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Abstract

Even though recent studies have clarified the influence and hierarchy of envi-

ronmental filters on bacterial community structure, those constraining bacterial

populations variations remain unclear. In consequence, our ability to under-

stand to ecological attributes of soil bacteria and to predict microbial commu-

nity response to environmental stress is therefore limited. Here, we

characterized the bacterial community composition and the various bacterial

taxonomic groups constituting the community across an agricultural landscape

of 12 km2, by using a 215 9 215 m systematic grid representing 278 sites to

precisely decipher their spatial distribution and drivers at this scale. The bacte-

rial and Archaeal community composition was characterized by applying 16S

rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics

tools were used to reveal the heterogeneous distribution of bacterial composi-

tion at this scale. Soil physical parameters and land management explained a

significant amount of variation, suggesting that environmental selection is the

major process shaping bacterial composition. All taxa systematically displayed

also a heterogeneous and particular distribution patterns. Different relative

influences of soil characteristics, land use and space were observed, depending

on the taxa, implying that selection and spatial processes might be differentially

but not exclusively involved for each bacterial phylum. Soil pH was a major

factor determining the distribution of most of the bacterial taxa and especially

the most important factor explaining the spatial patterns of a-Proteobacteria
and Planctomycetes. Soil texture, organic carbon content and quality were more

specific to a few number of taxa (e.g., b-Proteobacteria and Chlorobi). Land

management also influenced the distribution of bacterial taxa across the land-

scape and revealed different type of response to cropping intensity (positive,

negative, neutral or hump-backed relationships) according to phyla. Altogether,

this study provided valuable clues about the ecological behavior of soil bacterial

and archaeal taxa at an agricultural landscape scale and could be useful for

developing sustainable strategies of land management.

Introduction

Spatial patterns, based on describing the distribution of

living organisms in relation to space and environmental

heterogeneity, provide a key to understanding the structure

and function of soil biodiversity (Martiny et al. 2006). In

contrast to macro-organisms, the description of spatial

patterns of soil microorganisms is recent, but has gained

attention due to their key role in ecosystem services (Maron

et al. 2011). Soil microbial communities are known to

exhibit heterogeneous and structured spatial patterns at

various scales ranging from the microscale (soil aggregates,
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lm) to global scale (continent, >100,000 km2) (Nunan

et al. 2003; Dequiedt et al. 2009; Franklin and Mills 2009;

Lauber et al. 2009; Griffiths et al. 2011). A large body of

proof has emerged from these patterns suggesting that the

abundance, diversity and assemblages of soil microbial

communities are mainly determined by soil properties,

plant-cover and land management, rather than by geo-

graphical barriers or climate. Thus, environmental selection

(aka, niche-based process) by proximal factors would be

the main process that shapes soil microbial diversity (Dre-

novsky et al. 2010; Ranjard et al. 2013). However, other

processes based on the neutral theory have recently been

shown to successfully predict nonrandom patterns of distri-

bution (Hubbell 2001), and indicate that dispersal limita-

tion could also significantly contribute in shaping patterns

of microbial communities (Bell 2010; Stegen et al. 2012).

Although the processes and drivers shaping the bacterial

community assembly as a whole have now been deciphered,

those influencing the various bacterial taxonomic groups

which constitute the community are still little known or

understood. This has resulted in a lack of knowledge con-

cerning the ecological attributes of soil indigenous bacterial

taxa, which in turn limits our understanding and ability to

predict community composition according to surrounding

environmental conditions (Fierer et al. 2007; Maron et al.

2011) as well as our ability to link microbial diversity with

soil functioning (Maron et al. 2011). Regarding applied

ecology, this absence of knowledge is hampering the devel-

opment of sustainable ecosystem management strategies

based on soil microbiological resources (Levin 1992).

Spatial ecology, based on applying meta-analysis

approaches under a wide range of environmental conditions,

is providing useful information about the ecological attri-

butes of indigenous soil bacterial taxa. Various authors have

used spatially explicit approaches to show that the relative

abundances of several bacterial taxa display contrasting pat-

terns, thereby highlighting their distinct ecological attributes

and confirming the ecological coherence of bacterial taxon-

omy (Philippot et al. 2009; King et al. 2010). Fierer et al.

