Aβ1–42-Cu(II) complex (molar ratio 1:1).
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neuronal cells after 24 h of incubation with amyloid-β (Aβ) (green bar), Cu(II) (red bar), the Aβ + Cu(II)
complex (molar ratio 1:1) (blue bar) and control experiments with no treatment of oxidative stress
inducers (yellow bar).

Figure 4 shows the neuroprotective effect of E2 and HSO by reducing the ROS level when
the Aβ1–42-Cu(II) complex was used as the oxidative stress inducer in differentiated SH-SY5Y neuronal
cells. In this study, AA was tested as a positive control with a 100% effect on reducing the ROS in
differentiated SH-SY5Y neuronal cells. Our results indicated that E2, which contained 81.08% THC
and no detectable CBD, reduced the ROS by 60%, while HSO, which contained 80% CBD, was only
capable of decreasing the ROS by 25% (Figure 3). E2 displayed an IC50 of 0.6 µg mL−1 compared
to 0.3 µg mL−1 of AA, which was used as the positive control. Vitamin E, curcumin and AA are
model compounds that have been applied as positive controls to study the antioxidant effects of
novel compounds [59]. A chelating agent such as clioquinol was reported to have a nanomolar
affinity towards Cu(II) and reduced the formation of H2O2 by Aβ1–42 [43]. Though the mechanism
of action for cannabinoids in reducing the oxidative stress created by Aβ1–42 is not yet known, we
hypothesize that the metal chelating properties of THC and CBD could be the probable explanation.
Further investigations on this hypothesis are in progress in our laboratory. Figure S4 shows
the concentration-response curve of E2 for ROS level detection in the differentiated SH-SY5Y cells
when H2O2 was used as the ROS inducer. These results reinforced the previous study that reported
the effect of THC to inhibit Aβ1–42 aggregation [11]. We can speculate that THC had a dual action on
the Aβ1–42-Cu(II) system by reducing ROS formation and inhibiting Aβ1–42 aggregation, which might
have prevented neuronal death. However, comparing the antioxidant activity of the phytocannabinoids
and cannabis extracts in two AD-like oxidation models suggested a complex antioxidant mechanism
that may follow various pathways. Therefore, further studies need to be done to understand
the mechanism of the antioxidation and the possible role of cannabinoid receptors that are activated
by these compounds. We also performed a series of MTT assays to further investigate the effect of
cannabinoids on neuronal viability.
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Figure 4. Concentration-response curve for ROS level detection in the differentiated SH-SY5Y cells
using the DCFDA assay after treatment with (A) the cannabis extract (E2) containing 81% THC
(tested concentrations for E2: 0.0, 0.8, 2.5, 7.4, 22.2, 66.7 and 200.00 µg mL−1) along with (B) the inset.
(C) hemp seed oil (HSO) containing 80% CBD (tested concentrations for HSO: 0.0, 0.4, 1.2, 3.7, 11.0,
33.0 and 100.0 µg mL−1) and (D) the inset. In all experiments, the ROS inducer was the Aβ1-42-Cu(II)
complex (100% fluorescence intensity), and AA was tested in vehicle only (DMSO) as the positive
control. Data show the mean values performed in triplicate (n = 3).

2.2. Cell Viability Assay

It is critically important to evaluate the toxicity of therapeutic candidates. Therefore, we performed
a cell viability assay to determine the neurotoxicity of the cannabis extracts against the differentiated
SH-SY5Y human neuronal cells. Table S1 summarizes the chemical profiles of these extracts. In order
to examine the impact of CBD, THC and CBN on the neurotoxicity of these extracts, MTT assays were
performed. Figure 5 shows the dose-response curve for CBD, THC and CBN against differentiated
SH-SY5Y. The dose-response curve for different cannabis extracts is shown in Figure S2. The IC50 of these
cannabis extracts and cannabinoids (THC, CBD and CBN) was calculated based on the dose-response
curve (Table 2). The concentration ranges were from 0.0001 µg mL−1 to 13 µg mL−1 for THC, from
0.01 µg mL−1 to 74 g/mL−1 for CBD and from 0.001 µg mL−1 to 100 µg mL−1 for CBN. While CBD
(<1 µg mL−1) and CBN (<5 µg mL−1) did not show any neurotoxicity, THC treatment reduced the cell
viability of differentiated SH-SY5Y by 50% at a 0.6 µg mL−1 concentration (Figure 5).



