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Abstract
In this paper, we consider a fuzzy portfolio selection problem with systematic risk and non-systematic risk simultaneously.

These two kinds of risks are measured by beta coefficient and random error variance obtained by Sharp Single Index

Model. The total risk as the objective of portfolio decision is obtained by weighting the two kinds of risk. Among them, the

weight of systematic risk k is regarded as the degree of investors’ attention to system risk in economic sense. In addition,

the fuzzy return and the degree of diversification are measured by triangular fuzzy number and entropy, respectively. And

they are also considered the goal of investment decisions. Hence, a tri-objective portfolio is proposed in this paper. For the

fuzzy objectives in the model, a goal programming method based on fuzzy dominance is proposed, which can help

investors better capture the ideal point of fuzzy returns according to their risk preference. Finally, combined with the

systematic impact of COVID-19 on the financial market, we make an empirical analysis based on our proposed model. The

results show that the total risk will be on the high side when k value is too large or too small. That means paying too much

or little attention to the systematic risk will lead investors to bear more risk. In addition, when investors ignore the

systematic risk; that is, the k value is low, and investors will concentrate their funds in the same industry.

Keywords Portfolio � Systematic risk � Non-systematic risk � Sharp Single Index Model � Fuzzy dominant goal

programming

1 Introduction

Due to the limitation of capital, investors must make cer-

tain trade-offs when choosing securities, which is an

embodiment of resource scarcity in economy and society.

In addition, we analyze investors’ decisions from two

extreme aspects. On the one hand, it is impossible for

investors to invest only in the highest-return securities.

That is because risk tolerance of investors is not enough to

bear the risk. On the other hand, it is also impossible for

investors to invest all their capital in risk-free securities

because the available returns are too low to satisfy inves-

tors’ demands. Hence, how to select securities and allocate

capital is a critical problem for investors. It was not until

Markowitz (Markowitz 1952) put forward modern

portfolio theory (MPT) that the problem was solved by

quantitative method for the first time. But some doubts still

exist in mean–variance model (MV model) as a principal

model in MPT. (1) Mean–variance model cannot provide

an adjustable investment scheme in multi-periods. (2) It is

found that the result output from MV model is extreme,

which does not conform to the principle of investment

diversification. (3) There is a doubt that whether the vari-

ance is an appropriate measure of risk. Therefore, portfolio

selection is still a hot research issue.

Previous research (Liesiö et al. 2020; Soumik 2019) on

portfolio was conducted in a random frame. Because the

financial market is full of uncertainty, the return of secu-

rities shows a random walk trend. Therefore, scholars

always regard the securities returns as random variables.

Sak and Başoğlu (2017) studied the simulation of loss

probability and conditional excess of linear portfolio. They

proved that the robustness of the estimator could be

improved by reducing the effective dimension and non-

smoothness of the integrand. Shen (2015) concerned a
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mean–variance portfolio selection problem in a complete

market with unbounded random coefficients. He proved the

uniqueness and existence of solutions for two backward

stochastic differential equations with unbounded coeffi-

cients and derived explicit expressions of efficient portfolio

and efficient frontier in a Markov model with bounded

interest rates and unbounded market risk prices.

However, in the field of portfolio, it seems a more

realistic problem to explore the most satisfactory portfolio

from the perspective of investors than to study the optimal

portfolio decision. To some extent, the random portfolio

models ignore the subjective factors. Additionally, due to

the lack of historical data of some newly listed companies,

it is very difficult for investors to capture the random dis-

tribution of the returns of such securities. For this kind of

securities investment, investors tend to refer to the per-

formance of securities in the same industry and evaluate

the returns of new listed companies subjectively. Hence, in

actual investment, investors prefer to make investment

decisions based on historical data and their own subjective

experience. Fuzziness whose concept was proposed by

Zadeh (1965) could better describe the subjectivity of

investment. Referring to probability theory, possibility

theory put forward by Zadeh (1978) supported the theo-

retical research of fuzzy numbers. Dubois and Prade (1988)

defined the mean of fuzzy interval number and verified the

mean of the sum of two fuzzy numbers was equal to the

sum of their respective mean. Carlsson and Fullér (2001)

defined possibilistic variance and covariance of fuzzy

numbers. Gradually, scholars (Watada 1997; Tanaka and

Guo 1999; Liagkouras and Metaxiotis 2018) began to study

fuzzy portfolio instead of random portfolio. They used

possibilistic mean and possibilistic variance to replace

mean and variance in traditional MV model.

With the maturity of fuzzy theory, its application in the

field of multi-attribute decision making is gradually

emerging, especially in portfolio selection. Lv et al. (2021)

presented an intelligent predictive maintenance system for

multi-granularity faults of production equipment based on

the Ada Belief-BP (backpropagation) neural network and

the fuzzy decision making. That has overcome the defi-

ciency of traditional research which fails to distinguish

fault severity. Meng et al. (2021) studied decision making

with dual hesitant fuzzy preference relations (DHFPRs)

and provided a new group decision-making (GDM) method

based on a series of built optimization models. A fuzzy

multi-criteria decision-making framework is established by

Gao et al. (2021) involving the intuitionistic fuzzy sets,

score function, linear weighting method, prospect theory

and analytical network process.

In the process of investment decision making, random-

ness and fuzziness are important uncertainties affecting the

final decision making. Given the inaccuracy of certain

precision formulas proposed in previous studies for the

variance of a triangular fuzzy random variable (FRV),

Chen et al. (2016) presented the detailed process of cal-

culating precision variance formulas and discussed several

properties of the expectation and variance of triangular

FRVs. Hao et al. (2008) presented a method to calculate

precision formulas of an FRV that can design algorithms

that solved fuzzy random programming and handled fuzzy

random optimization problems. Hose and Hanss (2021)

proposed a novel imprecise probability-to-possibility

transformation. This method unified many results in

quantitative possibility theory concerning information

modeling, data analysis, and the construction of joint

distributions.

Combining subjective factors and objective factors in

investment process, random fuzzy portfolio models were

popular in recent years. Qin (2017) employed random

fuzzy variable to describe the stochastic return on indi-

vidual securities with ambiguous information and formu-

lated mean-absolute deviation portfolio optimization

models. Sadati and Nematian (2013) considered the prob-

lem to maximize the degree of both possibility and

necessity so that the objective function values satisfy the

fuzzy goals. Huang (2007) solved the portfolio selection

problem when security returns contain both randomness

and fuzziness. He reduced the computational work and

sped up the process of solution compared with the random

fuzzy simulation proposed in his previous algorithm. A

compromise approach based on genetic algorithm was

designed by Li and Xu (2013) to solve multi-objective

portfolio selection model with fuzzy random returns.

In the process of investment decision making, in addi-

tion to return as a factor that must be considered, risk as a

factor that makes investors uneasy must also be considered.

In traditional MV model, variance is used to measure risk.

Chen and Gerlach (2013) extended the univariate two-

sided Weibull distribution to forecast financial tail risk.

Brandtner et al. (2020) conducted a decision-theoretic

analysis of convex shortfall risk measures regarding their

flexibility to represent subjective risk aversion and dis-

cussed the implications for the choice of optimal portfolios.

Farhad et al. (2013) proposed a robust optimization

approach for generating non-dominated robust solutions for

multi-objective linear programming problems with impre-

cise coefficients in the objective functions and constraints.

However, most of previous studies did not distinguish

between systematic and non-systematic risks. Even if they

distinguished the two risks, they only studied the impact of

one of the risks on the portfolio. Few studies have con-

sidered the joint effects of both systematic and non-sys-

tematic risks on portfolio.

As mentioned before, the output of traditional MV

model is prone to extreme values. Some scholars are trying
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to find an index to measure the degree of diversification to

ensure the diversification of investment. In recent years, the

information entropy method need less calculation, which

can be used to compare the dispersion degree of different

assets. Shannon (1948) referred to the viewpoint of ther-

modynamics and called the average amount of information

without redundancy information entropy. Then, some

scholars began to study the application of different entropy

in portfolio and compare their performance in portfolio.

