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Interferon-a (IFN-a) comprises a family of 13 cytokines involved in the modulation of antiviral, immune,
and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-a sig-
naling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to
suppression of angiogenesis. In this study, we knocked-down the expression of seven established or can-
didate modulators of IFN-a response in endothelial cells to reconstruct a gene regulatory network and to
investigate the antiangiogenic activity of IFN-a. This genetic perturbation approach, along with the anal-
ysis of interferon-induced gene expression dynamics, highlighted a complex and highly interconnected
network, in which the angiostatic chemokine C-X-C Motif Chemokine Ligand 10 (CXCL10) was a central
node targeted by multiple modulators. IFN-a-induced secretion of CXCL10 protein by endothelial cells
was blunted by the silencing of Signal Transducer and Activator of Transcription 1 (STAT1) and of
Interferon Regulatory Factor 1 (IRF1) and it was exacerbated by the silencing of Ubiquitin Specific
Peptidase 18 (USP18). In vitro sprouting assay, which mimics in vivo angiogenesis, confirmed STAT1 as
a positive modulator and USP18 as a negative modulator of IFN-a-mediated sprouting suppression.
Our data reveal an unprecedented physiological regulation of angiogenesis in endothelial cells through
a tonic IFN-a signaling, whose enhancement could represent a viable strategy to suppress tumor
neoangiogenesis.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Interferon-a (IFN-a) are a family of cytokines endowed with
antiviral, immunomodulatory and anticancer activities, secreted
by various cell types in response to pathogens, cancer cells or dur-
ing immune responses [1–5]. IFN-a production is triggered by
recognition of pathogens – and presumably dying cancer cells [6]
– by Toll-like receptors (TLRs), through NF-jB signaling and
recruitment of transcription factors of the Interferon Regulatory
Factor (IRF) family [7]. Upon ligand binding, IFN receptors activate
the Janus Kinase (JAK) – Signal Transducer and Activator of Tran-
scription (STAT) pathway, along with MAPK, PI3K and AKT path-
ways [8–11]. Rapid phosphorylation of TYK2 and JAK1 is
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followed by phosphorylation of STAT1 and STAT2, which interact
with IRF9, forming a complex known as ISGF3. This complex
migrates to the nucleus and binds to IFN-stimulated response ele-
ments (ISREs), thus leading to transcription of >2000 IFN-
stimulated genes (ISGs) [12].

In the context of cancer, besides directly impinging on cancer
cell proliferation and promoting adaptive immune response, IFN-
a mediates antitumor effects through inhibition of angiogenesis
[13]. IFN-a antiangiogenic activity relies on reducing the secretion
of proangiogenic factors – such as vascular endothelial growth fac-
tor (VEGF) [14] or interleukin-8 (IL-8) [15] – and promoting release
of antiangiogenic factors – such as the angiostatic chemokines C-X-
C Motif Chemokine Ligand (CXCL) 9 and 10 [16,17] – by cancer and
stromal cells. This imbalance between pro- and antiangiogenic fac-
tors in an IFN-a rich microenvironment contrasts proliferation of
endothelial cells (EC) and formation of new blood vessels. Indeed,
treatment with IFN-a is associated with reduced microvessel den-
sity and increased coverage of blood vessels by pericytes [18,19], a
marker of vascular normalization. IFN-a inhibits angiogenesis also
by direct effects on EC proliferation and migration [20–22], and by
inducing replicative senescence following chronic exposure [23].
Notably, genetic alterations in cancer cells or certain features of
the tumor microenvironment dampen IFN signaling [24,25]. In this
respect, high concentrations of VEGF – which are typically found in
the hypoxic tumor microenvironment – counteract antiangiogenic
activity of IFN-a, as VEGF signaling leads to IFN-a Receptor Subunit
1 (IFNAR1) degradation [26] and blockade of IFN signaling in EC.
These vulnerabilities, along with marked side effects, likely
account for the limited success of systemic IFN-a administration
in the clinic.

The complex biological effects of IFN-a on angiogenesis are
empowered by strong IFN-induced transcriptional responses in
EC, which comprise both an amplification component as well as
negative feedback control. Although several studies, including
ours, previously investigated the static IFN signature in EC and
identified a core of genes modulated by IFN-a [22,27,28], there is
still limited knowledge about temporal expression profiles induced
by IFN-a. Aim of this study was to reconstruct the regulatory net-
work of the IFN-a transcriptional response in EC by analyzing the
dynamic behavior of several ISGs and by investigating how pertur-
bation of certain IFN-a transcriptional modulators impacts on the
IFN signature and on angiogenesis.
2. Materials and methods

