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Background. Klebsiella pneumoniae is a bacterial pathogen with increasing rates of resistance to carbapenem antibiotics, but 
the population structure and genetic drivers of carbapenem-resistant K pneumoniae (CRKP) remain underexplored in developing 
countries. Carbapenem-resistant K pneumoniae were recently introduced into Peru but have grown rapidly in prevalence, enabling 
study of this pathogen as it expands into an unaffected environment. 

Methods. In this study, using whole genome sequencing, we show that 3 distinct lineages encompass almost all CRKP identified 
in the hospital where it was first reported in Peru.

Results. The most prevalent lineage, ST348, has not been described outside of Europe, raising concern for global dissemination. 
We identified metallo- β -lactamase NDM-1 as the primary carbapenem resistance effector, which was harbored on a novel vector 
resulting from recombination between 2 different plasmids, pKP1-NDM-1 and pMS7884A. 

Conclusions. This study is the first of its kind performed in Peru, and it furthers our understanding of the landscape of CRKP 
infections in Latin America.
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Klebsiella pneumoniae is considered one of the most important 
opportunistic pathogens in both community and nosocomial 
infections [1, 2]. Treatment of this organism has become com-
plicated by an increasing rate of resistance to most antibiotics 
that are commonly used in clinical practice, and it is exacer-
bated by its ability to persist within hospital environments and 
propagate nosocomial transmission of highly resistant strains 
[3, 4]. Although carbapenem antibiotics were long considered 
a therapy of last resort against K pneumoniae, an isolate produ-
cing a metallo- β -lactamase capable of hydrolyzing those drugs 
was reported in Japan in 1994s [5]. Since that discovery, sev-
eral other classes of carbapenemases have been found both in 
K pneumoniae and in other species of Enterobacteriaceae [6]. 
Of particular note is the broad range New Delhi metallo-β-
lactamase (NDM), which was first identified in a K pneumoniae 
isolate from a patient hospitalized in India [7] and subsequently 

determined to represent a novel fusion of an aminoglycoside 
phosphotransferase and metallo- β -lactamase, creating a chi-
meric enzyme capable of being distributed across a wide range 
of species [8]. Sixteen variants of NDM alone have now been 
identified in a variety of Enterobacteriaceae species from across 
the world, with dissemination of the gene frequently mediated 
through horizontal plasmid transfer [9].

The global expansion and dissemination of NDM and other 
K pneumoniae carbapenemases has been identified in clinical, 
urban, and agricultural environments, but their epidemiology 
and virulence varies by geographical location, as does whether 
the genetic determinants involved are endemic or largely im-
ported [10–12]. As such, understanding the molecular mech-
anisms and molecular epidemiology of carbapenem-resistant 
K pneumoniae (CRKP) in a specific environment necessitates 
focused investigation of strains collected from the region of in-
terest [10]. However, CRKP are generally less well described 
in resource-poor nations than in industrialized countries and 
those having well developed antimicrobial resistance (AMR) 
surveillance networks [10, 11]. There consequently remain 
significant uncertainties about descriptive features of CRKP 
from developing countries, and especially such nations where 
carbapenemases are newly emerging.

In Latin America, CRKP were first identified in Brazil in 
2003 [13] and have rapidly increased in prevalence throughout 
the region. This trend is especially notable in Peru, which first 
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confirmed CRKP as late as 2013 [14] with the national resist-
ance rate reaching ~8% of all K pneumoniae isolates by 2016 
[15]. In 2017, the NDM-1 gene was reported from multiple 
Peruvian K pneumoniae isolates in a public hospital in Lima 
[16], although subsequent retrospective surveys of banked 
carbapenem-resistant organisms date NDM-1’s introduction to 
Peru in 2013, coincident with the entry of CRKP. Yet, despite 
their rapidly rising prevalence in the country, thorough molec-
ular descriptions of the strains carrying carbapenem resistance 
and their relationships to other K pneumoniae in Latin America 
and globally have not yet been provided. Indeed, recent reviews 
detailing the continent-wide prevalence of carbapenemase 
genes identified only 1 study where whole genome sequencing 
was used to interrogate the resistant isolates [15, 17].

To address this knowledge gap, in this study we performed 
whole genome sequencing of a retrospective collection of K 
pneumoniae isolates originating from the Peruvian hospital 
where NDM-1 was first reported. We used these data to define 
the phylogenomic epidemiology and molecular mechanisms of 
carbapenem resistance in that population. In addition to ad-
dressing a currently unexplored area of regional pathogen re-
search, the relatively recent introduction of CRKP and NDM-1 
to Peru provides opportunities to examine the expansion of the 
pathogen into a previously naive environment.

