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Abstract: Selecting the most appropriate mouse model that best recapitulates human hepatocellular
carcinoma (HCC) allows translation of preclinical mouse studies into clinical studies. In the era
of cancer genomics, comprehensive and integrative analysis of the human HCC genome has allowed
categorization of HCC according to molecular subtypes. Despite the variety of mouse models
that are available for preclinical research, there is a lack of evidence for mouse models that closely
resemble human HCC. Therefore, it is necessary to identify the accurate mouse models that represent
human HCC based on molecular subtype as well as histologic aggressiveness. In this review,
we summarize the mouse models integrated with human HCC genomic data to provide information
regarding the models that recapitulates the distinct aspect of HCC biology and prognosis based on
molecular subtypes.

Keywords: mouse model; hepatocellular carcinoma; ctnnb1; arid1a; sv40; genomics; hippo pathway;
genomic resemblance

1. Introduction

Hepatocellular carcinoma (HCC) represents 75% of cases of primary liver cancer [1] and has
worldwide prevalence of 841,000 cases per year, making it the sixth most common cancer globally,
and 782,000 deaths occur annually [2]. With similar mortality to prevalence rates, hepatocellular
carcinoma (HCC) ranks fifth in terms of global cases and second in terms of deaths in males. Given the
international burden of disease, implementation of surveillance programs for at risk population
have been implemented. However, despite the effort to detect an asymptomatic or subclinical HCC,
30–60% of HCC tumors are detected at an advanced stage [3] resulting in a dismal prognosis [1].
In addition, limited systemic treatment options (first-line: sorafenib, lenvatinib and second-line:
regorafenib, nivolumab) requires improvement in treatment and much remains to be discovered
in clinical and experimental studies.

More than 90% of HCCs arise in the context of chronic hepatitis and cirrhosis. Hepatocarcinogenesis
is a complex and multistep process involving the accumulation of genetic changes and resulting
in altered expression of cancer-related genes, such as oncogenes and tumor suppressor genes,
and their related molecular signaling pathways. Furthermore, HCC genetic aberrations show substantial
heterogeneity reflecting effects of etiology, ethnicity, and environmental exposures. Strategies to understand
such complex process and improve poor survival of HCC patients rely on good experimental models that
accurately recapitulate the steps of hepatocarcinogenesis in human.

The complex links between different risk factors and HCC development were poorly understood
until the advancement in genomic studies of human HCC which enabled systemic analysis of genomic
data providing insight into the biology and pathogenesis of HCC. Currently, genomic studies of human
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HCC are progressing, and systematic analysis of genomic data is providing insight into the biology
and pathogenesis of HCC. Recent studies attempted to classify HCC based on genetic, transcriptional,
methylation, or miRNA levels [4,5] and many HCC genome studies have catalogued potential
driver genes in HCCs [6,7]. Many efforts were made to identify molecularly distinct subtypes
of HCC with different clinical outcomes. Recently, comprehensive integrative genomic analysis
of HCC has delineated the HCC genomic landscape with TERT being the mostly repressed in somatic
cells [5]. TERT promoters have been found to be mutated in more than 50% of HCC tissue samples
examined, making them the most frequently occurring single-nucleotide mutations observed in HCC [8].
Other frequent mutations are CTNNB1, TP53, ARID1A, and AXIN1.

The laboratory mouse is one of the most preferred experimental systems for both basic and
translational study of HCC due to the physiological, molecular, and genetic similarities to humans,
the small size, large number of offspring, short lifespan, and low cost. Mice are invaluable tools
in uncovering the molecular mechanisms of hepatocarcinogenesis by introducing genetic alterations
observed from human HCC [5,9–11]. However, despite detailed characterization of genomic alteration
in human HCC, genetic makeup of full-blown HCC mouse models is generally unknown and therefore
it is unclear which mouse models are molecularly similar to human HCCs. For research purpose, such as
evaluation of molecular target therapy and biomarker studies, the ideal mouse model should reproduce
human HCC genetically, physiologically, and pathologically [12]. Although some mouse models have
been proposed [13,14], most do not replicate human HCC and they are poorly characterized molecularly.
Recently, we have identified the most relevant mouse models to human liver by integrating eleven
different genomic signatures of human HCC to nine different HCC mouse models [15]. The present
article will review common types of mice that are used for experimental studies with specific focus on
molecular resemblance of mouse model to human HCC.