(2007) used meta-analysis approaches to differentiate soil

bacterial taxa into ecologically meaningful categories based

on the r-/K-selection continuum, with r-strategists maximiz-

ing their intrinsic rate of growth when resources are abun-

dant while K-strategists are better adapted to compete and

survive when resources are limited (Pianka 1970). However,

all these studies were conducted on contrasting (a priori)

environmental gradients, and did not provide precise

insights into the role and ecology of bacterial taxa or of the

complexity of the potential ecological niches occupied by

bacteria. To be able to draw conclusions about the different

processes involved in community assembly, it is now crucial

to decipher more precisely and with greater genericity the

ecological attributes of soil microbial taxa by studying their

distribution at different scales and integrating the different

environmental parameters involved such as soil types, land

use, climate, geomorphology, and space.

In a previous study (Constancias et al. under revision), the

distribution of microbial abundance and bacterial commu-

nity diversity (richness, evenness and Shannon’s index) was

investigated across a landscape of 12 km2, offering an oppor-

tunity to decrypt the relative influence of soil properties and

land management in shaping soil bacterial communities. The

landscape, as compared to larger scales, was characterized by

a smaller variability in soil properties and also by a mosaic of

different types of land use constituted by forest and agricul-

tural plots with contrasting cropping intensity. Soils

(n = 278) were sampled within a systematic sampling grid

covering the entire landscape. Soil physicochemical properties

and land management characteristics were determined for

each sample. Bacterial diversity was characterized by massive

inventory of the 16S rRNA gene sequences amplified from

soil DNA. In addition to demonstrating the heterogeneous

and spatially structured distribution of microbial abundance

and diversity across the landscape, variance partitioning

revealed that bacterial richness is mainly driven by soil tex-

ture and pH whereas land management is a strong determi-

nant of microbial abundance and bacterial evenness.

Altogether this previous study demonstrated the relevance of

the landscape scale for deciphering microbial distribution

patterns and processes, and for evaluating the effects of land

management strategies on soil microbial resources.

In the present study we focused on the distribution of

the composition of bacterial and Archaeal communities

and of the various taxonomic groups constituting the com-

munity across the landscape. The following questions were

addressed: are all taxa heterogeneously distributed at this

spatial scale? Do they exhibit the same patterns? Which

drivers or ecological attributes characterize each bacterial

and archeal taxon at this scale? To answer these questions,

a geostatistical approach was used to map and describe the

spatial variability of community structure and taxa, and a

variance partitioning approach was applied to identify and

rank the ecological attributes for each taxon. Spatial de-

scriptors were also integrated into the analysis to better

interpret their relative contributions to taxa variation

across a landscape and to examine other neutral processes

shaping bacterial and archeal taxa distribution.

Materials and Methods

Site, sampling strategy, and data collection

The study was carried out on a monitored landscape of

13 km² located in Burgundy, France (F�enay, Lat:

47°14037″N, Long: 5°03036″E) characterized by deciduous

oak-hornbeam forests (3.86 km2) and intensive agricul-
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tural croplands (9.22 km2) mainly under winter crops

(winter wheat, oilseed rape) in rotation with late-sown

crops (spring barley). The whole area is flat or slightly

sloping, under a continental climate with a mean annual

air temperature of 10.4°C and a mean annual rainfall of

762 mm (period 1968–2011). Land management practices

were clustered into six categories (from forest to agricul-

tural plots with a gradient of cropping intensity).

The sampling design, based on a square grid with spac-

ing intervals of 215 m, covered the entire landscape and

corresponded to 248 sites. It also included 30 additional

sites positioned within the grid for exploring the variation

over distances less than 215 m. All sites were sampled in

September 2011. At each of the 278 sampling locations,

five soil cores (core diameter: 5 cm; 0–20 cm depth) were

randomly collected from a 4 m2 area in the inter-row for

agricultural sites and at least 1 m away from trees, then

bulked, and 2 mm-sieved before being lyophilized at

�80°C and finally archived at �40°C.
Samples were randomized before physicochemical and bac-

terial community characterizations to avoid any batch effect.

Analyses of physicochemical properties (pH, organic carbon,

total nitrogen, CaCO3, clay, silt and sand) were carried out by

the Laboratoire d’analyse des sols d’Arras of INRA (http://

www.lille.inra.fr/las) as described in Dequiedt et al. (2009).