MATERIALS AND METHODS

Samples and Phenotypic Testing

Isolate collection was conducted over 3 consecutive months 
from October to December 2016 in Lima, Peru at Hospital 
Nacional Dos de Mayo, a 600-bed public teaching hospital lo-
cated in the downtown area. All K pneumoniae isolates that 
were collected during routine clinical care from both inpatients 
and the adjoining outpatient clinic were included. Antibiotic 
resistance testing was performed in the hospital microbiology 
laboratory as part of routine clinical care, with the majority of 
samples tested using BD Phoenix machine (27 samples) and 
the remainder with disk diffusion assays during a period when 
the instrument was not available. Clinical data on antibiotic 
resistance patterns and epidemiological information were ret-
rospectively collected through a review of the medical records. 
Resistance phenotype data were not available for 10 isolates after 
record review. Isolates originated from blood, urine, pulmonary 
aspirates, sputum, and wounds and were each collected from 
different patients, for an initial collection of 70 unique isolates.

Sequencing and Assembly

After clinical testing was complete, deoxyribonucleic acid 
(DNA) was extracted from isolates using the Geneaid Presto 
MinigDNA Bacteria Kit and stored at −80 until sequencing 
was performed. Whole genome sequencing libraries were pre-
pared as described elsewhere [18]. Sequencing was performed 

on the Illumina NextSeq platform using 300 cycle chemistries 
to a minimum average read depth of at least 20× per isolate. 
After sequencing, de novo draft genomes were assembled using 
AbySS v2.0.2 [19]. To ensure that the conventional microbio-
logical species identification was concordant with the genomic 
classification, pairwise ANIb analysis was performed against a 
representative collection of publicly available Klebsiella genomes 
using the Pyani package (https://github.com/widdowquinn/
pyani). Of the 70 total genomes analyzed, 10 matched Klebsiella 
species that were not K pneumoniae and 2 others evidenced 
polymicrobial contamination, resulting in a final set of 58 K 
pneumoniae genomes included in further analysis.

Molecular Epidemiology and Resistance Gene Identification

Multilocus sequence typing (MLST) groups were assigned 
using PubMLST toolkit [20]. Whole genome molecular epide-
miology analysis was performed as described elsewhere [21], 
using a combination of all-by-all pairwise distance matrices and 
approximately maximum-likelihood phylogenetic trees con-
structed using FastTree 2.1 [22]. Variant calling was performed 
relative to K pneumoniae strain 4/1–2 (GenBank accession no. 
CP023839.1). Resistance genes in each isolate were identified 
using AMRGeneFinderPlus [23].

Plasmid Reconstruction

Contigs from de novo assemblies that bore NDM-1 were manu-
ally closed by identification of split read pairs and single sequence 
reads that spanned contig endpoints, indicating their context as 
circular plasmids. Basic Local Alignment Search Tool (BLAST) 
[24] analysis of reconstructed plasmid sequences against the 
nonredundant National Center for Biotechnology Information 
(NCBI) sequence database was used to classify discrete genetic 
elements comprising the larger plasmids. Putative breakpoints 
between donor plasmids were initially confirmed by manual in-
spection of sequence reads that spanned the junctions between 
donor fragments. Junctions were subsequently confirmed in 
representative plasmid isoform 1 using polymerase chain reac-
tion (PCR), which spanned the inferred breakpoints. The PCR 
primer pairs for this purpose were designed on either side of the 
junctions between pMS7884A and pKP1-NDM1 at position 0 
(forward primer 5’-GTCTGCGCCAATATGTTCAA-3’, reverse 
primer 5’-GACGATCAAACCGTTGGAAG-3’) and position 
3781 (forward primer 5’-TTTTCCACGTCAATCAACCA-3’, 
reverse primer 5’-GGCAATTCTATGCGTTGCTA-3’).

To confirm that NDM-1-containing elements were 
truly circular plasmids as well as to rule out cryptic 
gene duplication events, we designed outward-facing 
primers within the NDM-1 gene (forward primer 
5’-ACGGTTTGGCGATCTGGTTTT-3’, reverse primer 
5’-TGGTCGCCAGTTTCCATTTG-3’), which would en-
able amplification of a plasmid but would preclude ampli-
fication from material integrated into a genomic context. 
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Amplification of extracted DNA from strains carrying isoform 
1 yielded the expected ~7-kb product, consistent with a cir-
cular context and a plasmid of the expected size without 
measurable gene duplication events. Open reading frames 
within reconstructed plasmid sequences were identified 
using SnapGene, and their functional roles were evaluated 
by BLAST searches.