2. Conventional Mouse Models for Liver Cancer

A relatively large number of mouse models are presently available for the study of hepatocarcinogenesis.
The common ones are chemically induced models, genetically engineered mouse (GEM) models,
implantation models, and viral models. Our aim here is not to review all mouse models for liver cancer
but rather to provide examples of the representative ones, mostly chemically induced or genetically
engineered models (GEMs) that have been integrated to genomics of human HCCs (Figure 1).
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2.1. Chemically Induced Models

Chemically induced hepatocarcinogenesis is caused by an irreversible process of structural DNA
changes [16]. The most widely used chemical to induce liver cancer in mice is diethylnitrosamine (DEN)
(Table 1). DEN is a DNA alkylating agent and when injected into juvenile mice, it forms mutagenic
DNA adducts, which are generated rapidly in centrilobular hepatocytes [17,18]. DEN is metabolic
activated in hepatocytes by enzymes of the cytochrome P450 family and acts as a complete carcinogen if
injected into young mice younger than two weeks old with actively proliferating hepatocytes resulting
in dysplastic nodules, which progress to carcinoma. If given to an older mouse, additional stimulation is
required for instance, phenobarbital (PB), carbon tetrachloride, or high-fat diet feeding [19]. In addition,
oxidative stress induced by reactive oxygen species (ROS) during DEN metabolization is known
to contribute to hepatocarcinogenesis as they cause DNA, protein, and lipid damage [20].

The mutational landscape of a DEN-induced tumor was described in a recent study using the
whole exome sequencing technique. A high burden of somatic mutation was observed and almost all
of the DNA changes in the DEN-induced tumors were single-base substitutions [18]. Four recurrently
mutated genes that are putative oncogenic drivers of DEN-induced tumors were Hras, Braf, Egfr, and Apc.
The incidence of Hras was the highest reaching approximately 80% suggesting selective advantage
during hepatocarcinogenesis. Hras, Braf, and Egfr mutations were present in every DEN-induced HCC
with mutual exclusivity and may replace each other in terms of oncogenic drivers [18,21]. Activation
of the Ras/Raf/MEK/ERK signal transduction pathway was the hallmark feature in the DEN-induced
mouse model which is rare in human HCC [18,21,22]. Of note, TP53 and CTNNB1, the most frequently
altered genes in human were never found in DEN-induced tumors. Although ctnnb1 mutation is
not observed in DEN-induced model, its mutation is known to be observed in a two-stage model,
the DEN-initiated and PB-promoted protocol [23,24]. In addition, loss of Apc function, mutation and
aberrant nuclear expression of β-catenin may disrupt the canonical Wnt/β-catenin pathway [18].

The Stelic Animal Model (STAM) demonstrates non-alcoholic steatohepatitis (NASH) progression
resembling the disease in humans. Since NASH is evolving as a major cause of non-viral HCC and may
account for a large proportion of HCC in developed countries in recent years, HCC arising from NASH
is important [25]. The STAM model is created by combination of chemical (a single subcutaneous
injection of 200 µg of streptozotocin at two days after birth) and dietary intervention (high-fat diet
ad libitum four weeks after injection) in C57BL/6 mice. STAM mice manifest NASH at eight weeks,
which progresses to fibrosis at 12 weeks, and eventually develops into HCC at a rate of nearly 100%
in males [26]. The STAM model had pathway mutation rates comparable to those in humans for most
pathways with more alterations in receptor tyrosine kinase (RTK) signaling and chromatin-modification
genes. This model also showed low mutation rate of TP53 but the cell-cycle pathway alteration rate
was similar to human tumors. The limitation of this model is that the model does not show obesity or
insulin resistance, which is the common characteristics of patients with NASH.
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Table 1. Summary of mouse hepatocellular carcinoma (HCC) models with genomic resemblance
to human HCCs.