Pharmaceuticals 2020, 13, 328 9 of 16
Pharmaceuticals 2020, 13, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. Dose-response curve of the differentiated SH-SY5Y cells exposed to (A) CBD, (B) THC and 
(C) CBN using the MTT assay after 18 h of treatment with the cannabinoids. Data show the mean 
values performed in triplicate (n = 3). Control (DMSO) vs. cannabinoid shown using the Bonferroni 
test at * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 

Cannabis extracts E1 and E3 with high THC (>71%) showed a similar effect to pure THC (Table 
2). Furthermore, these extracts had a lower IC50 in comparison with extracts E7 and E8, which had 
more than 50% CBD and a low THC proportion. Notably, extracts E7 and E8 (IC50 = 11 µg mL−1) were 
less neurotoxic than the pure CBD (IC50 = 5 µg mL−1). On the other hand, cannabinol (CBN), having a 
structure like THC (Figure 1), was found to have an IC50 of 6.5 µg mL−1, which was 10-fold higher 
than THC. The extracts tested not only had different ratios of THC and CBD, but also other naturally 
occurring compounds like cannabigerol (CBG) and cannabichromene (CBC) (see Table S1 for the 
metabolite profile of these cannabis extracts). These other constituents of the extracts tested have 
their own therapeutic potential, which could either have a synergistic or antagonistic effect in the 
cells. We are currently in the process of investigating those individual and combined effects of CBG 
and CBC in our laboratory. Previous studies showed that CBG was non-psychoactive and did not 
bind to the CB1 or CB2 receptors, but displayed antioxidant and anti-inflammatory properties [60]. 

Figure 5. Dose-response curve of the differentiated SH-SY5Y cells exposed to (A) CBD, (B) THC and (C) CBN
using the MTT assay after 18 h of treatment with the cannabinoids. Data show the mean values performed
in triplicate (n = 3). Control (DMSO) vs. cannabinoid shown using the Bonferroni test at * p < 0.05, ** p < 0.01,
*** p < 0.001 and **** p < 0.0001.

Cannabis extracts E1 and E3 with high THC (>71%) showed a similar effect to pure THC (Table 2).
Furthermore, these extracts had a lower IC50 in comparison with extracts E7 and E8, which had
more than 50% CBD and a low THC proportion. Notably, extracts E7 and E8 (IC50 = 11 µg mL−1)
were less neurotoxic than the pure CBD (IC50 = 5 µg mL−1). On the other hand, cannabinol (CBN),
having a structure like THC (Figure 1), was found to have an IC50 of 6.5 µg mL−1, which was 10-fold
higher than THC. The extracts tested not only had different ratios of THC and CBD, but also other
naturally occurring compounds like cannabigerol (CBG) and cannabichromene (CBC) (see Table S1
for the metabolite profile of these cannabis extracts). These other constituents of the extracts tested
have their own therapeutic potential, which could either have a synergistic or antagonistic effect in
the cells. We are currently in the process of investigating those individual and combined effects of
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CBG and CBC in our laboratory. Previous studies showed that CBG was non-psychoactive and did not
bind to the CB1 or CB2 receptors, but displayed antioxidant and anti-inflammatory properties [60].
Prior literature indicated that these constituents might synergistically enhance the effect of the primary
phytocannabinoids and mitigate their side effects, especially with regards to THC [5]. Recently,
di Giacomo et al. [70] reported the neuroprotective and neuromodulatory effects induced by CBD
and CBG in rat Hypo-E22 cells and isolated hypothalamus. This information would be useful to find
an optimal concentration to attain the beneficial effects of phytocannabinoids in cannabis extracts
towards neurodegenerative disease treatment.