Data Availability

Sequence data generated for this study are available from the 
NCBI Sequence Read Archive ([SRA] http://www.ncbi.nlm.
nih.gov/sra) under study accession number PRJNA592157. 
Assembled plasmid sequences are available from NCBI 
GenBank (http://www.ncbi.nlm.nih.gov/genbank) under ac-
cession numbers MN816229–MN816233.

RESULTS

Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae 
in Peru

In 2015, the proportion of K pneumoniae that were CRKP in the 
study hospital was 11% (internal tracking data), whereas sample 
collection for this study revealed that 19 of 47 K pneumoniae 
isolates (42.5%) with available carbapenem susceptibility data 
had a resistant phenotype, representing an approximately 4-fold 
increase in frequency within 1 year. Fifty-five isolates were dis-
tributed among 28 distinct MLSTs (Figure 1). Two other isolates 
displayed unique and previously unreported MLST, and the re-
maining isolate did not have sufficient data for a MLST to be 
confidently assigned. Five MLST groups contained 3 or more 
isolates each, but, notably, 3 groups encompassed 90% of all 
phenotypically confirmed carbapenem-resistant isolates: ST348 
(10 isolates), ST147 (5 isolates), and ST11 (4 isolates).
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Figure 1. Phylogenomic tree of Klebsiella pneumoniae isolates. Approximate maximum likelihood phylogeny reconstruction of the population structure of K pneumoniae 
from whole genome data. Variants were called relative to K pneumoniae strain 4/1–2 (GenBank accession no. CP023839.1). Scale bar indicates the number of changes per 
site. Multilocus sequence typing (MLST) groups with 3 or more representative isolates are indicated by the outermost blue bar with the associated MLST classification indi-
cated. The innermost colored bar represents the plasmid isoforms present in the underlying isolate. Terminal node colors indicate the carbapenem resistance phenotypes of 
individual isolates. The broken line leading to isolate A2 has been truncated to fit the figure dimensions, with a true distance of 0.81.

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/genbank


4 • ofid • Roach et al

To assess the possibility of patient-to-patient transmis-
sion, we next quantitated the number of single-nucleotide 
polymorphisms (SNPs) that distinguished each possible pair-
wise combination of isolates and searched for highly similar 
clones that were obtained from different patients. The average 
number of SNPs differentiating any 2 isolates from the study 
population was 29044.2 (standard deviation [SD]  =  6423.4), 
indicating substantial genetic diversity across the population 
[21]. Within each carbapenem-resistant MLST group, the av-
erage number of SNPs distinguishing isolate pairs was consider-
ably smaller, with ST348 having an average of 182.5 (SD = 59.7) 
pairwise differences, ST147 with 530.7 variants (SD  =  240.3), 
and ST11 with 536.3 (175.6). This degree of genetic relatedness 
provides evidence for a limited number of genetically related, 
endemic CRKP strains. However, the isolate pair having the 
smallest number of pairwise distances was separated by 110 
variants, indicating that no groups in this analysis can be confi-
dently shown to result from direct transmission [10].

Molecular Mechanisms of Antimicrobial Resistance

Although not all samples were tested against all drug classes, 
clinical antimicrobial susceptibility testing data were available 
for 48 isolates (Figure 2). The population showed high rates of 
resistance across 5 of the 6 drug classes tested, with the highest 
prevalence of resistance to cotrimoxazole (86.7%, 39 of 45 iso-
lates) and the lowest to amikacin (4.1%, 2 of 48 isolates). The 
multidrug resistance phenotypes of our sample collection were 
also supported by AMR genotype analysis, which identified 
an average of 15 (SD  =  7.5) different AMR genes per isolate 
(Figure 3). Thirty-one AMR genes were recurrently identified 
in at least 10% of the total population, with the most frequently 
occurring AMR being fosA (100%) and oqxA (87.9%), which 
are considered intrinsic to K pneumoniae [25, 26], followed by 
blaOXA-1 (69.0%), catB3 (67.2%), and blaCTX-M-15 (67.2%).