Pyrosequencing of 16S rRNA gene
sequences

Soil microbial DNA was extracted using the GnsGII proce-

dure developed by Plassart et al. (2012). Crude DNA was

then purified using a MinElute PCR purification kit

(Qiagen, Courtaboeuf, France) and quantified using the

QuantiFluor staining kit (Promega, Madison, USA), prior

to further investigations.

The 16S rRNA V3-V4 gene region was targeted for

amplification, using primers F479 (50-CAGCMGCYGCNGT

AANAC-30) and R888 (50-CCGYCAATTCMTTTRAGT-30) in
a nested PCR strategy to add the 10-bp multiplex identifier

(MID) barcode as initially described by Plassart et al. (2012).

Equal amounts of each sample were pooled, and all further

steps (adapter ligation, emPCR and 454-pyrosequencing)

were carried out by Beckman Coulter Genomics (Danvers,

MA) on a 454 GS-FLX-Titanium sequencer (Roche Applied

Science, Indianapolis, Indiana).

The raw data sets are publicly available in the EBI data-

base system (in the Short Read Archive) under project

accession no. PRJEB5219.

Bioinformatics analysis

The generated sequences were subjected to bioinformatic

analysis using the GnS-PIPE developed by the GenoSol

platform (INRA, Dijon, France) and initially described by

Terrat et al. (2012). After an initial quality filtering step

(>350 bp, no base ambiguity), reads were aligned with

infernal alignments that use the secondary structure of

the 16S rRNA gene (Cole et al. 2009) and clustered at

95% sequence similarity into operational taxonomic units

(OTU). This clustering step was done using a custom

PERL program that does not consider differences in

homopolymer lengths, which can cause the main 454-py-

rosequencing errors (Balzer et al. 2011). Each sample was

then randomly rarefied at a sequencing depth of 10,800

quality sequences to allow rigorous comparison of the

data. Community structure was characterized using

weighted UniFrac distance (Lozupone and Knight 2005)

calculated with the PycoGent package (Knight et al. 2007)

on a phylogenetic tree computed using FastTree and the

most abundant sequence to represent each OTU. Quality

reads were used for taxonomy-based analysis by similarity

approaches using USEARCH (Edgar 2010) against the

corresponding Silva database (Quast et al. 2013).

Metadata analysis

Environmental variability of the studied landscape

The variability of soil physicochemical properties across

the studied area was assessed by subjecting the data to

principal component analysis (PCA). Land management

practices over the entire landscape were summarized by

performing a factor analysis for mixed data to define land

management clusters using the FactoMineR package (Lê

et al. 2008) with land use, soil tillage, crop rotation diver-

sity (number of plant types in the crop rotation), and the

pesticide treatment frequency index, as data input. These

clusters followed a gradient in cropping intensity based

on soil disturbance and in the diversity and persistence of

plant cover that is, Forest (forest, no-tillage, no catch-

crop, n = 44); Perennial plant cover (three frequently

mown) grasslands, three blackcurrant (Ribes nigrum) and

one Miscanthus (Miscanthus giganteus), n = 7); Catch

Crop (agricultural plot, minimum tillage, catch-crop,

n = 22); Minimum tillage (agricultural plot, minimum

tillage, no catch-crop, n = 57); Mechanical hoeing (agri-

cultural plot, mechanical hoeing, no catch-crop, n = 33)

and Conventional tillage (agricultural plot, conventional

tillage, no catch-crop, n = 104).

Ordination of microbial community structure

Differences in community structure between samples were

visualized by applying the weighted UniFrac metric and

Nonmetric multi-dimensional scaling (NMDS). Soil phys-

icochemical parameters and the relative abundance of the
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most dominant bacterial and archeal phyla and Proteo-

bacteria classes were incorporated into the analysis by

vector fitting against the bi-plot ordination of community

structure. Significance of the vectors was assayed by 999

permutations. Only the most significant (P < 0.001) vec-

tors harboring a correlation ≥0.20 relative to the two

NMDS axes were represented.