2.1. Cells and reagents

Human umbilical vein endothelial cells (HUVECs) were isolated
at University of Brescia and at University of Torino Medical School
from healthy informed volunteers. Additional HUVECs were kindly
provided by Dr. Giampietro Viola (Department of Woman and Chil-
dren Health, University of Padova, Italy) and Dr. Roberto Ronca
(Department of Molecular and Translational Medicine, University
of Brescia, Italy). For routine culture, cells were maintained at
37�C in a humidified 5% CO2 atmosphere in M200 medium supple-
mented with Low-Serum Growth Supplement (LSGS; Life Tech-
nologies, Paisley, UK) and antibiotics (100 U/mL streptomycin
and 100 U/mL penicillin; Sigma-Aldrich, Saint Louis, MO, USA).
Cells were stimulated with human recombinant IFN-a2 (Merck &
Co., White House Station, NJ, USA) using a final concentration of
1,000 U/ml. This concentration was chosen based on our previous
studies [22,29]. Where indicated, HUVECs were treated with the
JAK inhibitor ruxolitinib (2 mM, Selleckchem, Munich, Germany).
Each biological replicate was obtained by a pool of 4 donors and
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all experiments were conducted between passage 2 and 7 at a con-
fluence of 70–80%.

2.2. Time-course IFN-a stimulation

HUVECs (3.5x105 per well) were seeded onto 35 mm tissue
culture-treated Petri dishes and cultured as described above. The
day of the experiment, 2 ml of fresh medium, in absence or pres-
ence of 1,000 UI/ml IFN-a, was added to each well. Time-course
data were collected at nine time points (0, 1, 2, 4, 6, 8, 10, 12
and 24 h) with double stimulation: IFN-a stimulation at 0 h and
wash-out at 8 h. Silencing data, obtained by knocking-down candi-
date IFN-amodulators, were collected in a short time series of four
points (0 h, 2 h, 8 h, 12 h) with double stimulation as before. The
two sampling protocols for the collection of time-course and
silencing data are shown in Fig. S1, Supplementary data 1. All
experiments were carried out in biological duplicates.

2.3. siRNA-mediated gene silencing

HUVECs (3.5x105 per well) were seeded onto 6-well plates and
maintained in standard culture conditions. After 24 h, cells were
transfected with Stealth siRNAs (Life Technologies) for RNAi-
mediated silencing of seven candidate IFN-a modulators (STAT1,
IFIH1, IRF1, IRF7, GBP1, OAS2 and USP18) using Lipofectamine
RNAiMAX Transfection Reagent (Life Technologies). For each target
gene, a set of three siRNAs (Supplementary Table A1, Supplemen-
tary file 1) was tested for RNAi activity and the Stealth siRNA
showing the highest level of knockdown (>75%) was selected to
be used for subsequent experiments. A negative control with low
GC content (Life Technologies) was also included in the experimen-
tal design as internal calibrator (siCTRL). In detail, each siRNA was
diluted in 500 ml Opti-MEM� I with GlutaMAXTM-I transfection
medium (Life Technologies) with 4 ml Lipofectamine RNAiMAX
Transfection Reagent and added to 1.5 ml culture medium, to
obtain 10 nM final concentration. Transfection was blocked 6 h
post-siRNA administration by replacing the transfection medium
with fresh culture medium. Upon 48 h transfection, 24 h IFN-a
stimulation was carried out for subsequent measurement of
CXCL10 protein through ELISA analysis or for RNA isolation accord-
ing to the time-course.

2.4. RNA isolation and cDNA synthesis

Total RNA was extracted using TRIzol Reagent (Life Technolo-
gies) according to the manufacturer’s instructions. RNA quality
and quantity were checked by measurement of absorbance at
230 nm, 260 nm, and 280 nm bymeans of nanospectrophotometric
analysis. Total RNA (1–2 mg) was reverse transcribed using High
Capacity RNA-to-cDNA Kit (Life Technologies), according to manu-
facturer’s instructions.

2.5. Measurement of gene expression using quantitative RT-PCR

Gene expression was assessed by SYBR� Green qRT-PCR analy-
sis using primers (purchased from Sigma-Aldrich) listed in Supple-
mentary Table A2 (Supplementary file 1). qRT-PCR reactions were
performed for 45 cycles using a Light Cycler 480 II thermal cycler
(Roche, Basel, Switzerland). mRNA expression levels were calcu-
lated using the 2�DDCt method and LMNA as reference gene. PCR
reactions were performed in duplicate.

2.6. TaqMan Array Cards analysis

A panel of 96 pre-selected genes (Supplementary Table A3, Sup-
plementary file 1), related to IFN-a transcriptional response, was
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screened by Custom TaqMan Array Cards (Life Technologies, for-
mat 96b), using TaqMan Universal PCR Master Mix (Life Technolo-
gies), to obtain both the time-course and the perturbation data.
The criteria used for the pre-selection of transcripts were described
in our previous work, Grassi et al. [29]. qRT-PCR reactions were run
on an ABI Prism 7900HT Sequence Detection System (Life Tech-
nologies) and raw data were extracted using the SDS v2.4 software
package (Life Technologies). LMNA was chosen as reference gene
for the time-course expression data, being the most stable gene
in this dataset. JAK1 was the most stable gene across the different
silencing experiments and it was taken as reference gene for the
normalization of qRT-PCR perturbation data.