Carcinogen-Induced Model Properties Comments

DEN Intraperitoneal injection
of diethylnitrosamine

DEN alone results in dysplastic nodules
Additional stimulation lead

to HCC progression
No TP53 and CTNNB1 mutation

Activation of the Ras/Raf/MEK/ERK signal
transduction pathway

STAM Combination of chemical and
dietary intervention (HFD)

Mimic steatohepatitis
Comparable to most of the human

HCC pathways
High CTNNB1 mutation

Associated with aggressive type
(high-grade tumor and high proliferation)

Low mutation rate of TP53

GEM Model Properties Comments

MYC Albumin promoter

Long period of latency (20 months
for HCC development)

Co-activation with E2F1 accelerates HCC
development (9 months)
Activation of CTNNB1

Associated with good prognosis and low
recurrence subtype of human HCC

TGFα Metallothionein (MT) promoter

HCC development >12 months
Co-activation with MYC accelerates HCC

development (8 months)
Rare CTNNB1 mutation

CTNNB1 Intraperitoneal injection

Inactivation of Hippo pathway
Associated with poor prognosis subtype

of human HCC
Associated with low immune activity

SV40 T Antithrombin III promoter

Inactivation of Hippo pathway
Associated with poor prognosis and high

recurrence subtype of human HCC
Stem-cell-like features

Associated with low immune activity

MST1/2 and SAV1 Genetic deletion

Inactivation of Hippo pathway
Associated with poor prognosis and

high-recurrence subtype of human HCC
Stem-cell-like features

Associated with low immune activity

ARID1A Genetic deletion

At early stage, high expression
promotes tumorigenesis

At later stage, low expression promotes
HCC progression

TAK1 Genetic deletion
Ductopenia, fibrosis, liver cell apoptosis,

necrosis, hyperproliferation
Histology: similar to normal human liver

MUP-uPA

uPA transgenic mouse with
hepatocyte-specific promoter for

MUP
High-fat diet

Mimic steatohepatitis
Histology: low-grade tumor, adenoma like

Low mutation rate of TP53

DEN—diethylnitrosamine; HCC—hepatocellular carcinoma; STAM—Stelic Animal Model; GEM—genetically
engineered mouse; TGFα—transforming growth factor α; CTNNB1—catenin beta 1; SV40 T—simian virus 40;
ARID1A—AT-rich interaction domain 1A; TAK1—TGF-β-activated kinase 1; MUP—major urinary protein.
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2.2. Genetically Engineered Mouse Models

Genetically engineered mouse (GEM) models recapitulate the multistep process of
hepatocarcinogenesis with multiple genetic and epigenetic changes occurring along each stage
of progression toward cancer formation [27]. They are highly useful for assessing the impacts
of a driver oncogene alone or in combination with other driver oncogenes or tumor suppressors [28,29].
Recently, the Cancer Genome Atlas (TCGA) characterized the genomic landscape of HCC using
large-scale multi-platform analysis of HCC, including evaluation of somatic mutations and copy
number alterations [5]. Commonly altered pathways such as cell cycle pathway, RTK/RAS/PI3K,
and WNT pathways were also identified and therefore, data generated from GEMs would be useful
in developing novel therapies and be tested in the preclinical setting if they recapitulate human HCCs.

The MYC oncogene is known to be activated in more than 50% of human cancers by multiple
mechanisms, and its activation is frequently associated with poor prognosis and unfavorable
outcome [30]. MYC plays a central role in multiple oncogenic processes by regulating cell proliferation,
apoptosis, and metabolism and has been a key therapeutic target for treatment of many cancers,
including HCC. Despite the high incidence of MYC oncogene activation, directly targeting MYC as
a therapeutic method has proven to be a challenge for many decades because of the undruggable nature
of its molecular activity [31]. MYC is frequently amplified in HCC (around 20% of HCC according to the
Cancer Genome Atlas (TCGA) study [5]. GEMs expressing MYC under an albumin promoter develop
HCC after a long period of latency [32,33]. Co-activation of E2f1 with Myc significantly accelerates HCC
development [34]. Interestingly, a large number of HCC tumors in Myc and E2f1/Myc GEM models
show activation of Ctnnb1 [34], suggesting Ctnnb1 might be an important interacting partner of Myc
for the development and progression of HCC. Myc expression caused mild to severe hepatic dysplasia
in young mice, followed by hepatic adenomas in mice over 15 months of age and activation of Ctnnb1
lead to dysregulation of the signaling function of β-catenin causing hepatocarcinogenesis [35].