Interpolated mapping

A geostatistical method was used to map soil physico-

chemical properties (i.e., sample scores on the first three

principal components of the PC Analysis conducted on

physicochemical characteristics), microbial community

structure (i.e., sample scores on the two axes of the

NMDS analysis run on the weighted UniFrac distance

matrix) and the relative abundance of the most discrimi-

nant bacterial and archeal phyla and Proteobacteria clas-

ses. As these variables did not follow the strictly required

Gaussian distribution, they were first transformed using

the nonparametric rank-order (or normal scores) trans-

formation prior to considering the spatial correlations

(Juang et al. 2001). It is usual, in geostatistical analysis, to

compute an estimate of a variogram model based on the

observations which describe the spatial variation of the

property of interest. This model is then used to predict

the property at unsampled locations using kriging

(Webster and Oliver 2007). A common requirement for

variogram estimation is first to calculate the empirical

(so-called experimental) variogram by the method of

moments (Matheron 1965), and then to fit a model to

the empirical variogram by (weighted) nonlinear least-

squares. We also investigated an alternative method which

uses maximum likelihood to estimate the parameters of

the model directly from the data, on the assumption that

this displays a multivariate normal distribution. We

selected the Mat�ern model which can simultaneously

describe several spatial processes (Minasny and McBrat-

ney 2005). The validity of the fitted geostatistical model

was assessed in terms of the standardized squared predic-

tion errors method (SSPE) using the results of a leave-

one-out cross-validation. If the fitted model provides a

valid representation of the spatial variation of the soil or

microbial property, then these errors display a v2 distri-

bution which has a mean of 1 and median 0.455 (Lark

2002). The mean and median values of the SSPE were

also calculated for 1000 simulations of the fitted model to

determine the 95% confidence limits. An ordinary kriging

estimation was performed in the standardized-rank space

and the kriging estimates were then back-transformed

into the original space. The geostatistical analysis gstat

and GeoR R package for variograms analysis and kriging

were used (Ribiero and Diggle 2001).

Variance partitioning of community dissimilarity
and of the relative abundance of bacterial and
archaeal taxa

Partial regression models were conducted to estimate the

contribution of physicochemical parameters, land manage-

ment and space in determining variation in community dis-

similarity as well as the spatial distribution of bacterial and

archaeal taxa. Among the eight measured physicochemical

properties, silt was removed because of co-linearity with

sand and clay, and nitrogen content because of its correla-

tion with organic content (r = 0.92, P < 0.001). In addition

to the six retained physicochemical properties and the clus-

ters summarizing land management intensity, space was

characterized by using a Principal Coordinates of a Neigh-

bour Matrix approach (PCNM). The PCNM method was

applied to the geographic coordinates and yielded 76

PCNM, representing the multiple spatial scales that the

sampling scheme could perceive (Ramette and Tiedje

2007). Quantitative response and explanatory data were,

respectively, log-transformed and standardized to provide

an approximated Gaussian and homoscedastic residual dis-

tribution. For each taxon, physicochemical and land man-

agement variables were selected by multiple regression

analysis using a stepwise selection procedure, which maxi-

mized the adjusted R² (in order to maximize the explained

variation by the model) and minimized the Akaike Infor-

mation Criterion (AIC, in order to discard previously

retained variables that reduced the overall predictive

power). Spatial descriptors were then selected from the

model residuals, in order to strictly identify the spatial

autocorrelation that did not correspond to spatially struc-

tured environmental variables. These selection steps enabled

us to exclude those variables that did not contribute signifi-

cantly to the explained variation (P < 0.001), thereby limit-

ing overfitting and problems due to co-linear variables

(Ramette 2007). The respective effects of each explanatory

variable, or combinations thereof, were determined by (1)

partial regression for the relative abundance of taxa and (2)

distance-based redundancy analysis (db-RDA, Ramette and

Tiedje 2007; Bru et al. 2010). The statistical significance was

assessed by 999 permutations of the reduced model. All

these analyses were performed with R (http://www.r-pro-

ject.org/) using the vegan package (Oksanen et al. 2011).

Results

Landscape heterogeneity of environmental
parameters

The studied landscape was characterized by alkaline fine-tex-

tured soils with a mosaic of different types of land manage-

ment constituted by forest (18% of the area) and agricultural
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plots (82% of the area, Fig. 1A) subjected to contrasting agri-

cultural practices. Land management was clustered into six

categories to depict land management intensity (from forest

to agricultural plots with a gradient of land management

intensity – see Materials and Methods and Fig. 1A).