2.7. Time-course data analysis: K-means clustering

In order to identify the main temporal expression patterns char-
acterizing IFN-a transcriptional response, �DCt temporal profiles
of the monitored genes were clustered using the K-means algo-
rithm. The number of clusters K was set to 5 and the measure of
similarity adopted was the Pearson correlation. The clustering
algorithm was applied to 87 transcripts, excluding from the analy-
sis the candidate housekeeping (18S, HMBS and LMNA) and six
other genes with incomplete �DCt profiles.

2.8. Perturbation data analysis: Significant regulations and network
reconstruction

The effects of each siRNA were evaluated with respect to a cal-
ibrator siRNA using the comparative threshold cycle method (DDCt
method). The significance analysis, developed to elicit significant
regulations induced by each perturbation, and the inference
method, used to reconstruct a regulatory subnetwork, were origi-
nally described in [29]. Briefly, for the significance analysis we pro-
posed a two-stage selection procedure that first filters
observations based on the DDCt variance distribution, and then
performs a variable-by-variable statistical test procedure, which
uses the biological variance estimated through a measurement
error model, to assign a p-value to each modulation. A Bonferroni
multiple testing correction was applied to control the false positive
rate (FPR) in the gene callings at 5%. All the analyses were per-
formed in the R statistical environment. The adopted sampling
scheme allowed to distinguish between modulators exerting their
action in the early (2 h) and/or late (8 h) IFN-a activation phase
and in the phase of IFN-a removal (12 h). Significant regulations,
induced by the silencing of the seven IFN-a modulators, were
graphically represented as edges of a transcriptional influence net-
work. If, by knocking down a modulator, another gene was signif-
icantly down-regulated (or up-regulated) during the IFN-a
stimulation phase, the corresponding regulation was interpreted
as an activation (or repression) relationship, from the silenced gene
to its target. Regulations occurring in the IFN-a removal phase
were depicted as dotted lines, without specifying the type of regu-
lation. If a gene was significantly modulated during both stimula-
tion and wash-out phase, only the regulation in the stimulation
phase was reported in the reconstructed network. We refer to
[29] for the complete description of the inference method to recon-
struct putative multi-output feed-forward loop (FFL) subnetworks.

2.9. Measurement of CXCL10 levels

HUVECs were transfected with STAT1-, IFIH1-, USP18- and
IRF1-specific siRNA and treated with IFN-a as described above. Cell
pellets as well as supernatant were collected and stored at �80�C
until further use. The amount of CXCL10 protein in cell super-
natants was measured by ELISA (KAC2361, Thermo Fisher, Wal-
tham, MA, USA) in clear flat-bottomed 96-well plates according
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to the manufacturer’s instructions. Prior to analysis, collected
supernatant was thawed on ice and centrifuged at 4�C for 10 min
at 14,000 rpm to remove cell debris.
2.10. Measurement of IFN-a levels

HUVECs (3.5� 105 per well) were seeded onto 6-well plates and
maintained in standard culture conditions. Supernatants were col-
lected 30 h after culture medium change, centrifuged at 4�C for
20 min at 1,000 g to remove insoluble impurities and cell debris,
and stored at �80�C until further use. The amount of IFN-a protein
in cell supernatants was measured by ELISA (EH3252, Fine Biotech,
Wuhan, China) in clear flat-bottom 96-well plates according to the
manufacturer’s instructions. Cell lysates were collected for further
western blot analysis.
2.11. Western blot analysis

Cell lysates were prepared in RIPA lysis buffer (Cell Signaling
Technology, Danvers, MA, USA) containing protease and phos-
phatase inhibitor cocktails (Sigma-Aldrich). Proteins were quanti-
fied using Quantum Micro protein Assay (EuroClone, Milan, Italy)
and loaded in a midi polyacrylamide gel 4–12% (Life Technologies).
Separated proteins were transferred for 2 h at 400 mA on a nitro-
cellulose membrane (GE Healthcare, Glattbrugg, Switzerland).
Immunoprobing was performed overnight at 4�C with the follow-
ing primary antibodies: STAT-1, polyclonal Ab, 1:1000 (Thermo
Fisher Scientific Inc., Waltham, MA, USA), p-STAT-1 (Tyr701)
(58D6), 1:1000 (Cell Signaling Technology), a-tubulin, 1:4000
(Sigma-Aldrich), followed by hybridization with horseradish
peroxidase-conjugated anti-rabbit or anti-mouse Ab (Perkin Elmer,
Waltham, MA, USA). Immunoreactive bands were detected by
chemiluminescence using Western Lightning Plus ECL reagents
(Perkin Elmer) and a digital imager (Alliance LD2, UVITEC, Cam-
bridge, UK). a-tubulin was used to assess protein expression.
2.12. Spheroid capillary sprouting assay