To test which proportion (devoid of other cannabinoid constituents) was responsible for these
effects, different ratios of pure THC and CBD were investigated as control assays (Figure S3 and Table S2).
The ratios tested for cell viability were 90:10, 75:25, 50:50, 25:75 and 10:90 (w/w of CBD:THC). While
all the tested THC:CBD solutions were nontoxic below a 1 µg mL−1 concentration, the 50:50 ratio of
THC:CBD had the highest IC50 among all the tested solutions.

The effect of cannabinoids on the morphology of the differentiated neuronal cells was also
investigated by phase-contrast microscopy. Figure 6 shows the phase-contrast microscopy images of
the differentiated neuronal SH-SY5Y cells after treatment with CBD. The negative control used for
this test was DMSO (Figure 6A), having slender shaped cells with elongated neurites. The neuronal
cells displayed negligible bulging but had intact neurites at a concentration of 0.1 µg mL−1 of CBD
(Figure 6B). Images indicated that cells started to round, and that neurite formation was affected
around 2 µg mL−1 (Figure 6C), and a concentration of 10 µg mL−1 of CBD (Figure 6D) and above
caused cell death. Figure S5 shows the phase-contrast images of the differentiated SH-SY5Y cells after
treatment with various concentrations of THC.
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3. Materials and Methods 

Figure 6. Phase-contrast microscope images of differentiated SH-SY5Y after treatment with (A) DMSO as
the control, (B) 0.1 µg mL−1 CBD, (C) 2 µg mL−1 CBD and (D) 10 µg mL−1 CBD. CBD at a concentration
of 10 µg mL−1 (D) and above shows dead cells, at 2 µg mL−1 (C) causes cell body rounding and less
affected neurites, whereas at 0.1 µg mL−1 (B), the phenotype is almost similar to the DMSO ((A),
vehicle only control) phenotype. Images were taken using the EVOS M5000 Imaging System at 10×
magnification. The scalebar indicates 50 µm.
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3. Materials and Methods

3.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM) was obtained from Wisent Bioproducts (Montreal,
QC, Canada). Fetal bovine serum (FBS) and 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) were
purchased from Thermo Scientific (Waltham, MA). ∆9-THC (1 mg mL−1 in methanol) was acquired
from Cayman Chemical Company (Ann Arbour, MI, USA). CBD was provided by Lupos Biotechnology
Inc. (Toronto, ON, Canada). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
reagent, all-trans-retinoic acid, hydrogen peroxide (H2O2), Cu(II) chloride, dimethyl sulfoxide (DMSO,
99.9%), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 99.0%) and ascorbic acid (AA) were purchased from
Sigma-Aldrich (Oakville, ON, Canada). All the chemicals used were of analytical grade and used
as received.

3.2. Amyloid-β Pretreatment

The Aβ1–42 peptide was purchased from Anaspec (Fermont, CA, Canada). Briefly, Aβ1–42 peptides
were pre-treated by dissolving in HFIP to a final concentration of 1 mg mL−1. The resulting suspensions
were sonicated for 15 min until the sample solutions became clear. Aβ1–42/HFIP solutions were shaken
at 400 rpm for 2 h at 4 ± 1 ◦C. The samples were then left in HFIP and sealed overnight. HFIP was
then removed by passing a stream of nitrogen gas across the solvent surface, leaving a clear thin film
of peptides at the bottom of the sample vial. The thin film of peptides was re-constituted in DMSO
and mixed by vortexing, followed by dilution to the appropriate concentrations with 50 mM PBS
containing 100 mM NaCl (pH 7.4). Peptide concentrations were determined by measuring the OD at
280 nm (ε280 = 1280 M−1) using a NanoDrop 2000 (ThermoScientific, Mississauga, ON, Canada).