Most of the soils were silty (median 56.7%) or clayey

(median 34.3%) with alkaline pH (median 8.0, Table S1).

Organic carbon and total nitrogen contents were highly

correlated (r = 0.92, P < 0.001) and ranged from 1.74 to

174 and 0.835 to 14.6 g � kg�1, respectively (Table S1).

Soil properties were spatially structured in patches rang-

ing from 600 to 900 m (Table S2), which reflected both

the distribution of land management categories and the

variations in pedological patterns (Fig. 1A and B). Due to

the local chalky limestone characteristics, all soils located

along the “Sans Fond” riverbed exhibited similar specific

features (higher organic carbon, nitrogen and CaCO3

contents, coarser texture and higher pH, Fig. 1) whatever

the type of land management. On the other hand, sam-

ples under forest land management located at the West of

the studied area and along the “Grand Foss�e” riverbed

exhibited significant lower pH and higher organic carbon

and nitrogen contents and C:N ratio (P < 0.05 in all

cases, Fig. 1A, yellow patches B). Agricultural plots in the

conventional-tillage and mechanical hoeing clusters were

mainly situated between the villages of “Chevigny” and

“F�enay” whereas most plots in the minimum tillage clus-

ter (with or without catch crop) were found to the

extreme south-west and south-east. The forests plots were

mainly situated beside the two rivers (“La Sans Fond”

and “Grand Foss�e,” Fig. 1A).

Microbial composition variation and
mapping across landscape

Pyrosequencing of 16S rRNA genes yielded a total of

5 9 106 sequences (10,800 quality sequences per sample),

allowing taxonomic identification of the major bacterial

and archaeal groups constituting the community in each

soil sample. The NMDS ordination of Weighted UniFrac

distance between samples revealed significant variation in

community composition between soil samples across the

(A)

(B)

Figure 1. Maps of environmental characteristics of the F�enay landscape. (A) Maps of land management clusters including the samples location,

the two rivers and the local villages in the studied area. (B) Maps of samples scores on the three-first axes of the principal component analysis

conducted on the physicochemical data set: red green blue RGB color chart, Principal Component1: red, PC2: green, PC3: blue. This approach

summarizes the physicochemical properties of the studied area on a single map. Correlations between axes and variables are represented to the

right of the map in a triangular diagram to match the color chart. Mat�ern model semi-variograms of the related PC axis used to produce robust

kriging are provided beside the map.
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landscape (Fig. 2A). The NMDS stress of 0.09 confirmed

that bacterial community could be accurately described in

only two dimensions.

Vector fitting of the environmental parameters against

the ordination plot of NMDS revealed that bacterial com-

position discrimination on the first axis was mainly

explained by pH (R2: 0.82, P < 0.001), and silt content

(R2: 0.20, P < 0.001), whereas the main environmental

parameters involved in discrimination on the second axis

were soil organic carbon (R2: 0.61, P < 0.001), CaCO3

(R2: 0.36, P < 0.001) and also silt contents (R2: 0.20,

P < 0.001) (Fig. 2A). In addition, the bacterial communi-

ties under forests strongly differed from croplands on

both axes in accordance with the lower pH, higher

organic carbon content and higher C:N ratio (Fig. 2A).

No significant discrimination was observed in relation to

the cropping intensity associated with the different agri-

cultural land management clusters.

More precisely, the db-RDA analysis revealed that

physicochemical data, land management and space

explained 73% of the variation in community composi-

tion. This analysis confirmed that soil physicochemical

characteristics and land management practices strongly

contributed to community variation (24%, P < 0.001 and

7%, P < 0.001, respectively) and also revealed the signifi-

cant marginal effect of space in shaping community varia-

tions (3%, P < 0.001).

Mapping of NMDS1 scores revealed a heterogeneous

distribution of bacterial composition constituted by large

patches with an effective range of 741 m (Fig. 2B, Table

S2). The bacterial community compositions were similar

at the center of the studied area (i.e., all along the “Sans-

Fond” riverbed and around the “Chevigny,” “Fenay” and

“Saulon-La-Rue” local villages), and contrasted with the

communities located at the extreme West and at the East

(i.e., around the “Grand Foss�e” riverbed) of the landscape

(Fig. 2B). The NMDS2 map exhibited smaller patches

with a range of 574 m (Fig. 2C, Table S2) and strong

variations in community composition to the West and

East of the studied area (Fig. 2C). The robustness of these

interpolated maps was supported by the cross validation

statistics (Table S2).