EC spheroids were generated as previously described [30], with
minor modifications. HUVECs within third passage were trypsi-
nized and cultured in hanging drops (800 cells/drop) in M199 con-
taining 10% FBS and 0.4% (w/v) methylcellulose. After 20 h or
overnight incubation, spheroids were collected and embedded in
a solution containing 15% FBS, 0.5% (w/v) methylcellulose, 1 mg/
ml rat tail collagen solution (Sigma-Aldrich), 30 mM HEPES and
M199 from 10X concentrate. 0.1 M NaOH was added to adjust
the pH to 7.4 to induce collagen polymerization. Sprouting was
induced by addition of 20 ng/ml recombinant human VEGF-A
(R&D Systems, Minneapolis, MN, USA) to the collagen solution.
When indicated, IFN-a (600 UI/ml) was added to the hanging drop
culture, and to the collagen solution. Spheroids were imaged after
18 h incubation at 37�C in a 5% CO2 incubator. Image analysis was
performed with ImageJ software (National Institutes of Health,
Bethesda, MD, USA; RRID:SCR_003070).
2.13. Statistical analysis

Results are expressed as mean value ± standard error. The non-
parametric Mann-Whitney test was chosen to assess the statistical
significance of differential gene expression between gene specific-
siRNA sample and the internal calibrator, indicated as fold change,
as well as differences in CXCL10 secretion and sprout areas. Differ-
ences were considered statistically significant when p < 0.05.
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3. Results

3.1. Transcriptional expression patterns induced by IFN-a in EC

We first analyzed the dynamic expression profiles of 87 ISGs in
IFN-a-treated HUVECs. Five main temporal patterns of modula-
tions were identified in response to IFN-a stimulation (time point
0 h) and subsequent wash-out (time point 8 h) by K-means
clustering (Fig. 1). Clusters 1, 3, and 5 show three strong patterns
of up-regulation, with the majority of genes belonging to the top
signature of IFN-a at 5 h [22]. Cluster 2 displays a profile of activa-
tion/deactivation with a plateau phase from 2 h to 10 h, interest-
ingly JAK1 and STAT1 fall in it. Finally, cluster 4 is characterized
by a fluctuating expression profile with several peaks, and includes
IFNAR1, IFNAR2, and TYK2. Complete results, with the list of genes
belonging to each cluster, are presented in Table 1.

3.2. Key modulators of IFN-a signature in EC

RNAi-mediated knockdown of seven established (IRF1, IRF7,
STAT1, USP18) or candidate (GBP1, OAS2, IFIH1) IFN-a modulators
[29,31–34] was achieved using Stealth siRNAs and a panel of core
IFN-a regulated genes was monitored by TaqMan Array Cards (see
Materials and Methods). Statistical analysis showed STAT1 and
Fig. 1. K-means clustering of �DCt temporal profiles. Five temporal patterns of modulati
(8 h). Single gene profiles are depicted in gray, while cluster average profiles are colore
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IFIH1 as mainly positive regulators, and USP18, GBP1 and IRF1 as
mainly negative regulators of IFN-a transcriptional response. In
contrast, IRF7 and OAS2 acted equally in both directions. STAT1
was confirmed as the primary positive transcriptional modulator
of IFN-a; following its silencing several genes were significantly
down-regulated and only few genes up-regulated. Conversely,
USP18 was the strongest negative transcriptional modulator and
its silencing caused a massive up-regulation of genes, including
some involved in cell-to-cell adhesion. Table 2 summarizes the
overall impact, together with the specific effects in the IFN-a acti-
vation and deactivation phase, of the seven modulators on the
panel of genes monitored by qRT-PCR. Detailed results of the sig-
nificance analysis are shown in Supplementary Tables A4–A10
(Supplementary file 1). Noteworthy, among the strongest IFN-a
modulators, USP18, GBP1 and IFIH1 are non-transcription factors
(TFs).

3.3. IFN-a controls a complex transcriptional network in EC

Drawing on the significant results of perturbation data analysis,
a complex network of influence relationships was reconstructed
(Supplementary file 2). USP18 emerged as a potent negative regu-
lator of IFN-a, exerting its action by inhibiting several genes,
among which members of the RIG-I-like receptor (RLR) family
ons were identified in response to IFN-a stimulation (0 h) and subsequent wash-out
d. N indicates the cluster size.



Table 1
Results of K-means clustering.