3.3. Cannabis sativa L. Extracts

Cannabis extracts E1, E2, E3, E7 and E8, which were extracted from Cannabis sativa L. by
the supercritical carbon dioxide extraction technique, were kindly provided by Lupos Biotechnology
Inc. (Toronto, ON, Canada) and were used as received. All the extracts were analyzed by GC-MS at
Lupos Biotechnology Inc. (Toronto, ON, Canada) (Table S1). Stock solutions of cannabis extracts were
prepared in the DMSO and diluted to the desired concentrations before the treatment. CBD and THC
standards as isolated compounds and combined at different ratios CBD:THC (90:10, 75:25, 50:50, 25:75
and 10:90 (w/w)) were also studied for their antioxidant activity.

3.4. Cell Culture and Neuronal Differentiation

The human SHSY5Y neuronal cell line (American Type Culture Collection, Manassas, VA,
USA) was maintained in DMEM supplemented with 10% FBS. Cultures were incubated at 37 ◦C in
a humidified 5% CO2 atmosphere. The SHSY5Y cells were differentiated by all-trans-retinoic acid
(RA) using a well-established protocol as reported before [71]. Briefly, after plating the cells at a cell
density of 3.5 × 104 cells per cm2 to allow cell adhesion for 24 h, neuronal differentiation was induced
by treatment of the cells with 10 µM RA at 37 ◦C for 72 h under serum-free DMEM conditions.

3.5. Cell Viability Assay

The cell viability of the differentiated SH-SY5Y cells was monitored after treatment with various
concentrations of cannabis extracts or phytocannabinoids. The differentiated SH-SY5Y cells were
also treated with various concentrations of Cu(II) and Aβ1–42 in the absence or presence of Cu(II) to
find the neurotoxicity that mimics the AD-like oxidative stress condition [53,54]. In all experiments,
DMSO was used as the vehicle control. The MTT assay was performed to determine the cell viability
after 24 h of treatment with the target extracts or compounds. The MTT assay is a colorimetric
technique that uses the reduction of a yellow MTT reagent to measure cell viability. Viable cells



Pharmaceuticals 2020, 13, 328 12 of 16

contained NAD(P)H-dependent oxidoreductase enzymes, which reduced the MTT reagent to formazan,
an insoluble crystalline product with a deep purple color. The standard procedure was followed for
the MTT assay: Briefly, 0.2 mg mL−1 MTT solution in DMEM were added to each well of a 96 well plate,
and the plate was incubated for 4 h at 37 ◦C in a humidified 5% CO2 atmosphere. After 4 h, the media
were aspirated, and one hundred microlitres of DMSO were added to each well. The absorbance
of the wells was measured at 570 nm, which directly correlates to the number of viable cells, using
a microplate reader (Synergy H1 multi-mode reader, BioTek Instruments Inc., Winooski, VT, USA).
Cell viability was further confirmed by examination of the cellular morphology with phase-contrast
microscopy (EVOS M5000 Imaging System, Thermo-Fisher Scientific, Mississauga, ON, Canada).
Dying cells showed extensive rounding of the cell body and condensation of nuclei.

3.6. Antioxidant Activity Assay

SH-SY5Y cells at a density of 3.5 × 104 per well were seeded into a dark plate with a clear bottom.
After 24 h of incubation at 37 ◦C, the cells were treated with 10 µM RA at 37 ◦C for 72 h under serum-free
conditions to induce differentiation. The cells were then treated with 100 µM of H2O2 for 24 h to create
oxidative stress in the cells, as reported before [50,51]. The differentiated cells were treated with 5
µM of DCFDA for 30 min to get a measure of the baseline oxidative stress of the cells before being
treated with the test compounds. A range of concentrations was used to test the efficacy of the extracts
and pure compounds in rescuing the cells after inducing oxidative stress by H2O2. The cells were
incubated with the test compounds for 30 min before measuring the fluorescence at excitation/emission
of 492 nm/527 nm using a microplate reader (Synergy H1 multi-mode reader, BioTek Instruments Inc.,
Winooski, VT, USA). AA was applied as a positive control. To investigate the effect of the Aβ1–42-Cu(II)
complex as the oxidative stress inducer, the differentiated SH-SY5Y cells were treated with 10 µM
of the Aβ1–42-Cu(II) complex with a molar ratio of 1:1. The DCF fluorescence intensity of the cells
treated with H2O2 or Aβ1–42-Cu(II) was considered as 100%, and the relative fluorescence intensity
was calculated for all the samples accordingly.