The NDM-1 gene was found in 17 of 20 (85%) isolates having 
a carbapenem resistance phenotype. In 2 other carbapenem-
resistant isolates, F3 and A7, blaKPC-2 was identified, and 1 
isolate, A3, carried both NDM-1 and blaKPC-2. In all 3 of the 
isolates carrying blaKPC-2, the gene was located on plasmid 
pKPC_CAV1042-89 (GenBank accession no. NZ_CP018669), 
which is a well established vector of blaKPC-2 in K pneumoniae 
[27]. Although various other extended-spectrum β-lactamase 
(ESBL) genes were concurrently found in the carbapenem-
resistant isolates, NDM-1 and blaKPC-2 are the only factors 
having a well defined capacity to confer carbapenem resistance 
[6]. A single isolate showed discordance between genotype and 
reported phenotype: isolate A2 was carbapenem resistant but 
did not carry identifiable sequence from NDM-1 or blaKPC-2. 
However, this isolate was phylogenomically distant from the 
others included in the study (Figure  1) [28]. Pairwise ANIb 
analysis comparing the genome of isolate A2 to the other spe-
cies comprising the Klebsiella species complex and to the closet 

matching genomes available from NCBI demonstrated that by 
homology A2 qualifies as a novel genomospecies that is distinct 
from, but most closely related to, K pneumoniae [18, 25, 28–31]. 
It could thereby plausibly possess a distinct carbapenem resist-
ance mechanism from the other isolates, or, alternatively, the 
discordance could represent a false phenotype call.

Isolates carrying the NDM-1 gene also had a greater number 
of additional resistance factors than strains lacking NDM-1, 
possessing an average of 22.2 (SD = 2.3) AMR genes compared 
with 12.0 (SD = 6.8) resistance genes for isolates lacking that 
factor (P = 1.8 × 10–11, Student’s t test) (Figure 3).

Novel Plasmids Carry NDM-1

In all cases that NDM-1 was detected, sequencing indicated that 
it was incorporated into a novel plasmid derived from 2 dis-
tinct, previously described resistance vectors. The first donor 
plasmid, pMS7884A (GenBank accession no. NZ_CP022533), 
is a widely dispersed, 330-kb IncHI2 class vector supported by 
diverse Enterobacteriaceae species and known to harbor mul-
tiple AMR genes [32]. The second is the 139-kb IncC class 
plasmid designated pKP1-NDM-1 (GenBank accession no. 
KF992018), which bears the NDM-1 gene and has previously 
been identified in carbapenem-resistant Enterobacteriaceae 
from Latin America [33, 34]. Across the strain collection there 
were 5 distinguishable variants of this fusion resistance vector 
(reported here as isoforms 1–5, in order of increasing size). 
These isoforms associated closely with particular K pneumoniae 
phylogroups, suggesting inheritance by descent (Figure 1).

In all isoforms, the pMS7884A donor plasmid imparted a 
~3.2-kb segment containing a Tn3 family transposase gene, 
whereas the pKP1-NDM-1 donor plasmid provided ~3.8  kb 
of DNA including the NDM-1 resistance element (Figure  4). 
Isoform 1 was composed only of these 2 fragments, whereas 
remaining isoforms were characterized by the insertion of a 
second, ISKpn26 family transposase derived from plasmid 
pKPN-edaa [35] (GenBank accession no.  026398)  into the 
IncHI2 backbone. Isoform 5 incorporated a full-length coding 
sequence of that transposase, whereas isoforms 2–4 had lost 
varying portions of the element at slightly differing breakpoints, 
likely reflecting independent transposase excision events and 
resulting in plasmids of varying size.

Isoform 1 was found in 9 ST348 isolates and in 1 isolate from 
the distantly related ST405 phylogroup, consistent with a hori-
zontal transmission event (Figure 1). Isoforms 2–4 were present 
in a single isolate each, but all belonged to phylogroup ST11. 
Isoform 5 was carried by 5 isolates from phylogroup ST147, 3 of 
which could be fully closed using available sequence data.

DISCUSSION

The NDM-1 gene was first identified in Latin American 
Enterobacteriaceae from Guatemala in 2011 [36], and it has 
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subsequently been recovered from several other countries [31, 
37]. However, its presence in Peru was reported more recently, 
when in 2016 CRKP isolates from a single hospital, Hospital 

Nacional Dos de Mayo in Lima, were noted to carry the gene 
[16]. In this study, we performed retrospective genomic anal-
ysis of isolates originating from this Peruvian index hospital to 
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investigate several outstanding questions about the origins and 
molecular content of those organisms.