Detailed list of genes in each cluster

Cluster 1 (N = 20)
APOL6; BST2; DDX58; IFI6; IFIH1; IFIT1; IFIT2; IFIT3; IFITM1; OAS1; OAS2; PLSCR1; PML; RSAD2; RTP4; SAMHD1; SHFL; SP110; STAT2; USP18.
Cluster 2 (N = 10)
CXCL11; ELF1; GBP1; IFI27; ISG20; JAK1; MX1; STAT1; TAP1; UBE2L6.
Cluster 3 (N = 21)
APOL2; BLZF1; CFB,C2; DHX58; DSP; GCH1; IDO1; IFI16; IFIT5; IL15RA; IRF1; IRF9; PSMB8; SAMD9; SLC25A28; TDRD7; TENT5A; THEMIS2; TMEM140; TRIM21;

ZC3HAV1.
Cluster 4 (N = 8)
ATF3; BNIP3; IFNAR1; IFNAR2; IRF3; TP53; TYK2; VEGFA.
Cluster 5 (N = 28)
APOL1; APOL3; CASP1; CXCL10; DDX60; GMPR; HERC5; HERC6; IFI30; IFI35; IFI44; IFI44L; IRF7; LGALS9; MX2; OAS3; OASL; PLEKHA4; PSMB9; RARRES3; SECTM1;

SLC15A3; TAP2; TLR3; TNFSF10; TRANK1; TRIM14; XAF1.

Table 2
Number of genes down- and up-regulated upon silencing of IFN-a modulators.

Silencing IFN-a activation phase IFN-a deactivation phase Overall impact

Down Up Down Up Down Up

STAT1 17 4 0 0 17 4
IFIH1 8 3 1 0 9 3
OAS2 5 5 2 0 7 5
IRF7 2 1 1 5 3 6
IRF1 2 6 0 4 2 10
GBP1 1 9 2 10 3 19
USP18 0 46 0 7 0 53
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(i.e. DDX58, IFIH1, DHX58, encoding for RIG-I, MDA5 and LGP2,
respectively). The fine regulation of antiviral immune response,
implemented by the complex transcriptional network activated
by IFN-a, is achieved through the regulation not only of cytosolic
RNA sensors (RIG-I, MDA5 and LGP2) but also of endosomal RNA
receptors, e.g. TLR3. Indeed, TLR3 gene appeared to be negatively
regulated during IFN-a activation phase by both IRF1 and OAS2.
Moreover, IFN-a activation induced the expression of many intrin-
sic antiviral restriction factors capable of blocking the virus replica-
tion cycle at different stages (IFITM1, uncoating; TRIM21,
replication of antibody-opsonized viruses; APOBEC3G and
SAMHD1, replication; viperin, encoded by RSAD2, assembly). The
inferred influence network contains a lot of information that may
be useful to unveil the mechanisms underlying the different activ-
ities accomplished by IFN-a. In order to distill information worth of
biological validation we applied the method developed in [29] to
extract putative feed-forward loop (FFL) circuits from perturbation
data. We thus reconstructed a multiple-output FFL regulatory sub-
network in which STAT1, IFIH1, IRF1, IRF7, GBP1, OAS2, and USP18
are the only regulators (Fig. 2). This representation is more effec-
tive in highlighting the action of multiple modulators on the same
targets. Interestingly, three genes seem to play the role of ‘‘IFN-a-
sentinels”, being modulated by all the seven perturbations
(SAMD9), by 6 perturbations out of 7 (CXCL10), and by 5 (TENT5A).
Moreover, cell response to IFN-a appears regulated through nega-
tive feedback control, which acts both at the level of the two recep-
tor subunits and at the level of endogenous IFN production.
3.4. STAT1, USP18 and IRF1 modulate CXCL10 levels in EC following
IFN-a stimulation

To validate the transcriptional regulations inferred in our
multiple-output FFL regulatory subnetwork (Fig. 2), we measured
CXCL10 protein levels in tissue culture media conditioned by
STAT1-, USP18-, IFIH1- and IRF1-silenced HUVECs, compared to
HUVECs transfected with a scrambled siRNA (siCTRL). CXCL10 is
an antiangiogenic chemokine known to be induced by type I IFNs
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and can be accurately measured in supernatants by ELISA. Follow-
ing siRNA transfection, analysis by qRT-PCR disclosed marked
reduction (>60%) of relevant transcript levels in all cases analyzed
(Fig. S2, Supplementary file 1). As expected, IFN-a treatment
increased secretion of CXCL10 in HUVECs transfected with the con-
trol siRNA (siCTRL) (Fig. 3). Moreover, STAT1 and IRF1 silencing sig-
nificantly reduced IFN-a-induced secretion of CXCL10 protein. In
contrast, IFIH1 silencing was associated with minor variations in
CXCL10 levels. Finally, CXCL10 secretion increased over 30-fold fol-
lowing IFN-a treatment in USP18-silenced HUVECs (Fig. 3).
3.5. Modulation of signaling downstream IFN-a affects in vitro
sprouting of EC