TGFα is one of ligands of EGFR and the TGFA–EGFR–RAS–MAPK signaling pathway is commonly
upregulated in HCC [36]. GEMs expressing Tgfα under the inducible MT-1 promoter develop HCC [37].
As expected, co-activation of Myc with Tgfα significantly boosts neoplastic development compared
with the expression of these isolated genes. Persistent proliferation of the hepatocytes as early as
the first week of life continues and a neoplastic lesion is developed within 40 weeks of age [34].
Activation of Ctnnb1, which was frequently observed in liver tumors of the Myc model, was rare
in Myc/Tgfα double transgenic mice but nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB)–induced survival signaling was activated [38].

The oncogene CTNNB1 encodes β-catenin, which is a subunit of the cadherin protein complex on
the cellular surface that acts as a signaling molecule in the WNT pathway [39]. Aberrant activation
of β-catenin has been observed in 20–30% of HCC patients and is one of the most frequently
mutated genes [5,7,40]. Mutations in β-catenin are almost mutually exclusive with mutations
in TP53 [6]. Intriguingly, in GEM mice, introduction of activated mutants of β-catenin or overexpression
of wild-type β-catenin induces only hepatomegaly and does not form any neoplastic foci in the
liver [41,42], suggesting that β-catenin alone is insufficient to initiate tumorigenesis in liver. However,
follow-up studies in these GEM mice showed that β-catenin collaborates with other signaling pathways
to contribute to hepatocarcinogenesis. The ras family genes encode small GTPase proteins that
transduce signals from the transmembrane receptors to the nucleus [43]. Mutation in Ras proteins lead
to defects in the GTPase activity and constitutive activation of the downstream signals. Although RAS
mutations are rare in human liver tumors, Hras mutation is detected frequently in the spontaneous and
carcinogen-induced mouse liver tumors [44]. β-catenin was shown to cooperate with activated Hras
to induce hepatocarcinogenesis [45]. Mutations in both β-catenin and Hras cause HCC development
at an incidence of 100%, supporting the notion that β-catenin activation is one of the hits that may
be critical to the development of HCC, but that additional aberrations are necessary to initiate and
promote tumorigenesis.
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The SV40 T antigen induces oncogenic transformation of normal cells, including hepatocytes,
by inactivating the tumor suppressor genes p53 and Rb and interacting with a number of signaling
proteins such as HSC70, CBP/p300, CUL7, IRS1, FBXW7, and BUB1 [46]. Inactivation of the two
best-known tumor suppressors result in high proliferation and uncontrolled cell growth leading
to hepatocarcinogenesis. In GEM mice expressing the SV40 T-antigen under hepatic promoters,
HCC developed after a short period of latency (4–12 weeks) and metastasis to the lungs is frequently
observed [47,48]. Since tumor progression is very rapid, this model is considered to have some
differences from human HCC tumors, which progress more slowly.

The Hippo pathway was first discovered in Drosophila and is evolutionarily well conserved.
The normal function of the Hippo pathway is to repress growth and when Hippo signaling is
attenuated, tissue overgrowth occurs. Because the Hippo pathway is required for restricting cell
growth and proliferation, as well as to induce programmed cell death, many members of the pathway
are known to be involved in tumor development. YAP1, a component of the Hippo pathway acts as
a potential oncogene in mouse HCC [49]. This oncogenic function of YAP1 is further supported by tumor
suppressors such as Mst1/2 and Sav1 which inhibit YAP1 activity by phosphorylation [50]. As a result,
Mst1/2 and Sav1 knockout (KO) in liver leads to the development of HCC [51,52]. Recent studies
have shown that activation of YAP1 and TAZ oncogenes in HCC is significantly associated with
shorter survival rate, higher recurrence rate, and resistance to chemotherapy [51,53–55], indicating the
importance of YAP1/TAZ in the development of HCC.