For example, Philippatos and Wilson (1972) and Cheng

and Wolverton (2001) studied the stochastic entropy in

portfolio problems. Huang (2008) applied fuzzy entropy to

portfolio. Hybrid entropy was put forward as a novel

diversification measurement by Xu et al. (2011). Mehmet

and Osman (2018) compared Shannon entropy with Gini–

Simpson entropy and pointed out that the latter performed

better in portfolio.

In the portfolio selection problem, investors need to

consider a number of mutually restricted objectives. The

traditional linear programming method cannot deal with

this kind of problem. In addition, it is impossible for

investors to achieve the expected results on every objec-

tive. Based on this, goal programming is used to solve the

multi-objective portfolio selection problem. It takes mini-

mizing the ‘‘sum’’ of the distances between the objective

functions and the ideal values as the final decision crite-

rion. Gupta et al. (2019) used polynomial goal program-

ming approach to solved portfolio model considering

entropy and higher moments in intuitionistic fuzzy envi-

ronment. Aouni et al. (2014) summarized different kinds of

goal programming methods applied in the portfolio selec-

tion problem. Wang (2018) used fuzzy preference relations

and goal programming approach to derive interval weights

in analytic form.

In our paper, the risk is discussed in random environ-

ment. By Sharp Single Index Model, risk is divided into

systematic risk and non-systematic risk. Additionally, we

fuzzify the securities return, which reflects investors’ sub-

jective anticipation to future returns. After considering

Shannon entropy, a hybrid tri-objective model including a

fuzzy objective function is proposed. Then we put forward

a novel fuzzy dominant goal programming to solve our

proposed model. By a numerical example, the importance

of systematic risk to portfolio selection is illustrated.

In this paper, we aim to consider systematic risk and

non-systematic risk to provide investors with strategies that

satisfy their preference for assets. The main jobs of this

paper are as follows. (1) In order to describe portfolio risk

more carefully, we decompose risk into systematic and

non-systematic risks. The two risks are measured by beta

coefficient and random error square of Sharp Single Index

Model, respectively. (2) In order to deal with the fuzzy

objectives in the model, a goal programming method based

on fuzzy dominance is proposed. Through this method,

investors can determine a fuzzy return state satisfying

themselves according to their risk preference. (3) A coef-

ficient k is introduced to describe the degree of investors’

attention to systematic risk. Through the sensitivity anal-

ysis of parameter k, we reveal the impact of investors’

attention to systematic risk on investment decision.

The rest of this paper is organized as follows. In Sect. 2,

we introduce the possibility theory of fuzzy numbers, the

relevant conclusions of triangular fuzzy numbers, Sharp

Single Index Model and Shannon entropy. In Sect. 3, we

put forward a novel fuzzy dominant goal programming on

the basis of classical goal programming. In Sect. 4 and

Sect. 5, a hybrid multi-objective model is constructed, and

a numerical example is given to illustrate the feasibility of

our model and the importance of the systematic risk. In

Sect. 6, we draw the conclusion and present future research

directions in goal programming and systematic risk.

2 Preliminaries

In this section, we will introduce some definitions about

fuzzy theory and index model, which will be used in the

following sections.

2.1 Fuzzy set

Fuzzy set is the extension of classical set. In classical set,

there are only two kinds of relationships existing in an

element and the set, namely belonging to or not belonging

to. In other words, the membership function of a set is

binary. Zadeh (1965) extended the concept of binary

membership to the ‘‘membership degree’’ on the closed

interval [0,1], where the two endpoints of 0 and 1,

respectively, represent completely belonging and not

belonging, but the number between the two endpoints can

represent the different membership degree of elements to

the set. This kind of set including membership degree in

the domain X is called ‘‘fuzzy set.’’

A key difference between classical set and fuzzy set is a

membership function. Classical sets have a unique mem-

bership function, while fuzzy sets may have infinite

membership functions. For fuzzy sets, uniqueness is sac-

rificed, but flexibility is obtained.

Definition 2.1 (Zadeh 1965) The fuzzy set A of domain X

is defined as

A ¼ x; lA xð Þð Þjx 2 Xf g: ð1Þ

where lA xð Þ is named membership function, which satis-

fies A : X ! 0; 1½ �. Fuzzy set A is also named fuzzy num-

ber. [0,1] is called subordinate space. Additionally, it is

A novel fuzzy dominant goal programming for portfolio selection with systematic risk and… 14811

123



easily found that fuzzy set is a mapping from domain X to

subordinate space actually.

Definition 2.2 (Zadeh 1965) Let A be a fuzzy number with

membership function lA xð Þ. Then the c-level set of fuzzy
number A is denoted by.

A½ �c¼ x 2 XjlAðxÞ� cf g: ð2Þ

Generally, we write it as A½ �c¼ aðcÞ; aðcÞ½ � briefly.
Considering that investors have some subjective under-

standing of future return, some scholars study the portfolio

on the basis of assuming that the return is fuzzy number.

To some extent, fuzzifying returns is a proper method to

quantify the subjective uncertainty.

Definition 2.3 (Zadeh 1965) If fuzzy number A is equip-

ped with membership function lA xð Þ as follows:

lAðxÞ ¼

1� a� x

a
; a� a� x\a;

1; x ¼ a;

1� x� a

b
; a\x� aþ b;

0; other:

8
>>>>><

>>>>>:

ð3Þ

Then the fuzzy number A is called triangular fuzzy

number, which is denoted as A ¼ ða; a; bÞ. According to

Def. 2.2, the c-level set of A is

a� að1� cÞ; aþ bð1� cÞ½ �.
After giving the definition of triangular fuzzy numbers,

we can define the arithmetic operation of triangular fuzzy

numbers.

Definition 2.4 (Zadeh 1965) Let A1 ¼ ða1; a1; b1Þ and

A2 ¼ ða2; a2; b2Þ be two triangular fuzzy numbers. Their

corresponding c-level sets are a1ðcÞ; a1ðcÞ½ � and

a2ðcÞ; a2ðcÞ½ �, respectively. Then their fuzzy addition and

fuzzy scalar multiplication are, respectively, defined as

follows:

Fuzzy addition:

A1 þ A2 ¼ ða1; a1; b1Þ þ ða2; a2; b2Þ
¼ ða1 þ a2; a1 þ a2; b1 þ b2Þ: ð4Þ

The form of c-level set is denoted as

A1 þ A2½ �c¼ a1ðcÞ þ a2ðcÞ; a1ðcÞ þ a2ðcÞ½ �8c 2 0; 1½ �:
ð5Þ

Fuzzy scalar multiplication:

For every real number k and A1, kA1 is denoted as

kA1 ¼
ðka1; ka1; kb1Þ; k� 0;

ðka1; kb1; ka1Þ; k\0:

(

ð6Þ

2.2 Possibility theory

In fuzzy mathematics, membership degree is the founda-

tion of fuzzy set theory, and membership function is the

key to describe fuzziness. Referring to probability theory,

we need theory to describe characteristics of fuzzy set

corresponding to a membership function.

Definition 2.5 (Zadeh 1978) Let fuzzy number A be

equipped with c-level set A½ �c¼ aðcÞ; aðcÞ½ �. Then some

definitions about numerical characteristics of A are given as

follows:

Possibilistic mean of A:

EðAÞ ¼
Z 1

0

c½aðcÞ þ aðcÞ�dc: ð6Þ

Possibilistic variance of A:

VarðAÞ ¼
Z 1

0

cf½EðAÞ � aðcÞ�2 þ ½EðAÞ � aðcÞ�2gdc:

ð7Þ

Possibilistic covariance of A1 and A2:

CovðA1;A2Þ ¼
Z 1

0

c½ðEðA1Þ � a1ðcÞÞðEðA2Þ � a2ðcÞÞ

þðEðA1Þ � a1ðcÞÞðEðA2Þ � a2ðcÞÞ�dc:
ð8Þ

Additionally, if Ai are all fuzzy numbers, then some

properties for arbitrary ki belonging to real numbers are as

follows,

E
Xn

i¼1

kiAi

" #

¼
Xn

i¼1

kiEðAiÞ; ð9Þ

Var
Xn

i¼1

kiAi

" #

¼
Xn

i¼1

k2i VarðAiÞ

þ 2
X

1� i\j� n

kikjCovðAi;AjÞ: ð10Þ

According to Def. 2.5, we can calculate the numerical

characteristics of triangular numbers A ¼ ða; a; bÞ as

follows.