The involvement of the modulators identified by our transcrip-
tional analysis in regulating antiangiogenic effect of IFN-awas val-
idated using a spheroid capillary assay, which mimics sprouting
angiogenesis in vitro [35]. Spheroids generated with HUVECs in
which the expression of STAT1, USP18, IFIH1, GBP1 or IRF1 was
knocked-down by specific siRNA, and spheroids generated with
HUVECs transfected with a scrambled siRNA (siCTRL), were sub-
jected to the sprouting assay, where VEGF-A was used as angio-
genic stimulus, in the absence or in the presence of IFN-a
(Fig. 4a). Quantification of sprout areas showed a marked reduction
in sprouting activity when siCTRL cells were treated with IFN-a,
thus indicating that in this model IFN-a is an effective inhibitor
of angiogenesis (Fig. 4b). Silencing of STAT1 had a strong positive
effect on sprouting and counteracted the inhibitory effect of IFN-
a. The other interactors (USP18, IFIH1, GBP1, and IRF1) all demon-
strated to act as sprouting inhibitors in the absence of IFN-a. While
IFIH1 silencing did not show noticeable alterations compared to
siCTRL upon addition of IFN-a, IRF1, GBP1 and USP18 silencing
showed a diversified effect (Fig. 4b). In fact, both IRF1 and GBP1
silencing completely abrogated the inhibitory effect of IFN-a,
resulting in spheroids with a sprout area comparable with that of
spheroids not stimulated with IFN-a. This observation confirms
the role of IRF1 as positive regulator of IFN-a signaling. On the con-



Fig. 2. IFN-a regulatory network inference. Multiple-output FFL regulatory subnetwork reconstructed from the silencing of the seven IFN-amodulators. Lines represent influence regulations in the
IFN-a stimulation (2 h/8 h; solid line) and wash-out (12 h; dashed lines) phase. Arrow styles stand for: arrow, activation; a, repression; dot, unspecified sign of regulation.
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Fig. 3. Measurement of CXCL10 levels in supernatants of HUVECs following
silencing of STAT1, IFIH1, USP18 and IRF1. Measurement of CXCL10 levels following
STAT1, IFIH1, USP18 and IRF1 siRNA-mediated silencing in HUVECs from 3 different
donors. ** p<0.01 siCTRL vs. siCTRL + IFN-a; § p<0.05, §§ p<0.01, §§§ p<0.001
siSTAT1/IFIH1/USP18/IRF1 + IFN-a vs. siCTRL + IFN-a.
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trary, USP18 silencing reinforced the IFN-a-induced sprouting
inhibition, thus supporting its role as negative regulator.
3.6. EC self-regulate their sprouting capacity by secreting endogenous
IFN-a

The proangiogenic effect of STAT1 silencing, as well as the
antiangiogenic effect of USP18 knock-down, in the absence of
IFN-a suggest that a putative tonic IFN-a signaling could be phys-
iologically active in EC. To test this possibility, we measured IFN-a
protein levels in tissue culture medium conditioned by non-
transfected HUVECs. Interestingly, small amounts of endogenous
IFN-a (up to 91.57 pg/ml) were secreted by different pools of EC
in the absence of genetic perturbation. Western blot analysis
revealed that STAT1 is slightly phosphorylated in untreated EC,
supporting the hypothesis that a physiological, tonic IFN-a signal-
ing is active in these cells (Fig. S3, Supplementary file 1).
4. Discussion

Although over 60 years have passed since the discovery of IFN-
a, it is still poorly understood how this potent cytokine controls its
complex transcriptional network. Understanding the complex IFN-
a response and its dynamics could provide putative novel targets
of pharmacological intervention to modulate the pleiotropic activ-
ities of this cytokine. In this study, we analyzed the dynamic
expression profiles of a subset of ISGs, known to be induced by
IFN-a in EC [22], to reconstruct a gene regulatory network through
the genetic perturbation of seven established or candidate modula-
tors of IFN-a response.

The analysis of temporal profiles revealed that most of the ISGs
in EC are rapidly up-regulated within 2 h following IFN-a treat-
ment, including the selected IFN-a modulators (Table 1 and
Fig. 1). These results are consistent with the observations of Mos-
tafavi and colleagues in B-cells, where the response to IFN-a is
even faster [36]. Interestingly, our analysis revealed that most of
the genes involved in the activation of IFN-a signaling cascade
belong to cluster 2 and cluster 4 (Table 1). STAT1 and JAK1 fall into
cluster 2, which is characterized by a plateau phase from 2 h to
10 h. The fluctuating profile of cluster 4, which comprises type I
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IFN receptors and the signal transducer TYK2, highlights the com-
plex temporal regulation of EC responsiveness to IFN-a.