The AT-rich interaction domain 1A (ARID1A) a subunit of a switch/sucrose-nonfermentable
(SWI/SNF) chromatin remodeling complex is also frequently mutated in HCC (in up to 20% of cases).
Most cancer-associated mutations in ARID1A appear to be loss-of-function mutations; nonsense or
frameshift rather than missense mutations including HCC, suggesting that ARID1A is a tumor
suppressor. An HCC mouse model for ARID1A has recently been generated but showed an unexpected
and complicated phenotype. In contrast to the general notion of ARID1A as a tumor suppressor,
as demonstrated in the colon cancer model [56], deletion of Arid1a in mouse liver protected against
development of HCC [57], suggesting that Arid1a is necessary for the initiation of tumorigenesis
in hepatocytes. The critical activity of Arid1a in tumor initiation appears to be related to its transcriptional
regulation of the CYP450 family, which oxidizes metabolites and generates ROS in hepatocytes.
High expression of Arid1a in hepatocytes promoted tumorigenesis by increased CYP450-mediated
production of ROS. In contrast to its tumor-promoting activity during tumor initiation, deletion of Arid1a
accelerated HCC tumor progression and metastasis in late stage of HCC development, further indicating
the complicated roles for Arid1a in HCC development. Metastasis-suppressive activity is related
to a decrease in global chromatin accessibility and reduced expression of genes that inhibit metastasis.
In contrast, Arid1a deficiency promotes HCC progression at later stage by activating Ang2-dependent
angiogenesis due to augmentation of histone H3K27ac modification at the Ang2 gene locus [58].
Although these opposite roles of Arid1a at different stages of HCC development are interesting,
it is not surprising to find that epigenetic regulators have highly context-specific functions as they
play critical roles in remodeling chromatin that can support the actions of both oncogenic and
tumor-suppressive networks.

Receptor tyrosine kinases (RTKs) have a role in tissue homeostasis and their oncogenic activation
leads to cancer. The Alb-R26Met mouse was generated to explore in vivo vulnerability versus robustness
to slight changes in non-oncogenic RTK levels [59]. A subtle increase in wild-type Met RTK levels
in the liver developed spontaneous tumors which highlights the heightened vulnerability of liver
cells to subtle changes in non-oncogenic RTK levels, allowing them to acquire a molecular profile that
facilitates the full tumorigenic program. In addition, the regulatory networks underlying tumorigenesis
analyzed using “educated guess” drug screen led to the identification of new, deleterious synthetic
lethal interactions where synergistic effects of Mek, Rsk, and Cdk1/2 in combination with Bcl-XL inhibition
was observed on a panel of liver cancer cells [59]. The Alb-R26Met model was also characterized by
hypermethylation of CpG islands in a gene body associated with oncogene overexpression where
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the enrichment of genes and hypermethylation of CpG islands in this model was similar to that
in human HCC [60]. Therefore, besides recapitulating MET activation which is found in approximately
50% of HCC patients and strengthening several clinical trials using MET blocking agents, the study
outcomes from this GEM integrated with those from human HCCs highlighted molecular similarities
that may be useful to explore new mechanisms and to test new therapeutic interventions.

The TGF-β-activated kinase 1 (TAK1) belongs to the family of mitogen-activated protein kinase
kinase kinases (MAP3Ks) [61]. It is activated by toll like receptors (TLRs), interleukin 1 (IL-1) receptor,
tumor necrosis factor (TNF) receptor 1, and transforming growth factor beta (TGFβ) receptors [62],
and in turn stimulates activation of IKK-NF-κB and JNK in hepatocytes, which are crucial regulators
of cell survival, proliferation, and tumorigenesis, as well as lipid metabolism and insulin sensitivity [63].
Upon TNF or lipopolysaccharides (LPS) stimulation, TAK1 plays an important role in the activation
of NF-κB and prevents cancer through preventing Caspase-3-dependent hepatocyte and cholangiocyte
apoptosis [64]. In hepatocytes of TAK1 KO mice, the NF-κB pathway is inactivated which results in a
functional gain of IKK-subunit NF-kB essential modulator (NEMO). The functional gain of NEMO is
associated with necrosis, dysplasia of hepatocytes, biliary ductopenia, and early HCC development in
6- to 7-month-old TAK1 KO livers. TAK1 can also regulate AMPK activity where AMPK activation results
in inhibition of mTORC1, a protein kinase complex that regulates lipid biosynthesis, cellular proliferation,
and autophagy. Inactivation of TAK1 decreases AMPK activation which consequently increase mTOR
activity resulting in deregulation of autophagy [65–67].