EðAÞ ¼ aþ b�a
6
:

VarðAÞ ¼ ðaþbÞ2
24

þ ða�bÞ2
72

:

CovðA1;A2Þ ¼ a1þb1ð Þ a2þb2ð Þ
36

þ a1a2þb1b2
36

:
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2.3 Sharp Single Index Model

In the financial market full of uncertain information, no

matter how investors allocate assets, they will always face

risks in the process of investment. Generally speaking,

risks can be divided into two categories: systematic risk

and non-systematic risk.

Systematic risk is also called non-diversification risk. As

the name suggests, it cannot be avoided by diversification

investment. It is usually caused by some common factors,

which may bring huge losses to investors. The non-sys-

tematic risk is generally caused by the internal financial

and operating conditions of the company. The black swan

event in the investment field is usually caused by system-

atic risk. Therefore, this paper focuses on how investors

make decisions considering both systematic and non-sys-

tematic risks.

Sharp Single Index Model (SSIM) proposed by Sharp

shown the changing relationship between a single stock

and the whole market, that is to say, it depicts the sys-

tematic risk of a single security. Besides, the variance of

the random errors in the model corresponds to the non-

systematic risk of a single security. Before introducing

Sharp Single Index Model, we illustrate some symbols in

Table 1 first.

The Sharp Single Index Model is stated as follows:

rj;t ¼ aj þ bjrm;t þ ej;t: ð11Þ

where rj;t is the return of security j in time t with rj;t ¼
pj;t � pj;t�1 þ dj;t

�
pj;t�1; pj;t is the price of security j (for

j ¼ 1; 2; . . .; n) at time t; dj;t is the dividend received during

the period t � 1; t½ �; rm;t is the return on the market index in

period t; ej;t is the random error of security j in time t. aj
and bj are the coefficients to be estimated.

The coefficients aj and bj are obtained by linear

regression of market returns on the securities returns at the

same period. The method used is named as ordinary least

squares. The beta coefficient of stock j is given by

bj ¼
rjrm
r2m

: ð12Þ

The beta of the portfolio is defined as a weighted

average of the security betas bp ¼
Pn

j¼1 xjbj, which is used

to measure the systematic risk. Then the risk of the port-

folio is as follow:

r2p ¼ b2pr
2
m þ

Xn

j¼1

x2j r
2
e;j: ð13Þ

The last term tends toward 0 for a sufficiently large n.

Therefore, the risk of a broadly diversified portfolio is only

made up of the market risk. But in real investment,

investors don’t have enough money to buy enough secu-

rities. In order to measure the risk of portfolio, we should

consider the last term. In ordinary least squares, the sum of

squares of residuals divided by degrees of freedom is used

to estimate r2e;j, namely r2e;j¼
Pn

t¼1
ðrj;t�brjt Þ2

n�2
. According to

Sharp Single Index Model, b2pr
2
m can be regarded as sys-

tematic risk and
Pn

j¼1 x
2
j r

2
e;j can be regarded as non-sys-

temic risk.

2.4 Entropy

In traditional MV model, it is easy to output extreme

solution. Therefore, entropy is a measurement to guarantee

the final investment decision is diversified enough. Now if

investors prepare to invest n securities, then we will get an

investment proportion x ¼ ðx1; x2; . . .; xnÞT finally. In this

paper, the Shannon entropy is used to measure the degree

of portfolio diversification. Its explicit expression is

E ¼ �
Xn

j¼1

xj ln xj: ð14Þ

3 Novel fuzzy dominant goal programming

When investors make investment decisions, they often

need to consider multiple conflicting objectives. If we

consider all the objectives in the portfolio model, the tra-

ditional linear programming method cannot solve the

model. According to multi-objectives problems, the clas-

sical method is transferring multi-objectives to a single

objective. Recently, goal programming as a popular

method to solve the problem of multi-objective portfolio

has gradually come into the vision of scholars.

Table 1 Some symbol illustrations about SSIM

Symbol Illustration

rj;t The return of security j in time t

rm;t The return of market index in time t

pj;t The price of security j in time t

dj;t The dividend of security j time t

aj The intercept parameter of security j

bj The slope parameter of security j

ej;t The random error of security j in time t

r2ej The variance of the security j random error

r2m The variance of market index return

r2p The variance of the portfolio
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3.1 Classical goal programming

Classical goal programming is developed on the basis of

linear programming. The following sections introduce the

concept related to the establishment of mathematical model

by goal programming.

3.1.1 Some characteristics of classical goal programming

Compared to traditional linear programming, goal pro-

gramming has the following characteristics.

• Positive and negative deviation variables

Let d be a decision variable of objective functions.

Then positive deviation variable dþ ¼ max d � d0; 0f g
denotes the part of the objective function value

exceeding the target value and the negative deviation

variable d� ¼ �min d � d0; 0f g denotes the part of the

objective function value that does not reach the target

value, where d0 denotes the target value. Additionally,

because the decision value cannot exceed the target

value and fail to reach the target value, there is

constraint dþ � d� ¼ 0.

• Absolute and objective constraints

Absolute constraints refer to equality constraints and

inequality constraints that must be strictly satisfied. If

all the constraints in linear programming cannot meet

these constraints, the solution is called infeasible

solution, so they are hard constraints. Objective

constraint is unique to goal programming. When the

target value is reached, positive or negative deviation

can be allowed. Therefore, adding positive and negative

deviation variables to these constraints is a soft

constraint.

• Objective function in goal programming

The objective function of goal programming is con-

structed according to the positive and negative deviation

variables of each objective constraint. When each target

value is determined, it requires decision makers to reduce

the deviation from the target value as much as possible.

Generally speaking, the objective function of goal pro-

gramming is min z ¼ f ðdþ; d�Þ. There are three basic

forms as follows:

Case 1 If the requirement just meets the objective value,

namely, the positive and negative deviation variables

should be as few as possible. The objective function is

min z ¼ f ðdþ þ d�Þ.
Case 2 If the requirement does not exceed the objective

value, namely, the positive deviation variables should be as

few as possible. The objective function is min z ¼ f ðdþÞ.

Case 3 If the requirement exceeds the objective value,

namely, the positive deviation variables should be as few

as possible. The objective function is min z ¼ f ðd�Þ.

3.1.2 Concrete calculation steps of classical goal
programming

The following shows the transformation from a specific

multi-objective model to a goal planning model.

A multi-objective model corresponding to the above

three cases can be stated as

optF1ðxÞ ¼ a

maxF2ðxÞ
minF3ðxÞ
s.t:HiðxÞ� b; i ¼ 1; 2; . . .; n

x� 0:

8
>>>>>><

>>>>>>:

ð15Þ

x ¼ ðx1; x2; . . .; xnÞT is a vector. All the objective functions

can be expressed as the form of objective function in the

aforesaid model. After the following steps, the above

model can be transformed into a goal programming model.

Step 1 Calculate the optimal value of each objective

function under constraints, respectively, which are written

as d1; d2; d3, especially d1 ¼ a.

Step 2 Choose proper objective function by positive

deviation variables and negative deviation variables,

namely,min z ¼ f1ðdþ1 þ d�1 Þ þ f2ðd�2 Þ þ f3ðdþ3 Þ.
Step 3 Rewrite model (15) as

min z ¼ f1ðdþ1 þ d�1 Þ þ f2ðd�2 Þ þ f3ðdþ3 Þ
s.t:HiðxÞ� b; i ¼ 1; 2; . . .; n

F1ðxÞ þ d�1 � dþ1 ¼ a ¼ d1

F2ðxÞ þ d�2 ¼ d2

F3ðxÞ � d�3 ¼ d3

dþ1 � d�1 ¼ 0

x� 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð16Þ

3.2 Fuzzy dominant goal programming

It is obvious found that the key steps of transforming multi-

objective model into goal programming model are to cal-

culate the target value and construct the objective function.