The taxonomic affiliations at the phylum level, according

to 16S rRNA gene sequences, revealed that the soils were

generally dominated by a-Proteobacteria (mean relative

abundance 23.6%, Table S1), c-Proteobacteria (11.3%),

Actinobacteria (11.2%), d-Proteobacteria (10.8%), Bacter-

oidetes (8.4%), Acidobacteria (6.0%), and Firmicutes

(5.5%). The bacterial and archaeal taxa involved in the bac-

terial community discrimination on the NMDS analysis

were identified by vector fitting against the ordination plot.

The main taxa explaining the community composition dis-

crimination across this landscape were: on the first NMDS

dimension, a-Proteobacteria (R2 = 0.78, P < 0.001), Ver-

rucomicrobia (R2=0.49; P < 0.001), Nitrospirae

(R2 = 0.26; P < 0.001) as well as d-Proteobacteria

(A)

(B)

(C)

(D)

Figure 2. Nonmetric multidimensional scaling (NMDS) analysis derived

from the Weighted Unifrac metric. (A) Ordination plot of the bacterial

community structure. Vectors overlay were constructed based on the

physicochemical properties (light red) and the relative abundance of

discriminative phyla and Proteobacteria classes (black). Only significant

correlations (≥0.20 with P < 0.001)) are displayed. The angle and

length of the vector indicate the direction and strength of the variable.

Maps of the bacterial community structure based on the sample scores

on NMDS first (B) and second dimension (C), thus, reflecting the

community composition reduced to only two dimensions. The color

scale to the left of each map indicates the extrapolated sample scores

on the corresponding NMDS axis. (D) Semi-variograms of the

transformed sample scores of NMDS1 (grey points and line for

experimental and model variograms, respectively) and NMDS2 (black

points and line, for experimental and model variograms, respectively).
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(R2 = 0.76; P < 0.001), Chloroflexi (R2 = 0.53; P < 0.001),

Bacteroidetes (R2 = 0.42; P < 0.001), Planctomycetes

(R2 = 0.39; P < 0.001) on the second NMDS dimension.

Forest samples were distinguished by a higher relative

abundance of a-Proteobacteria, Verrucomicrobia, d-Prote-
obacteria and Planctomycetes, and a lower relative abun-

dance of Actinobacteria, Choloroflexi, Gemmatimonadetes,

Firmicutes, Bacteroidetes, and Nitrospirae (Figs. 2A and

S2).

Bacterial and archaeal phylum variation and
mapping across landscape

The relative abundance of each bacterial phylum consti-

tuting the community on the krigged maps was interpo-

lated by geostatistical approach. These maps evidenced a

heterogeneous distribution of all the studied phylum,

supported by the cross validation statistics (Table S2),

with an effective patch range between 149 and 1147 m

(Fig. 3). As smaller spatial autocorrelation ranges were

recorded for c-Proteobacteria and Acidobacteria than in

our usual sampling grid (i.e., <200 m, Table S2 vs.

215 m), no interpolated mapping was performed for these

two bacterial taxa.

Four major patterns could be distinguished for phyla

across the F�enay landscape and were ranked according to

patch size. a-Proteobacteria, Bacteroidetes and Nitrospirae

exhibited similar and “spotty” distributions, corroborated

by autocorrelation ranges around 500 m, and low v-

parameter values confirming raw spatial processes at smal-

ler distances (Table S2). The maps of Fibrobacteres, Armat-

imonadetes, Gemmatimonadetes, Crenarchaeota, and b-
proteobacteria across the landscape were patchier (Figs. 3

and S1) with a spatial autocorrelation range around 600 m

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 3. Maps of the relative abundance of most discriminative bacterial phyla and Proteobacteria classes across the F�enay landscape according

to Figure 2A. (A) a-proteobacteria; (B) Actinobacteria; (C) Chloroflexi; (D) Bacteroidetes; (E) Nitrospira; (F) Planctomycetes; (G) Verrucomicrobia

and (H) d-proteobacteria. The color scale to the left of each map indicates the extrapolated relative abundance values. Semi-variograms used to