Major urinary protein (MUP)-urokinase-type plasminogen activator (uPA) mice are uPA transgenic
mice under the control of the mature hepatocyte-specific promoter for MUP [68]. MUP-uPA mice
express high amounts of uPA specifically in the hepatocytes which lead to chronic ER stress.
When MUP-uPA mice were placed on a HFD starting at six weeks of age, steatohepatitis very
similar to pathology of human NASH eventually leads to spontaneous development of HCC at
40 weeks of age. The development of HCC was dependent on TNF production by inflammatory liver
macrophages and TNF receptor 1 (TNFR1)-IκB kinaseb (IKKβ) signaling in hepatocytes [69].

Both MUP-uPA and STAM models mimic NASH-induced HCC but MUP-uPA tumors appear
as “adenoma like” while the STAM model rapidly develops HCC. TAK1 and MUP-uPA models
develop spontaneous tumors after long-term chronic liver damage recapitulating mutational processes
in human HCC of TCGA [22].

3. Genomic Similarities among Mouse Liver Cancer Models

Hierarchical cluster analysis using gene expression data of nine different mouse models
(Myc, Myc/Tgfa, E2f1, Myc/E2f1, SV40, Mst1/2 KO, Sav1 KO, SV40 and Ctnnb1) from a recent study as
mentioned above revealed that the DEN-induced model formed a tight cluster with distinct gene
expression patterns reflecting that chemically induced models are different from those generated
in genetically engineered mouse models (Figure 2) [15]. Tumors from Mst 1/2 double-KO and Sav1
KO mice clustered together as these genes are core regulator genes of the tumor suppressive Hippo
pathway [15]. These tumors formed tight cluster with SV40 tumor which were well separated from the
rest of the mouse models suggesting that SV40 has oncogenic activity mediated in part by suppression
of the Hippo pathway or activation of its downstream target oncogene. In contrast, tumors from
Ctnnb1 clustered together with most tumors from the Myc models indicating that these two models
share similar molecular characteristics in human HCC.
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4. Genomic Resemblance

Genetically engineered mouse models recapitulate the complex multistep process of
hepatocarcinogenesis so that researchers can understand it and design therapeutic experiments.
However, human HCC is highly heterogeneous at molecular levels, enabling distinct and specific
HCC mouse models to recapitulate only subsets of molecular events occurring in subgroups of HCC
patients. To overcome this limitation, genomic studies have identified molecularly distinct subtypes
of HCC with different clinical outcomes [13,54,70–73]. The establishment of the molecular and clinical
resemblance of mouse cancer models to subtypes of human HCC subtypes will enable appropriate
selection of mouse models for the investigations of the functional roles of newly discovered cancer genes
and validation of potential therapeutic targets. There are several studies of systematic comparisons
of human HCCs and mouse models at the molecular, genomic, and clinical levels [13,15,70,71].

In previous studies, gene expression signatures reflecting the clinical and molecular characteristics
of tumors that are highly conserved in human and mouse tumors were reported [13,71]. In recent
study, we reported genomic data from nine mouse HCC models, integrated and analyzed together
with genomic data from human HCC to identify the mouse models that best resembled subtypes
of human HCC and determine the clinical relevance of each model [15]. The resemblance of mouse
models was classified based on prognostic, stem cell, and biological subtypes of human liver cancer as
well as immune activity in mouse liver cancer models.