The general multi-objective model can be transformed into

the corresponding goal programming model according to

the above three steps. However, if the objective functions

in the multi-objective model include fuzzy numbers, goal

programming cannot solve this kind of models. This sec-

tion proposes a method to find fuzzy deviation variables

based on fuzzy dominance.
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First, we consider a fuzzy linear objective function

max z ¼
Pn

i¼1 xiri, where xi ði ¼ 1; 2; . . .; nÞ are decision

variables and ri ði ¼ 1; 2; . . .; nÞ are fuzzy numbers. In

order to concretize function, we can even suppose

ri ¼ ðai; ai; biÞ ði ¼ 1; 2; . . .; nÞ; namely, they are triangular

fuzzy numbers. Then the objective function can be

rewritten as.

max z ¼
Xn

i¼1

xiri ¼
Xn

i¼1

xiai;
Xn

i¼1

xiai;
Xn

i¼1

xibi

 !

ð17Þ

3.2.1 A new definition of fuzzy dominance

It is found that the objective function is a triangular fuzzy

number with decision variables. That means the optimal

objective value is also a triangular fuzzy number, denoting

the optimal objective value as z� ¼ ða�; a�; b�Þ. Based on

this, we need to define dominant fuzzy state.

Definition 3.1 Let A1 ¼ ða1; a1; b1Þ and A2 ¼ ða2; a2; b2Þ
be two triangular fuzzy numbers. They also represent the

same return objective. Then A1	A2iffa1 [ a2. If they

represent loss objective, then A1	A2iffa1\a2. If a1 ¼ a2,

the fuzzy numbers A1 and A2 are equivalent in theory.

Remark Although the fuzzy numbers A1 and A2 are

equivalent in theory when a1 ¼ a2. In practical application,

the two fuzzy numbers can be sorted in relative order

according to the actual situation. For example, we apply

this definition to portfolio decision. The optimistic inves-

tors prefer the fuzzy numbers whose b is larger and a is

smaller. But the pessimistic investors prefer the fuzzy

numbers whose b is smaller and a is larger.

Therefore, let a� ¼ max
Pn

i¼1 xiai, which satisfies z�	z.

Then a� and b� depend on people’s subjective attitude. If

optimistic, they hope the degree of membership is as low as

possible to the left of the central value and as high as

possible to the right of the central value. That means

a� ¼ min
Pn

i¼1 xiai, b� ¼ max
Pn

i¼1 xibi, namely,

z� ¼ ðmax
Pn

i¼1 xiai;min
Pn

i¼1 xiai;max
Pn

i¼1 xibiÞ. If

pessimistic, they hope the degree of membership is as low

as possible to the right of the center value and as high as

possible to the left of the center value.

3.2.2 Specific description of fuzzy dominant goal
programming

In other words, compared to classical fuzzy goal pro-

gramming, we should preferentially deal with fuzzy

objective functions max z ¼
Pn

i¼1 xiri ¼ ð
Pn

i¼1 xiai;Pn
i¼1 xiai;

Pn
i¼1 xibiÞ before Step 1- Step 3.

Step 0 Transform fuzzy objective function into a multi-

objective problem. There are two cases shown as follows:

Case 1 If investors are optimistic, we should calculate

three target values, namely the maximum of the central

value, the minimum of the left width and the maximum of

the right width. That is

max
Xn

i¼1

xiai;

min
Xn

i¼1

xiai;

max
Xn

i¼1

xibi:

8
>>>>>>>>><

>>>>>>>>>:

ð18Þ

Then we set the optimal values as ða�; a�; b�Þ and take

the three values as target to construct goal programming

model as follows.

min f1ðd�1 Þ þ f2ðdþ2 Þ þ f3ðd�3 Þ

s.t:
Xn

i¼1

xiai þ d�1 ¼ a�

Xn

i¼1

xiai � dþ2 ¼ a�

Xn

i¼1

xibi þ d�3 ¼ b
�
:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð19Þ

Case 2 If investors are pessimistic, we should calculate

three target values, namely the maximum of the central

value, the maximum of the left width and the minimum of

the right width.

max
Xn

i¼1

xiai

max
Xn

i¼1

xiai

min
Xn

i¼1

xibi:

8
>>>>>>>>><

>>>>>>>>>:

ð20Þ

Then we set the optimal values as ða�; a�; b�Þ and take

the three values as target to construct goal programming

model as follows.

min f1ðd�1 Þ þ f2ðdþ2 Þ þ f3ðd�3 Þ

s.t:
Xn

i¼1

xiai þ d�1 ¼ a�

Xn

i¼1

xiai � dþ2 ¼ a�

Xn

i¼1

xibi þ d�3 ¼ b�:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð21Þ

After Step 0, we can get two statuses of dominant fuzzy

return responding to optimistic and pessimistic investors,
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respectively. These two statuses are shown geometrically

in Fig. 1.

From Fig. 1, it is obvious that the investors have the

same target central value no matter they are optimistic or

pessimistic, which means they have the same average

return anticipation. But the optimistic investors have higher

membership degree than the pessimistic ones when the

portfolio return exceeds the central value. On the contrary,

the optimistic investors have lower membership degree

than the pessimistic ones when the portfolio return does not

reach the central value. This reflects the investors’ attitude

to future portfolio return to some extent.

4 Portfolio model with systematic and non-
systematic risks

Before making investment decisions, investors often need

to consider the historical return, risk status and current

investment environment of securities. Due to the subjec-

tivity of investors themselves, there are some deviations in

their cognition of future returns and risks. Therefore, this

paper studies the problem of portfolio selection in fuzzy

environment. Beta coefficient is used to measure the sys-

tematic risk hidden in investment environment.

4.1 Model description

Before constructing the portfolio model, we first give a

brief description of the model’s notation (Table 2).

Remark T represents a period, and t represents a time

point in period T.

In this paper, we assume that investors adopt positive

investment strategies. That means they will change the

investment proportion and adjust the investment strategy in

real time according to the market situation. In order to

simplify the multi-period model, it is assumed that inves-

tors invest in a frictionless financial market. In other words,

the investors are not required to pay transaction fees and

taxes when they sell securities, buying securities and

earning from securities.

In our proposed model, three objectives are considered,

which are return, risk and entropy. According to return, we

adopt the method of fuzzification to deal with it. Suppose

that investors plan to invest k securities, we set the fuzzy

return of each security ~riT ¼ ðaiT ; aiT ; biTÞ
ði ¼ 1; 2; . . .; k; t 2 TÞ. Then we can construct a fuzzy

portfolio, whose fuzzy return is ~rpT ¼ ðapT ; apT ; bpTÞ ¼
ð
Pk

i¼1 xiTaiT ;
Pk

i¼1 xiTaiT ;
Pk

i¼1 xiTbiTÞ in period T. What

we do is to find an optimal fuzzy portfolio status.

According to risk, both systematic risk and non-systematic

risk are considered into model. The beta coefficient is used

to measure systematic risk, and the sum of squares of

residuals is used to measure non-systematic risk by the

regression of securities and market index. Finally, the

entropy as an objective is to guarantee the final result

diversification.

4.2 Steps of model construction

In this paper, we consider three objectives: fuzzy return

status, the total risk and the diversification degree. The

model construction steps can be described as follows.

Step 1 Basic model construction

opt~rpT ¼ ðapT ; apT ; bpTÞ ¼ ð
Xk

i¼1

xiTaiT ;
Xk

i¼1

xiTaiT ;
Xk

i¼1

xiTbiTÞ

min r2pT ¼ kb2pTr
2
mT þ l

Xk

i¼1

xiTr
2
niT

maxE ¼ �
Xk

i¼1

xi ln xi

s.t:
Xk

i¼1

xi ¼ 1; kþ l ¼ 1

xiT ; k; l� 0; i ¼ 1; . . .; k:

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð22Þ

The first objective requires finding a dominant fuzzy

portfolio status, which is not a traditional objective func-

tion. According to the second objective, it is essentially a

linear weighting function with systematic risk and non-

systematic risk. The parameters in this function are cal-

culated as follows: bpT ¼
Pk

i¼1 xiTbiT . biT and r2niT both

can be obtained by Sharp Single Index Model in the i se-

curity and the market index, which represent beta coeffi-

cient and sum of squares of residuals separately. The last

objective requires our portfolio as diverse as possible.