Next, we generated perturbation data and applied the computa-
tional approach originally presented in our previous work [29] to
elicit significant regulations and infer a transcriptional influence
network controlled by IFN-a in EC. In [29], our theoretical method
for the processing of perturbation data was exemplified on a case
study to reconstruct an IFN-a regulatory module, in which STAT1
and IFIH1 were the only regulators. Here, we have extended the
analysis to seven established or putative modulators of IFN-a sig-
naling, showing how regulatory modules merge together in a
highly interconnected influence network, which is useful to gener-
ate new hypotheses on the mechanism of action of the involved
genes. The full results of significance analysis depicted a complex
transcriptional network with 141 links (Supplementary file 2). As
expected, we found STAT1 as the main positive regulator of IFN-
a pathway. Moreover, our analysis revealed that IFN-a response
is strongly counteracted by the isopeptidase USP18, which is
among the genes most rapidly activated by this cytokine. This
observation, along with the downregulation of IFNAR1 by STAT1,
which we already described in [29], highlights that IFN-a pathway
is finely regulated by negative feedback loops. USP18 is a well-
established negative regulator of IFN-a signaling [37], which sus-
tains JAK/STAT activation [38], thus exacerbating cell sensitivity
to IFN-a. From our transcriptional analysis, it emerges that
USP18 negatively regulates a much higher number of genes than
those regulated by STAT1 (53 vs. 21) as well as the magnitude of
CXCL10 protein modulation achieved following its perturbation is
augmented (Fig. 3). Strikingly, in our model we identified two addi-
tional non-TFs, IFIH1 and GBP1, as key modulators of IFN-a tran-
scriptional network. IFIH1 is a helicase involved in the
recognition of double-stranded RNA viruses, as well both positive
and negative stranded RNA viruses [39]. Upon activation, IFIH1
promotes the phosphorylation and nuclear transport of IRF3 and
IRF7 by activating NF-jB pathway, thus leading to production of
IFN-a and IFN-b [40]. Our data suggest that IFIH1 modulates IFN-
a pathway even in the absence of viral RNA. The mechanism
through which IFIH1 modulates IFN-a signaling regardless of
pathogen recognition pathway deserves further investigation. This
could imply a tonic IFN-a signaling through an autocrine loop and
could have important implications in autoimmune diseases linked
to IFIH1 polymorphisms, such as type 1 diabetes [41]. GBP1 is a
GTPase involved in the regulation of a variety of cell functions,
including inhibition of cell proliferation, immunity, endosomal
trafficking, and autophagy [42]. Interestingly, Forster and col-
leagues observed that GBP1 binds to several regulatory cytoskele-
tal proteins, thus restraining T-cell receptor (TCR) signaling [43]. It
is reasonable that GBP1 could limit IFN-a signaling as well, consis-
tently with its role as negative IFN-a transcriptional modulator in
EC and with the inferred negative regulation of GBP1 on IFNAR2,
resulting by our analysis. Further studies are needed to assess
whether the transcriptional network inferred by our computa-
tional approach is endothelial cell-specific or conserved among dif-
ferent types of cells, such as cancer cells or cells of the tumor
microenvironment.

In the reconstructed influence network three nodes, namely
CXCL10, TENT5A, and SAMD9, emerged as ‘‘IFN-a-sentinel genes”
because significantly regulated following the silencing of at least
5 IFN-a transcriptional modulators. Among them CXCL10 is a
potent angiostatic chemokine [44]. In EC, CXCL10 is a rapidly
upregulated ISG, whose expression is promoted by STAT1 and
IFIH1 and inhibited by IRF1 and USP18, according to our regulatory
network. To validate these findings, we measured CXCL10 secre-
tion in STAT1-, IFIH1-, IRF1-, and USP18-silenced EC. Results
demonstrated that stimulation of EC with IFN-a increased by 2-
fold the secretion of CXCL10 protein. STAT1 silencing abrogated



Fig. 4. Modulation of STAT1, USP18, IFIH1, GBP1, and IRF1 affects in vitro EC sprouting. (a) Representative pictures of spheroids obtained from 4 independent sprouting assays
on HUVECs treated with 20 ng/ml VEGF, with or without 600 IU/ml IFN-a, upon STAT1, USP18, IFIH1, GBP1 and IRF1 silencing or scrambled siRNA treatment (siCTRL). (b)
Quantification of sprout areas from 4 independent sprouting assays in the absence and in the presence of IFN-a. *** p<0.001 siSTAT1/USP18/IFIH1/GBP1/IRF1 vs. siCTRL; §
p<0.05, §§ p<0.01, §§§ p<0.001 VEGF + IFN-a vs. VEGF alone.