Another study provided a comprehensive comparative genomic characteristic of four independent
mouse models (DEN, TAK1 KO, MUP-uPA, and STAM) by systematically comparing somatic alteration
data of human HCC derived from four human HCC cohorts to determine mouse–human similarities [22].
The following section will discuss based on these previous reported results.

4.1. Resemblance of Mouse Tumors to Prognostic Subtypes of Human Liver Cancer

SV40, Mst1/2 KO, Sav1 KO, and Ctnnb1 mouse models best recapitulated the poor prognostic
subtypes of human HCC that is high-proliferation and high-recurrence subtypes. In addition, these four
mouse models were all classified to the cholangiocarcinoma subtype associated with poor prognosis.
In contrast, the Myc model had the least aggressive phenotype while E2f1, E2f1/Myc, E2f1/Tgfα,
and DEN-induced models were heterogeneous and were unequally split into poor and favorable
prognoses. Interestingly, the highest metabolic activity was also observed in the most aggressive
models, SV40, Mst1/2 KO, and Sav1 KO while tumors from less aggressive Myc, E2f1, and DEN models
had the lowest glycolytic activity [15].
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Another commonly used molecular classification, the Hoshida classification, divides HCCs into
three subtypes S1, S2, and S3 where S1 and S2 subtypes have poor prognostic characteristics such
as high cellular proliferation, stem-cell-like characteristics while S3 subtype is associated with better
prognosis [74]. The silencing of Hippo (SOH) tumors (Mst1/2 KO, Sav1 KO) were associated with S1
subtype while most of the transgenic mouse were classified to S3 subtypes.

A recent study that analyzed similarities between human HCC and mouse tumors, clustered
human HCC, normal tissue, and mouse tumor using genomic data and classified the clusters from
H1 to H3. The H1 subtype was enriched for low-grade tumors, low prevalence of TP53 mutations,
and had characteristics of Hoshida subtype 1 and 3 as well as TCGA iCluster 2 [5]. H2 tumors were
enriched with low-proliferation genes while H3 was enriched with high-proliferation genes, high-grade
tumors, and enrichment in TP53 mutation. In addition, the H3 subtype was associated with Hoshida
S1, S2 subtypes and TCGA iCluster 1 and 2 where iCluster 1 showed the worst prognosis among the
three clusters. TAK1 HCC model was similar to normal human liver samples while MUP-uPA model
showed high correlation with H1 subtype, Ctnnb1 model was associated with H2 subtype while STAM
models were associated H3 subtype [22].

The Alb-R26Met model recapitulated the proliferative-progenitor subtype of human HCC,
characterized by hypermethylation of CpG islands in the gene body associated with oncogene
overexpression. The enrichment of genes and hypermethylation of CpG islands in Alb-R26Met tumors
showed similar changes that were observed in human liver cancer [59,60].

4.2. Resemblance of Mouse Tumors to Stem Cell Subtypes of Human Liver Cancer

Mouse model resembling hepatic stem cell phenotype was catalogued using hepatic stem cell,
epithelial cell adhesion molecule (EPCAM), and isocitrate dehydrogenase (IDH)-like signature [5].
Analysis of genomic signatures showed that only tumors from Mst1/2 KO and Sav1 KO models
consistently reproduced hepatic stem cell features suggesting that inactivation of the Hippo pathway
may lead to activation of stem cell characteristics in hepatocytes [15]. Yap1 was reported to reprogram
mature hepatocytes in adult mice into progenitor-like cells that could transdifferentiate into biliary
epithelial cells [75]. EPCAM is frequently overexpressed in cancer-initiating cells in multiple
cancer [76] while activating mutation of IDH blocks hepatic differentiation of hepatic stem cell
though production of 2-hydroxyglutarate and suppression of the activity of HNF4, a master regulator
of hepatic differentiation [77].