Step 2 Sub-models for objective.

Fig. 1 Fuzzy dominant status for optimistic and pessimistic investors
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Our proposed model is not a traditional linear program

model. We solve it by the method in Sect. 3. Firstly, we

solve the following sub-models:

max
Xk

i¼1

xiTaiT

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð23Þ

where aiT represent the central value of the ith security

fuzzy return.

max
Xk

i¼1

xiTaiT

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð24Þ

where aiT represent the left width of the ith security fuzzy

return.

min
Xk

i¼1

xiTaiT

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð25Þ

max
Xk

i¼1

xitbit

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð26Þ

min
Xk

i¼1

xiTbiT

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð27Þ

min r2pT ¼ kb2pTr
2
mT þ l

Xk

i¼1

xkTr
2
niT

s.t:
Xk

i¼1

xiT ¼ 1; kþ l ¼ 1

xiT ; k; l� 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð28Þ

maxE ¼ �
Xk

i¼1

xiT ln xiT

s.t:
Xk

i¼1

xiT ¼ 1

xiT � 0; i ¼ 1; . . .; k:

8
>>>>>>><

>>>>>>>:

ð29Þ

Step 3 One single objective model with deviation

variable.

We mark the target values of the above models as fol-

lows: a�; a�; a�; b
�
; b�;r�;E�. Then we can convert the

original model into two single objective models for opti-

mistic and pessimistic investors separately.

Table 2 Illustration of symbols
Symbols Illustration

rit The dataset of the return of security i in time t

rmt The dataset of the return of market index in time t

biT The beta coefficient of the security i in period T

bpT The beta coefficient of the portfolio in period T

r2niT The non-systematic risk of the security i in period T

r2siT The systematic risk of the security i in period T

r2pT The total risk of the portfolio in period T

~riT ¼ ðaiT ; aiT ; biT Þ The fuzzy return of security i in period T

~rpT ¼ ðapT ; apT ;bpTÞ The fuzzy return of the portfolio in period T

xT ¼ ðx1T ; x2T ; . . .; xkT Þ0 The vector of Investment proportion in period T
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min d ¼ d1 þ d2 þ d3 þ d4 þ d5

s.t:
Xk

i¼1

xiTaiT þ d1 ¼ a�
Xk

i¼1

xiTaiT � d2 ¼ a�;

Xk

i¼1

xiTbiT þ d3 ¼ b
� �

Xk

i¼1

xiT ln xiT þ d5 ¼ E�;

kb2pTr
2
mT þ l

Xk

i¼1

xkTr
2
niT � d4 ¼ r�;

Xk

i¼1

xiT ¼ 1kþ l ¼ 1;

xiT ; k; l� 0; i ¼ 1; . . .; k:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð30Þ

min d ¼ d1 þ d2 þ d3 þ d4 þ d5

s.t:
Xk

i¼1

xiTaiT þ d1 ¼ a�;
Xk

i¼1

xiTaiTþd2 ¼ a�;

Xk

i¼1

xiTbiT � d3 ¼ b�;�
Xk

i¼1

xiT ln xiT þ d5 ¼ E�;

kb2pTr
2
mT þ l

Xk

i¼1

xkTr
2
niT � d4 ¼ r�;

Xk

i¼1

xiT ¼ 1; kþ l ¼ 1;

xiT ; k; l� 0; i ¼ 1; . . .; k:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

5 Numerical example

5.1 Data processing

Since the COVID-19 outbreak, securities in different

industries of the financial market have suffered different

impacts. In this paper, we analyze the securities from

hygiene, pharmaceutical manufacturing and fishery. We

choose three securities in each of the three industries to

invest and study how we should invest in them under

special circumstances. We denote the securities as

Siði ¼ 1; . . .; 9Þ before the establishment of the model. We

collected the corresponding data in NETEASE, which are

shown in Table 3.

For Table 3, we make the following explanations.

Considering that investors will evaluate the yield of secu-

rities subjectively, we refer to the method of Vercher and

Bermudez (2013) to fuzzify the return data. We use tri-

angular fuzzy numbers ða; a; bÞ to express the rate of

return. We adopt the quantile method. In the dataset, we

have taken the daily return data of various securities from

February to July 2020. We divided the dataset into three

phases. They represent before, during and after the

COVID-19 outbreak, respectively, where a is the median

return of the corresponding security. a is the difference

between the 5% quantile and the median. b is the differ-

ence between the 95% quantile and the median. Then we

regress the securities returns and CSI 300 index based on

Sharp Single Index Model. Beta is the slope parameter of

SSIM. And the non-systematic risk is measured by the

variance of random errors.

5.2 Solution on constructed models

Step 1 Original model construction.

According to model (27), we obtain the corresponding

models in each period. All the obtained modes are tri-

objective models with a fuzzy objective function, which

should be solved by our proposed fuzzy dominant goal

programming method.

opt~rp1 ¼ ð0:29x11 þ 0:45x21 þ 0:45x31 þ 0:64x41 � 0:08x51 þ 0:48x61 þ 0:77x71 � 0:32x81 þ 0:97x91;

1:56x11 þ 1:62x21 þ 1:98x31 þ 2:47x41 þ 1:60x51 þ 1:52x61 þ 2:07x71 þ 1:32x81 þ 2:34x91;

1:48x11 þ 1:28x21 þ 1:37x31 þ 1:60x41 þ 1:26x51 þ 1:99x61 þ 2:12x71 þ 1:18x81 þ 1:69x91Þ
min r2p1 ¼ kð2:8x11 þ 1:1x21 þ 2:2x31 þ 1:5x41 þ 2:3x51 þ 1:9x61 þ 1:7x71 þ 2:21x81 þ 0:8x91Þ2 þ ð1� kÞ
ð2:49x11 þ 3:48x21 þ 3:13x31 þ 3:82x41 þ 3:01x51 þ 3:29x61 þ 3x71 þ 2:21x81 þ 4:23x91Þ

maxE ¼ �
X9

i¼1

xi1 ln xi1

s.t:
X9

i¼1

xi1 ¼ 1

xi1 � 0; i ¼ 1; . . .; 9:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð32Þ
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In models (32)–(34), k can take values from 0 to 1 which

represents the investors’ attention to systematic risk. In this

paper, we take k to be 0, 0.25, 0.5, 0.75 and 1 successively.

Step 2 Sub-models for objective.

According to sub-models (23)-(29), we calculate the

optimal value of all objective functions in models (32)-(34)

during their corresponding constraint domain. As the k
value varies, we get the corresponding target value in each

period.

In Table 4, we can find an interesting phenomenon. With

the k value increasing, the optimal value of r� presents a

trend of first increasing and then decreasing, which means

that if we pay more attention or less to systematic risk, the

total risk would be underestimate without considering other

objective functions. In other words, the total risk of port-

folio can be effectively evaluated by properly considering

systematic risk.

Step 3 One single model with deviation variable.