describe and model the spatial pattern are provided beside each kriged map (experimental semi-variogram; points and models; lines).
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(Table S2). Planctomycetes, d-Proteobacteria, Chloroflexi,
Chlorobi, and Actinobacteria exhibited a spatial autocorre-

lation range around 700 m (Table S2), with high relative

abundances for Planctomycetes, d-Proteobacteria and

Chlorobi, versus a lower relative abundance for Actinobac-

teria all along the “Sans Fond” riverbed (Figs. 3B, F, H and

S1). Finally, the distributions of Firmicutes, Tha-

umarchaeota, Verrucomicrobia, and Elusimicrobia were

relatively smooth describing large patches (autocorrelation

ranges around 1000 m, Table S2). More precisely, Firmi-

cutes and Thaumarchaeota exhibited similar spatial distri-

butions, which contrasted with the distribution of

Verrucomicrobia (Figs. 3 and S1).

Variance partitioning of bacterial and
archaeal taxa distribution

A data set for soil physicochemical properties, land man-

agement and space was then used to partition the vari-

ance in taxa variation across the landscape. This approach

demonstrated that between 10% and 73% of the total

amount of variance could be explained according to taxa

(Fig. 4). The highest amount of explained variance was

observed for d-Proteobacteria, a-Proteobacteria, Chloro-

flexi, Gemmatimonadetes, and Verrucomicrobia (from

57% to 73%, Fig. 4), whereas variations in c-proteobacte-
ria and Acidobacteria were weakly explained (10% and

24%, respectively, Fig. 4).

Soil physicochemical parameters were the most impor-

tant predictors for 10 out of the 19 phyla studied, and

explained up to 47% of the total variance (Fig. 4). On

the other hand, Chloroflexi, Armatimonadetes, Gemmati-

monadetes, and Firmicutes were mainly influenced by

land management, which explained between 30% and

44% of their variation (Fig. 4). Interestingly, the varia-

tions in a few bacterial phyla, including Actinobacteria, b-
Proteobacteria, Chlorobi, and Elusimicrobia could not be

significantly explained in terms of land management

(Fig. 4). Except for Planctomycetes, residual spatial auto-

correlation was significantly involved in bacterial taxa

variations and explained significant amounts of variance

(from 2.4% to 24% Fig. 4). Moreover, only spatial

parameters were involved in explaining the variation of c-
Proteobacteria and Acidobacteria (10% and 24%, respec-

tively, Fig. 4).

The marginal effects of each parameter within the sets

of soil characteristics were ranked according to the

respective amounts of variance explained, and to their

Figure 4. Partitioning of the variation of the bacterial phyla across the F�enay landscape according to environmental and spatial parameters. NVar

is the number of explanatory variables retained after selecting the most parsimonious explanatory variables (by minimizing the Akaike Information

Criterion and maximizing the adjusted R2). Bacterial phyla and Proteobacteria classes are ranked from the most to the least abundant. The

explained variance corresponds to the adjusted R2 values of the contextual groups of parameters ( : physicochemical characteristics, : land

management, : space and : shared amount of variance between physicochemical properties and land management, using partial regressions).

The significance level of the contribution of the sets of variables is indicated as follows; ns: not significant; P < 0.05: *; P < 0.01: **; P < 0.001:

***. Missing values indicate that no variable of the relating group was retained in the model.
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standardized estimated coefficients, which indicated a

positive or negative influence on bacterial and archaeal

taxa variations. Only a small number of parameters were

involved in explaining the distribution of phyla belonging

to b-Proteobacteria, Chlorobi, and Firmicutes, (Fig. 5),

whereas a larger number of parameters were involved in

determining the variation of phyla such as a-Proteobacte-
ria, d-Proteobacteria, Verrucomicrobia, and Fibrobacteres

(Fig. 5). Soil pH contributed in explaining the variation

in 14 of the 19 studied phyla and explained the highest

amounts of variance (Fig. 5). More precisely, pH was

positively correlated with the relative abundance of d-Pro-
teobacteria, Bacteroidetes, Planctomycetes, and Tha-

umarchaeota but negatively correlated with that of a-
Proteobacteria, Verrucomicrobia, and Fibrobacteres

(Fig. 5). Clay and sand contents were involved in explain-

ing variations in nine of the 19 studied phyla, but were

only significant in explaining b-Proteobacteria variations

through their negative influence on its relative abundance

(Fig. 5). CaCO3 content negatively impacted the variation

of Actinobacteria, but positively affected that of d-Proteo-
bacteria, Chlorobi and Elusimicrobia (Fig. 5). Soil organic

carbon content and C:N ratio were involved in a small

number of phyla variations and explained small amounts

of these variations.