F. Ciccarese, A. Grassi, L. Pasqualini et al. Computational and Structural Biotechnology Journal 18 (2020) 3977–3986
IFN-a-induced upregulation of CXCL10, as expected. Silencing of
USP18, on the contrary, strongly increased CXCL10 secretion, con-
firming an anticipated exacerbation of IFN-a signaling. Finally, the
transcriptional effects induced by IFIH1 and IRF1 were not con-
firmed by this analysis. IFIH1 silencing produced only a mild
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reduction of CXCL10 secretion, while IRF1 silencing abrogated
the effect of IFN-a on CXCL10. This last result is in line with the
well-established positive role of IRF1 in the regulation of IFN-a
pathway [32]. To assess whether STAT1, IFIH1, IRF1 and USP18
could have a role in the antiangiogenic activity of IFN-a, we per-



F. Ciccarese, A. Grassi, L. Pasqualini et al. Computational and Structural Biotechnology Journal 18 (2020) 3977–3986
formed in vitro sprouting assay. We included in this analysis also
GBP1, due to its established role in the inhibition of angiogenesis
[45–47]. Treatment with IFN-a reduced by about 2-fold the num-
ber and the length of sprouts from EC spheroids, confirming the
antiangiogenic activity of this cytokine. Consistent with the find-
ings of Hsu and colleagues [48], which demonstrated that PML-
induced isgylation of STAT1 has a critical role in the antiangiogenic
activity of IFN-a and that USP18 has a proangiogenic role by
deconjugating ISG15, we demonstrated that STAT1 knock-down
abrogated, while USP18 silencing exacerbated, IFN-a-mediated
inhibition of angiogenesis. Strikingly, knock-down of STAT1 dou-
bled the generation of new sprouts even in the absence of IFN-a.
This result suggests that angiogenesis could be physiologically
inhibited by a tonic IFN-a signaling in EC, in part mediated by
STAT1. To assess this hypothesis, we measured IFN-a secretion in
5 different pools of EC. Strikingly, we found that untransfected
HUVECs secrete low amounts of endogenous IFN-a. Moreover,
IFN-a signaling pathway is active in these cells, as demonstrated
by the slight phosphorylation of STAT1, which is inhibited by the
JAK inhibitor ruxolitinib. These results indicate that an autocrine
signaling loop is physiologically active in EC, which secrete IFN-
a, thus sustaining JAK/STAT signaling pathway and consequent
synthesis of IFN-a. It should not be excluded, however, that other
ligands contained in the complete cell culture medium, such as
epidermal growth factor (EGF), could activate JAK/STAT signaling
pathway in EC. The autocrine regulation of EC physiology could
play an important role during tumorigenesis. In this scenario, tonic
IFN-a signaling-mediated inhibition of angiogenesis is perturbed
by the high levels of VEGF in the tumor microenvironment, which
blunts IFN-a autocrine loop in EC through the degradation of
IFNAR1 [26]. Consistently, our results demonstrated that STAT1
silencing not only abrogated the antiangiogenic activity of IFN-a,
but strongly potentiated VEGF-mediated angiogenesis. In line with
the putative regulation of angiogenesis by tonic IFN-a signaling,
USP18 knock-down abrogated the proangiogenic activity of VEGF
even in the absence of IFN-a. The same effect was observed by
knocking-down IFIH1, GBP1 and IRF1, suggesting that these mod-
ulators restrict tonic IFN-a signaling and potentially regulate phys-
iologic angiogenesis.

Overall, our findings could have therapeutic implications for
cancer patients. Despite its potent anticancer activity, the use
of IFN-a in the clinic was strongly limited by its severe side
effects [49]. The pleiotropic activity of IFN-a on different tissues
caused its replacement with targeted drugs, albeit often less
potent. In this context, nanomedicine could redeem the clinical
use of IFN-a by confining its activity in the tumor microenviron-
ment. Nitric oxide-releasing nanoparticles are a viable strategy
to exploit cancer metabolism to improve the enhanced perme-
ability and retention (EPR) effect observed in solid tumors, thus
promoting specific targeting of tumor tissues [50]. Loading such
nanoparticles with IFN-a, along with a USP18-degrading proteol-
ysis targeting chimera (PROTAC, a technology based on a chi-
meric molecule that specifically induces the ubiquitination and
proteasome-mediated degradation of a target protein [51]),
could increase IFN-a signaling in tumor vessels, overcoming
proangiogenic stimuli released by cancer cells. Of note, cancer
cells rapidly acquire several mechanisms of resistance to tar-
geted drugs, such as bevacizumab [52], while the use of a pleio-
tropic cytokine, such as IFN-a, decreases the probability that a
resistance mechanism could arise. The evidence that STAT1
blunts expression of VEGF-A in glioma cells [53] indicates that
IFN-a suppresses angiogenesis by targeting both EC and cancer
cells, suggesting that confining this cytokine in the tumor
microenvironment and tuning its activity in EC could achieve a
potent anticancer effect, while avoiding the marked side effects
of systemic administration.
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