For this numerical example, because k can value dif-

ferent numbers and there are three period data, we should

solve fifteen single objective models finally. Here we take

T ¼ 1 and k ¼ 0:5 as an example. We write the corre-

sponding models for optimistic and pessimistic investors,

respectively.

opt~rp2 ¼ ð�0:02x12 þ 0:76x21 þ 0:36x32 � 0:16x42 þ 0:3x52 � 0:3x62 þ 0:1x72 � 0:32x82 þ 0:01x92;

2:44x12 þ 2:61x21 þ 1:24x32 þ 2:22x42 þ 1:08x52 þ 0:93x62 þ 2:12x72 þ 1:64x82 þ 1:69x92;

1:28x12 þ 2:19x21 þ 1:1x32 þ 1:6x42 þ 1:96x52 þ 1:19x62 þ 1:95x72 þ 1:01x82 þ 1:71x92Þ
min r2p2 ¼ kð1:2x12 þ 0:9x22 þ 1:5x32 þ 0:3x42 þ 0:7x52 þ 2:1x62 þ 4:9x72 þ 3:4x82 þ 3x92Þ2 þ ð1� kÞ
ð2:48x12 þ 3:28x22 þ 2:44x32 þ 4:06x42 þ 2:68x52 þ 1:81x62 þ 3:01x72 þ 2:46x82 þ 3:16x92Þ

maxE ¼ �
X9

i¼1

xi2 ln xi2

s.t:
X9

i¼1

xi2 ¼ 1

xi2 � 0; i ¼ 1; . . .; 9:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð33Þ

opt~rp3 ¼ ð0:29x13 þ 0:16x23 þ 0:23x33 � 0:38x43 þ 0:34x53 � 0:07x63 � 0:27x73 � 0:41x83 � 0:09x93;

1:87x13 þ 1:45x23 þ 1:78x33 þ 2:88x43 þ 2:06x53 þ 1:74x63 þ 2:1x73 þ 2:37x83 þ 1:39x93;

2x13 þ 1:94x23 þ 1:5x33 þ 2:4x43 þ 1:99x53 þ 1:73x63 þ 2:13x73 þ 1:82x83 þ 1:6x93Þ
min r2p3 ¼ kð1:9x13 þ 2:3x23 þ 5:1x33 þ 1:1x43 þ 3:8x53 þ 1:5x63 þ 3:9x73 þ 3:6x83 þ 4x93Þ2 þ ð1� kÞ
ð5:04x13 þ 4:08x23 þ 2:93x33 þ 4:32x43 þ 3:13x53 þ 3:06x63 þ 4:19x73 þ 3:98x83 þ 3:24x93Þ

maxE ¼ �
X9

i¼1

xi3 ln xi3

s.t:
X9

i¼1

xi3 ¼ 1

xi3 � 0; i ¼ 1; . . .; 9:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð34Þ
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Table 3 The fuzzy return, beta

coefficient and non-systematic

risk of each security

Industry Securities Period Fuzzy return Beta Non-systematic risk

Hygiene S1 T = 1 (0.29,1.56,1.48) 2.8 2.49

T = 2 (- 0.02,2.44,1.28) 1.2 2.48

T = 3 (0.29,1.87,2.00) 1.9 5.04

S2 T = 1 (0.45,1.62,2.40) 1.1 3.48

T = 2 (0.76,2.61,2.19) 0.9 3.28

T = 3 (0.16,1.45,1.94) 2.3 4.08

S3 T = 1 (0.45,1.98,1.37) 2.2 3.13

T = 2 (0.36,1.24,1.10) 1.5 2.44

T = 3 (0.23,1.78,1.50) 5.1 2.93

Pharmaceutical S4 T = 1 (0.64,2.47,1.60) 1.5 3.82

T = 2 (- 0.16,2.22,1.60) 0.3 4.06

T = 3 (- 0.38,2.88,2.40) 1.1 4.32

S5 T = 1 (- 0.08,1.60,1.26) 2.3 3.01

T = 2 (0.30,1.08,1.96) 0.7 2.68

T = 3 (0.34,2.06,1.99) 3.8 3.13

S6 T = 1 (0.48,1.52,1.99) 1.9 3.29

T = 2 (- 0.30,0.93,1.19) 2.1 1.81

T = 3 (- 0.07,1.74,1.73) 1.5 3.06

Fishery S7 T = 1 (0.77,2.07,2.12) 1.7 3.00

T = 2 (0.10,2.12,1.95) 4.9 3.01

T = 3 (- 0.27,2.10,2.13) 3.9 4.19

S8 T = 1 (0.31,1.32,1.18) 4.0 2.21

T = 2 (- 0.32,1.64,1.01) 3.4 2.46

T = 3 (- 0.41,2.37,1.82) 3.6 3.98

S9 T = 1 (0.97,2.34,1.69) 0.8 4.23

T = 2 (0.01,1.69,1.71) 3.0 3.16

T = 3 (- 0.09,1.39,1.60) 4.0 3.24

Table 4 Target values in

models (32)–(34)
k T a�(23) a�(24) a�(25) b

�
(26) b�(27) r�(28) E�(29)

0.00 T = 1 0.97 2.47 1.32 2.40 1.18 2.21 2.20

T = 2 0.34 2.61 0.93 2.19 1.01 1.81 2.20

T = 3 0.76 2.88 1.39 2.40 1.60 2.93 2.20

0.25 T = 1 0.97 2.47 1.32 2.40 1.18 2.60 2.20

T = 2 0.34 2.61 0.93 2.19 1.01 2.06 2.20

T = 3 0.76 2.88 1.39 2.40 1.60 4.53 2.20

0.50 T = 1 0.97 2.47 1.32 2.40 1.18 2.20 2.20

T = 2 0.34 2.61 0.93 2.19 1.01 1.53 2.20

T = 3 0.76 2.88 1.39 2.40 1.60 4.73 2.20

0.75 T = 1 0.97 2.47 1.32 2.40 1.18 1.80 2.20

T = 2 0.34 2.61 0.93 2.19 1.01 0.96 2.20

T = 3 0.76 2.88 1.39 2.40 1.60 4.94 2.20

1.00 T = 1 0.97 2.47 1.32 2.40 1.18 1.40 2.20

T = 2 0.34 2.61 0.93 2.19 1.01 0.07 2.20

T = 3 0.76 2.88 1.39 2.40 1.60 5.15 2.20
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Table 5 Portfolio solution for

optimistic investors in models

(32)–(34)

k T S1 S2 S3 S4 S5 S6 S7 S8 S9

0.00 T=1 0.17 0.18 0.06 0.04 0.05 0.16 0.19 0.12 0.03

T=2 0.59 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T=3 0.04 0.12 0.19 0.02 0.22 0.16 0.05 0.02 0.17

0.25 T=1 0.02 0.28 0.02 0.03 0.01 0.08 0.45 0.01 0.10

T=2 0.58 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T=3 0.06 0.04 0.00 0.32 0.01 0.52 0.06 0.00 0.00

0.50 T=1 0.01 0.23 0.01 0.02 0.01 0.03 0.54 0.01 0.14

T=2 0.52 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T=3 0.02 0.01 0.00 0.65 0.00 0.31 0.02 0.00 0.00

0.75 T=1 0.01 0.20 0.01 0.01 0.01 0.01 0.56 0.00 0.19

T=2 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T=3 0.01 0.00 0.00 0.86 0.00 0.13 0.01 0.00 0.00

1.00 T=1 0.01 0.25 0.01 0.02 0.01 0.02 0.47 0.00 0.22

T=2 0.45 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T=3 0.00 0.00 0.00 0.95 0.00 0.05 0.00 0.00 0.00

Table 6 Portfolio performance

for optimistic investors n

models (32)–(34)

k T Possibilistic mean Possibilistic variance Total risk Entropy Industry Entropy

0.00 T = 1 0.47 0.50 3.03 2.03 1.08

T = 2 0.16 0.73 2.81 0.68 0.00

T = 3 0.10 0.52 3.35 1.93 1.08

0.25 T = 1 0.64 0.61 3.27 1.50 0.94

T = 2 0.17 0.76 2.83 0.68 0.00

T = 3 0.16 0.71 5.15 1.22 0.54

0.50 T = 1 0.67 0.61 2.91 1.31 0.77

T = 2 0.22 0.76 2.37 0.69 0.00

T = 3 0.31 0.92 5.49 0.85 0.22

0.75 T = 1 0.69 0.61 2.45 1.19 0.76

T = 2 0.24 0.76 1.37 0.69 0.00

T = 3 0.40 1.07 5.49 0.49 0.10

1.00 T = 1 0.69 0.64 2.41 1.33 0.65

T = 2 0.24 0.78 0.84 0.69 0.00

T = 3 0.40 1.12 5.34 0.20 0.00

Portfolio performance index
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Fig. 2 The portfolio

performance for optimistic

investors when T ¼ 1
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When k takes other values, we can also obtain similar

single objective models. Here, we explain the economic

significance of k. When we deal with the risk objective, we

divide the risk into two categories: systematic risk and non-

min d ¼ d1 þ d2 þ d3 þ d4 þ d5

s.t:0:29x11 þ 0:45x21 þ 0:45x31 þ 0:64x41 � 0:08x51 þ 0:48x61 þ 0:77x71 � 0:32x81 þ 0:97x91 þ d1 ¼ 0:97