4.3. Resemblance of Mouse Tumors to Biological Subtypes of Human Liver Cancer

The β-catenin gene expression signature [BC or non-BC (NBC) subtype] previously defined as
activation of β-catenin by somatic mutations in human HCC was used to identify tumors with activated
β-catenin. The activation of β-catenin, which was observed in HCC patients with good prognosis [5],
was observed in a majority of Myc transgenic mouse model in addition to Ctnnb1 model while it was
lowest in models associated with poor prognosis, SV40, Mst1/2 KO, and Sav1 KO models, suggesting
β-catenin is a frequent co-activating partner of Myc in hepatocarcinogenesis. The DEN model showed
a lack of β-catenin mutation as Braf and Hras are the most prevalent mutations in this model [78].
STAM mouse model showed Ctnnb1 mutation at a rate comparable to human tumors and most closely
recapitulated the molecular characteristics of human HCC.

In addition to the Ctnnb1 model, the Myc model was also classified as a BC subtype indicating
that β-catenin is highly activated in Myc transgenic model while SV40 and Mst1/2 KO models had the
lowest β-catenin activity. The DEN model showed lack of β-catenin mutation as Braf and Hras are the
most prevalent mutations in this model [78]. The STAM mouse model showed Ctnnb1 mutation at
a rate comparable to human tumors and recapitulated molecular characteristics of human HCC.

Silencing of Hippo (SOH) pathway triggers activation of the oncogene YAP1, leading
to development of HCC. SOH pathway along with high Yap1 activity was observed in all Mst1/2 KO,
and Sav1 KO models and in vast majority of SV40 models [15]. Interestingly, tumors from the Ctnnb1
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model were classified as SOH subtype, clearly indicating an interaction between Ctnnb1 and Yap1
in the development of HCC while no other model had association with SOH subtype.

4.4. Resemblance of Mouse Tumors to Human Immune Acitivity

Interferon gamma (IFNG) 6 scores that predict response to anti-PD-1 (pembrolizumab) therapy
are derived from the average expression of the six genes (Cxc110, Cxcl9, Ido1, Stat1, H2-Ea, and Ifng)
where higher mean expression values were associated with better response [79]. When tumors
were dichotomized by mean IFNG6 score, the E2f1 model was categorized to the high IFN6 group
while models with silencing of Hippo pathway along with high Yap1 activity such as Mst1/2 KO and
Sav1 KO models as well as the majority of SV40 and DEN models were classified to the low IFN6
score group. In addition, the HCC models with high Yap1 activity showed increased expression
of checkpoint-inhibitory genes such as Cd276 and Pvrl2 while the DEN model had significantly lower
expression of immune stimulatory genes such as Cd86 compared to other models suggesting low
immune activity in these models [15].

4.5. Resemblance of Mouse Tumors to Human Somatic Mutations and Pathway Alterations

The DEN mouse model had heterogenous results for prognosis and had a high mutation rate with
a unique mutation that has never been identified in human cancer and was unable to recapitulate the
expression signature of any human tumors [15]. The DEN and STAM models showed much higher
number of non-synonymous mutations and significantly mutated genes than TAK1 and MUP-uPA
which far exceeded the average number of mutated genes in human. The STAM model had a pathway
mutation rate comparable to those in humans for most pathways and despite low mutation rate of TP53,
cell-cycle pathway alteration rate was similar to human tumors. Among DEN, TAK1, MUP-uPA,
and STAM model, STAM was the only mouse model that recapitulated the molecular characteristics
of human HCC [22].

5. Conclusions

The variety of mouse models has allowed researches to further understand the mechanism
of hepatocarcinogenesis. With many options for mouse models, selecting the relevant mouse model
that best recapitulates human HCC is important. In the post-genomic era, comprehensive genomic
analysis has uncovered an unexpected complexity in the genetics of HCC that hampers a direct
translation into mice using conventional transgenesis. The Mst1/2 KO and Sav1 KO models better
mimicked the hepatic stem cell subtype that confers the poorest prognosis with lowest immune
activity. Additionally, the STAM mouse model was molecularly similar to high-grade human HCC
and tumors harboring Ctnnb1 mutation, and the Alb-R26Met model with upregulated genes and
hypermethylation of CpG islands was characterized by the poor prognosis human HCC subtype.
The ability of mouse models to represent different prognosis, immunity, and histologic aggressiveness
may provide a framework for guiding selection of the most appropriate mouse models for preclinical
trials of novel drugs.
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