The CRKP isolates causing infections within the hospital 
were predominantly from 3 MLST groups. Despite the limited 
number of lineages recovered, we found no evidence for di-
rect, patient-to-patient transmission based on measured pair-
wise genomic differences [10]. Our results are more consistent 
with the existence of a limited number of genetically related 
endemic strains, which constitute a reservoir from which pa-
tients become infected, either within the hospital or the larger 
community. Two of these lineages, ST147 and ST11, are well 
recognized and globally pervasive CRKP strains [38–41]. It was 
surprising that the third and most prevalent MLST, ST348 (17% 
of isolates), has previously been reported only in Portugal and 
Italy as a cause of carbapenem-resistant infections in both hu-
mans and in horses [12, 42, 43], but it has otherwise not been 
described outside these 2 countries. The recovery of a large 
proportion of MLST ST348 isolates from Peru is concerning 
as a potential indicator for the global dissemination of ST348 
as a strain of worldwide epidemiologic importance given its 
carbapenem-resistant phenotype. This finding highlights the 
need for better surveillance within Latin America and presents 
an opportunity to contain the spread of this lineage by targeted 
intervention.

The large majority of carbapenem-resistant isolates in the 
study population carried NDM-1, and sequencing identified a 
novel group of related plasmids with several distinct isoforms 
that served as the vehicle for that resistance gene. Depending 
on the isoform, these plasmids have arisen from a recombina-
tion between 2 or 3 distinct Enterobacteriaceae donor vectors, 
likely mediated by encoded transposase activity. A recent study 
utilizing whole genome sequencing to analyze the dynamics 
of carbapenem resistance transmission in clinical environ-
ments also found plasmid backbone evolution mediated by 
transposases [35], supporting this hypothesis. More importantly, 
the NDM-1 bearing pKP1-NDM-1 plasmid was recently detected 
within Latin America [34], independently confirming this donor 
plasmid’s presence within the geographical region and providing 
a plausible background from which a recombinant plasmid could 
arise. Given the contemporary introduction of the requisite pa-
rental plasmid to the region, our study may capture the molecular 
signature of early, local dissemination of these new vectors.

The novel plasmid family is considerably smaller than any 
of the donor plasmids, potentially increasing their transmissi-
bility [44]. Although they do not apparently possess the rep-
lication machinery necessary for conjugative plasmid transfer, 
nonconjugative plasmids bearing Tn3 transposases have been 
shown to form cointegrate complexes in the presence of con-
jugative plasmids, enabling horizontal transfer at low levels 
[45]. Indeed, we found that one plasmid isoform is present in 
2 distantly related K pneumoniae strains from our population, 

consistent with a horizontal transmission event. Further re-
gional surveys for detecting NDM-1 and examining its genomic 
context will be necessary to assess the wider prevalence of these 
plasmids.

Owing to its retrospective nature, our study is limited in sev-
eral respects. Live, cryopreserved bacterial specimens were not 
available at the time of whole genome analysis, making it chal-
lenging to verify genomic findings by functional or orthologous 
molecular methods. Relatedly, antibiotic susceptibility data 
were limited to that recorded after initial clinical testing by the 
hospital’s clinical microbiology laboratory. Phenotypic data were 
derived from 2 different methodologies for resistance typing, 
and susceptibility data were unavailable for a small fraction of 
isolates that were sequenced. However, despite a lack of directly 
relatable quantitative information between the 2 susceptibility 
testing techniques used, there was near-perfect correlation of 
genotype and phenotype in our study. Finally, although our ef-
fort represents the largest whole genome study of CRKP to date 
in Peru, its scope was still relatively proscribed. The small ab-
solute size of our population, the relatively short 3-month col-
lection period, and the geographic origin of our samples from a 
single institution limit the generalizability of the study.

CONCLUSIONS

To counter the rising global threat of CRKP, focused investiga-
tions on the molecular epidemiology of these bacteria must be 
undertaken in the developing world, where the impact of dis-
ease is often highest [46]. In summary, our data provide new 
insights that will be of value to efforts to mitigate the spread 
of CRKP in Latin America. We find that there are a limited 
number of closely related K pneumoniae strains causing the 
greatest burden of carbapenem resistance, and we point to 
ST348 as an emerging lineage in that region. We also found that 
the NDM-1 carbapenemase gene within these isolates is being 
disseminated on a novel vector. This study represents an impor-
tant step toward understanding the landscape of CRKP in Peru, 
and future, longitudinal genomic surveys of larger numbers of 
resistant K pneumoniae obtained from other hospitals and other 
Latin American nations will help to illuminate the transmission 
of resistance genes and dissemination of these organisms across 
South America.
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