3.7. Statistical Analysis

Data are presented as the mean ± SD. The Bonferroni test was used to evaluate statistical
discrepancies between the two groups. p < 0.05 was used as the criterion for statistical significance.

4. Conclusions

In this proof-of-concept study, we investigated the effects of cannabis extracts with different ratios
of THC and CBD on combating the oxidative stress in differentiated neuronal cells. To understand
the role of phytocannabinoids, specifically CBD and THC, in the antioxidant activity of the cannabis
extracts, we also examined the effect of pure THC, CBD, as well as various mixtures of these two
phytocannabinoids. The oxidative stress was induced in vitro in differentiated neuronal SH-SY5Y
cells using H2O2. Our results showed that the 75% THC compound and cannabis extract containing
72% THC could reduce ROS formation by approximately 80%. We also mimicked the AD-like
oxidative stress conditions by treating the differentiated neuronal SH-SY5Y cells using Aβ1–42-Cu(II)
complexes, which also triggered ROS formation. Our results clearly showed the significant impact
of cannabis extracts with high THC to combat ROS formation induced by the Aβ1–42-Cu(II) in vitro
model. However, CBD was not observed to exhibit as high an antioxidant activity as THC under these
experimental conditions. The antioxidant activity of cannabis extracts that had a lower percentage
of THC suggested that other natural compounds in these extracts might also have had antioxidant
activity or a synergetic effect. Our results provide fundamental information on the antioxidant activity
of cannabinoids on neuronal cells towards developing a novel therapeutic approach for oxidative
stress therapy. Further studies are required to understand the role of cannabinoid receptors, as well as
other receptors that may be activated by these compounds in SH-SY5Y cells. Research efforts towards
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understanding the molecular mechanisms underlaying the antioxidant activities of phytocannabinoids
is in progress in our laboratory.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/11/328/s1,
Figure S1: Phase-contrast microscope images of (A) the differentiated SH-SY5Y without treatment; (B) after
treatment with 10 µM Aβ1–42; (C) 10 µM Cu(II); and (D) 10 µM Aβ-Cu2+ (molar ratio 1:1) complex for 24 h. Scale
bars indicate 400 µm, Figure S2: Dose-response curve of MTT cell viability assay with different cannabis extracts
(A) E1, (B) E3, (C) E7, (D) E8, (E) E2 in the differentiated SH-SY5Y cells, Figure S3: Dose-response curve of MTT
cell viability assay in the differentiated SH-SY5Y cells with CBD:THC ratios (A) 90:10, (B) 75:25, (C) 50:50, (D) 25:75,
and (E) 10:90, Figure S4: Concentration-response curve for monitoring the ROS level in differentiated SH-SY5Y
cells using DCFDA assay after treatment (A) with cannabis extract E2 and (B) inset displaying the data from low
concentrations of E2, Figure S5: Phase-contrast microscope images of differentiated SH-SY5Y after treatment
with (A) DMSO as the control (vehicle only), (B) 0.1 µg mL−1 THC, (C) 2 µg.mL−1 THC, and (D) 10 µg mL−1

THC, Table S1: Chemical profile of cannabis extracts obtained from GC-MS analysis, Table S2: IC50 of CBD:THC
solutions obtained from MTT cell viability assay.
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