1:56x11 þ 1:62x21 þ 1:98x31 þ 2:47x41 þ 1:60x51 þ 1:52x61 þ 2:07x71 þ 1:32x81 þ 2:34x91 � d2 ¼ 1:32

1:48x11 þ 1:28x21 þ 1:37x31 þ 1:60x41 þ 1:26x51 þ 1:99x61 þ 2:12x71 þ 1:18x81 þ 1:69x91 þ d3 ¼ 2:40

0:5ð2:8x11 þ 1:1x21 þ 2:2x31 þ 1:5x41 þ 2:3x51 þ 1:9x61 þ 1:7x71 þ 2:21x81 þ 0:8x91Þ2þ
0:5ð2:49x11 þ 3:48x21 þ 3:13x31 þ 3:82x41 þ 3:01x51 þ 3:29x61 þ 3x71 þ 2:21x81 þ 4:23x91Þ � d4 ¼ 2:2;

�
Xk

i¼1

xi1 ln xi1 þ d5 ¼ 2:2;

X9

i¼1

xi1 ¼ 1kþ l ¼ 1;

xi1; k; l� 0; i ¼ 1; . . .; 9:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð35Þ

min d ¼ d1 þ d2 þ d3 þ d4 þ d5

s.t:0:29x11 þ 0:45x21 þ 0:45x31 þ 0:64x41 � 0:08x51 þ 0:48x61 þ 0:77x71 � 0:32x81 þ 0:97x91 þ d1 ¼ 0:97

1:56x11 þ 1:62x21 þ 1:98x31 þ 2:47x41 þ 1:60x51 þ 1:52x61 þ 2:07x71 þ 1:32x81 þ 2:34x91 þ d2 ¼ 2:47

1:48x11 þ 1:28x21 þ 1:37x31 þ 1:60x41 þ 1:26x51 þ 1:99x61 þ 2:12x71 þ 1:18x81 þ 1:69x91 � d3 ¼ 1:18

0:5ð2:8x11 þ 1:1x21 þ 2:2x31 þ 1:5x41 þ 2:3x51 þ 1:9x61 þ 1:7x71 þ 2:21x81 þ 0:8x91Þ2þ
0:5ð2:49x11 þ 3:48x21 þ 3:13x31 þ 3:82x41 þ 3:01x51 þ 3:29x61 þ 3x71 þ 2:21x81 þ 4:23x91Þ � d4 ¼ 2:2

�
Xk

i¼1

xi1 ln xi1 þ d5 ¼ 2:2

X9

i¼1

xi1 ¼ 1kþ l ¼ 1

xi1; k; l� 0; i ¼ 1; . . .; 9:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð36Þ
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Portfolio performance index

Fig. 3 The portfolio

performance for optimistic

investors when T ¼ 2
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systematic risk. The total risk is obtained by weighting

these two kinds of risks, and the weight is set subjectively

by investors. k is the weight of coefficient risk, so k can be

regarded as the degree of investor’s attention to systematic

risk.

5.3 The decision schemes for investors’ different
psychological attitude

5.3.1 The results for optimistic investors

According to the above section, we will show the invest-

ment schemes and the investment performance for opti-

mistic investors with different emphasis on systematic risk

in Table 5 and Table 6.

In order to show the results intuitively and compare the

results conveniently, we show the results in Figs. 2, 3, 4.

In Fig. 2, we can find that all the performance values

reach a relatively high level when k¼0:5. According to

possibilistic mean and the possibilistic variance, we cannot

judge that which status performs well. Besides, the total

risk reaches the highest level when k¼0:5. In other words,

investors will choose a high-return and high-risk invest-

ment scheme when they pay the same attention to sys-

tematic risk and non-systematic risk. For entropy and

industry entropy, they will take a more diversified invest-

ment scheme when k¼0:5.

In Figs. 3 and 4, we can find that the possibilistic mean

and the possibilistic variance of portfolio fuzzy return stay

at a relatively lower status. That is because COVID-19

pandemic has brought about huge risks to the financial

market. According to entropy and the industry entropy,

both values also stay at relatively lower statues. Even with

k increasing, the value becomes lower and lower. That

means investors invest in some specific securities and

industries. In Fig. 3, we can find the industry entropy

reaches 0 whatever k is. At that time, investors invest in a

specific industry.

In Fig. 5, the x-axis represents k value. The y-axis rep-

resents the risk value. We denote systematic risk as SR and

non-systematic risk as NSR. From Fig. 5, we can find that

the SR lines present a downward trend and the NSR lines

present an upward trend with k value increasing, because

the k value shows the investors’ emphasis on systematic

risk. Besides, the systematic risk value first decreases sig-

nificantly and then decreases slowly with k value increas-

ing. However, the rising trend of non-systematic risk is

relatively even. This means that proper attention to sys-

tematic risk can significantly reduce the systematic risk,

and increase the non-systematic risk slightly, which makes

investors get a satisfactory portfolio.

Portfolio performance index
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e 
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e

Fig. 4 The portfolio

performance for optimistic

investors when T ¼ 3
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Fig. 5 Comparison about systematic risk and non-systematic risk for

optimistic investors
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Table 8 Portfolio performance

for pessimistic investors in

models (32)–(34)

k T Possibilistic mean Possibistic variance Total risk Entropy Industry entropy

0.00 T = 1 0.45 0.45 3.93 2.09 1.10

T = 2 0.15 0.70 2.78 0.72 0.31

T = 3 0.12 0.53 3.33 1.95 0.20

0.25 T = 1 0.65 0.59 3.23 1.56 0.98

T = 2 0.13 0.70 2.80 0.72 0.11

T = 3 0.13 0.68 5.08 1.25 0.32

0.50 T = 1 0.63 0.58 2.84 1.35 0.11

T = 2 0.18 0.73 2.39 0.73 0.10

T = 3 0.28 0.86 5.39 0.90 0.20

0.75 T = 1 0.63 0.58 2.42 1.24 0.20

T = 2 0.20 0.73 1.30 0.60 0.10

T = 3 0.35 1.01 5.42 0.55 0.00

1.00 T = 1 0.65 0.60 2.38 1.40 0.63

T = 2 0.22 0.73 0.80 0.75 0.00

T = 3 0.38 1.10 5.28 0.25 0.06
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Portfolio performance index

Fig. 6 The portfolio

performance for pessimistic

investors when T ¼ 1

Table 7 Portfolio solution for

pessimistic investors in models

(32)–(34)

k T S1 S2 S3 S4 S5 S6 S7 S8 S9

0.00 T = 1 0.16 0.03 0.17 0.13 0.09 0.05 0.14 0.12 0.10

T = 2 0.11 0.13 0.11 0.04 0.27 0.06 0.07 0.13 0.06

T = 3 0.03 0.04 0.30 0.05 0.22 0.15 0.04 0.07 0.10

0.25 T = 1 0.01 0.04 0.01 0.08 0.01 0.01 0.41 0..01 0.43

T = 2 0.11 0.15 0.11 0.06 0.30 0.03 0.08 0.10 0.06

T = 3 0.03 0.01 0.00 0.53 0.00 0.38 0.04 0.00 0.00

0.50 T = 1 0.01 0.04 0.01 0.08 0.01 0.01 0.41 0.00 0.43

T = 2 0.12 0.17 0.08 0.10 0.30 0.02 0.08 0.08 0.06

T = 3 0.01 0.00 0.00 0.81 0.00 0.17 0.01 0.00 0.00

0.75 T = 1 0.01 0.03 0.01 0.05 0.01 0.01 0.39 0.00 0.50

T = 2 0.12 0.17 0.06 0.16 0.29 0.01 0.08 0.06 0.06

T = 3 0.00 0.00 0.00 0.93 0.00 0.04 0.00 0.00 0.00

1.00 T = 1 0.01 0.04 0.01 0.09 0.01 0.01 0.29 0.00 0.54

T = 2 0.12 0.18 0.04 0.23 0.26 0.01 0.07 0.04 0.06

T = 3 0.00 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.00
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5.3.2 The results for pessimistic investors

According to the above section, we can also show the

investment schemes and the investment performance for

pessimistic investors under different emphasis on system-

atic risk in Table 7 and Table 8.

In Table 7 and Table 8, conclusions are similar when

investors are optimistic. The investment scheme is shown

in different emphasis on systematic risk. Firstly, T = 1, 2, 3

are three periods which represent the explosive process of

COVID-19. T = 1 means the COVID-19 has not broken

out. T = 2 means the COVID-19 was breaking out. And

T = 3 means that the COVID-19 was stabilized. Then we

can analyze the reasons for choosing such an investment

scheme from the perspective of empirical analysis. If we

don’t consider systematic risk, we will adopt diverse

investment scheme before the COVID-19 broke out. With

the COVID-19 broke out and then stabilizing, investors

O
bj

ec
tiv

e 
va

lu
e
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Fig. 8 The portfolio

performance for pessimistic

investors when T ¼ 3
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Fig. 7 The portfolio

performance for pessimistic

investors when T ¼ 2
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Fig. 9 Comparison about systematic risk and non-systematic risk for

pessimistic investors
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prefer to invest in industries like hygiene and pharmaceu-

tical manufacturing. That means industries like fishery face

operational difficulties which are caused by the COVID-19

as an external factor. With the k value increasing, the

aforesaid phenomenon becomes more obvious. The

investment scheme even concentrates in the specific

industries whose beta coefficients are relatively lower in

that period.

In order to show the results intuitively and compare the

results conveniently, we show the results in Figs. 6, 7, 8, 9.

From Fig. 6, it is obvious that the possibilistic mean and

the possibilistic variance have no significant change with k
increasing. But with k increasing, the total risk decreases

significantly. That means the more attention to systematic

risk, the less total risk the investors bear. According to

entropy and industry entropy, pessimistic investors may

pay more attention to portfolio diversification. But with

more attention to systematic risk, pessimistic investors

prefer to reduce diversity of securities investment but not

focus on only one industry.

From Fig. 7, we can find that the possibilistic mean is

lower and the possibilistic variance is higher compared

with the period T ¼ 1. That means the COVID-19 brought

serious influence on the securities market. Additionally, the

total risk decreases with k value increasing similarly. This

once again explains that attaching importance to systematic

risk can reduce the total investment risk. According to

entropy and industry, pessimistic investors allocate their

money to various securities in different industries. That is

because the entropy value is relatively higher, but the

industry entropy is relatively lower.

From Fig. 8, it is easy to obtain that both the possi-

bilistic mean and the possibilistic variance increase with k
value increasing. That means pessimistic investors prefer

more to their return status when they pay more attention to

systematic risk. For total risk, a trend where the total risk

increases and then decreases is presented. That means

proper attention to systematic risk will increase the total

risk. According to entropy and industry entropy, pes-

simistic investors will reduce their investment diversifica-

tion with k value increasing. That may be because they

want to invest in some lower risk securities.

In Fig. 9, there exist the similar phenomena compared

with Fig. 5. We denote systematic risk as SR and non-

systematic risk as NSR. From Fig. 9, we can find that the

SR lines present a downward trend and the NSR lines

present an upward trend with k value increasing, because

the k value shows the investors’ emphasis on systematic

risk. Besides, the systematic risk value first decreases sig-

nificantly and then decreases slowly with k value increas-

ing. However, the rising trend of non-systematic risk is

relatively even. This means that proper attention to sys-

tematic risk can significantly reduce the system risk and

increase the non-systematic risk slightly, which makes

investors get a satisfactory portfolio.

5.3.3 Some comprehensive analysis to three objective
values

According to the aforesaid phenomenon, we can draw

some conclusions from the fuzzy return status, total risk

and entropy.

(a) For fuzzy return status. As k value increases, the

possibilistic mean increases significant with the

possibilistic variance increasing slightly. But when

k increases to a relatively higher value, the possi-

bilistic mean cannot be improve and the possibilis-

tic variance worsens on the contrary. That means

proper attention to system risk can improve the risk

status.

(b) For total risk. It is mentioned that the total risk

presents a trend of first increasing and then decreas-

ing with k value increasing if we don’t consider any

other objectives. But from Table 6, the similar

regular is presented for the total risk. That means

whatever objectives we consider, once we pay more

or pay less attention to systematic risk, the portfolio

risk will be underestimated.

(c) For investment diversification degree. Before the

COVID-19, the value of entropy and industry

entropy are relatively higher, which means that

investors abide by the principle of diversification

investment. Since the outbreak of the pandemic, the

entropy decreases and the industry entropy decreases

to 0. That means investors transfer their capital to a

specific industry which faces the lowest risk brought

about by the COVID-19. When the COVID-19

situation becomes stabilized, investors start to diver-

sify their capital to different industries again. But in

general, the entropy will decrease with k value

increasing.

In a word, in the above discussion, it is important to pay

proper attention to systematic risk. It will improve our

fuzzy return status, effectively evaluate the total risk and

have no conflict with diversification investment. Paying too

little or too much attention to systematic risk both will lead

to a portfolio whose risk and return mismatch. And the

latter even makes investors invest only one industry. Once

the industry is hit, perhaps investors will bear a huge loss if

they don’t withdraw investment.
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6 Conclusion

In this paper, a hybrid multi-objective portfolio model is

constructed, which considers fuzzy return status, system-

atic risk, non-systematic risk and entropy. To solve our

proposed model, novel fuzzy dominant goal programming

is put forward firstly. It can be used to search for a domi-

nant fuzzy return status according to investors’ attitude and

convert the model to traditional multi-objective model

which can be solved by classical goal programming.

Finally, properly emphasis on systematic risk can optimize

the investment scheme by a numerical example.

In essence, portfolio selection is a multi-objective

decision-making problem. In this paper, the goal pro-

gramming based on Fuzzy dominance is a method to deal

with uncertainty in multi-objective problems. However, in

real life, there are many multi-objective decision-making

problems. For example, Su and Xu (2019) applied the

fuzzy comprehensive evaluation method to build an eval-

uation model and calculated the evaluation weight of each

level index. By the calculation of membership degree

matrix, the overall score of the high-speed rail express

branch is determined. Chen et al. (2021) proposed an

integrated subjective–objective approach to calculate cri-

terion weights and to implement an ELECTRE III-based

method that incorporates HFLTS possibility distributions,

which allows us to treat the indetermination, imprecision

and uncertainty embedded in appraisals of alternative-cri-

terion decisions when evaluating bids. Mirzaee et al.

(2018) generalized the problem of supplier selection and

order allocation with multi-period, multi-product, multi-

supplier, multi-objective cases as well as quantity discount

subject to budget and capacity limitations for both buyers

and suppliers. They solved the model by a preemptive

fuzzy goal programming approach. The fuzzy membership

function tactic based on goal programming to obtain the

desired compromise solution of a multi-objective trans-

portation problem (MOTP) in uncertain environment is

proposed by Uddin et al. (2021) where the DM can choose

a confidence level for different parameters. We believe that

a satisfactory objective status for the decision making

involving uncertain can basically be found by using the

method of fuzzy goal programming.

In the further study about portfolio and goal program-

ming, we will continue do the following. Firstly, we can

consider investing in a frictional financial market. Sec-

ondly, in dealing with returns, other uncertain theory can

be adopted to measure returns. Finally, we can continue to

study goal programming and develop it from the angle of

uncertain programming.
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