Land management was not included in the filter-rank-

ing due to the impossibility of determining the relative

contributions of each category. However, comparison of

the signs and values of the standardized estimated coeffi-

cients highlighted the contrasting influences of land man-

agement intensity on taxa variation. A positive

relationship was observed between cropping intensity

Figure 5. Contribution and effect of physicochemical and land management variables in the distribution of bacterial phyla. The respective

significant contribution of each variable is represented by the height of the shape and was calculated by taking into account all other variables

using partial regression models and adjusting the R2 values. The color was scaled to depict the value of the standardized partial regression

coefficients (green, positive, red negative effect). c-Proteobacteria and Acidobacteria are not represented since no significant contribution of any

physicochemical or land management variables explained their variations in the data set. Bacterial taxa are ranked according to their overall

relative abundance in the data set.
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(from forest to conventional tillage) and variations in

bacterial and archaeal taxa belonging to Bacteroidetes,

Firmicutes, Chloroflexi, Gemmatimonadetes, Tha-

umarchaeota, Crenarchaeota, and Fibrobacteres (Fig. 5).

On the contrary, a negative influence of cropping inten-

sity was observed for d-Proteobacteria, Planctomycetes,

and Verrucomicrobia (Fig. 5). An unusual response was

observed for Nitrospira in that the response curve was

hump-backed and centered on catch crop and minimum

tillage (Fig. 5).

Discussion

Although spatial patterns of microbial diversity have been

well documented from micro-scale (e.g., Constancias

et al. 2014) to continental scale (e.g., Fierer and Jackson

2006) these studies did not provide significant insights

into the processes and ecological attributes regulating bac-

terial composition and the populations constituting the

whole community. Here, we focused on an agricultural

landscape to determine the relative influence of land

management intensity and soil physicochemical parame-

ters on soil bacterial and archeal community composition

and populations.

First, our study provided original maps of bacterial and

archaeal community composition revealing significant

spatial patterns and emphasizing that microbial commu-

nities are not randomly distributed at the landscape scale

as previously observed at other scales (King et al. 2010).

Visual comparison of the patches obtained for commu-

nity composition and environmental characteristics

revealed significant matches suggesting a significant influ-

ence of both land management and soil characteristics.

This was statistically confirmed by the variance partition-

ing analysis, which also revealed that space explained a

significant part of soil microbial community variation.

This result implies that neither deterministic processes

(environmental selection) nor neutral processes (dispersal

limitation) are exclusive in explaining community compo-

sition variation (Martiny et al. 2011; Ranjard et al. 2013).

A similar observation was reported for macroorganisms

(Martiny et al. 2006), and for microorganisms at territo-

rial or continental scales (Martiny et al. 2011; Ranjard

et al. 2013) and more recently, it has been shown that

models based on the neutral theory are able to predict

the distribution patterns of microorganisms (Sloan et al.

2006; Woodcock et al. 2007).

Among the soil properties, pH was one of the most sig-

nificant drivers of bacterial composition. Fierer and Jack-

son (2006) suggested that pH imposes significant and

direct physiological stress on bacterial cells, selecting the

best-adapted ones. The primary role of pH on bacterial

community diversity and composition has been demon-

strated in numerous studies over the past decade (e.g., Fi-

erer and Jackson 2006; Rousk et al. 2010; Shen et al.

2013). In our case, even if pH exhibited weak variability

(mean of 7.7, with a median of 8.0) across the landscape,

it mainly influenced bacterial community variations. On

the other hand, this small pH variation made it possible

to show that texture, organic carbon content and C:N are

also important drivers of bacterial community structure.

Soil texture has been shown to control habitat number

and diversity in terms of hosting and protecting microbial

communities against several abiotic and biotic stresses,

including desiccation and predation from protozoa, for

example (Ranjard and Richaume 2001). Covariations

between bacterial community composition and organic

carbon content and C:N ratio confirmed the influence of

nutrient quantity and quality on microbial community

composition (Dequiedt et al. 2009). This covariation

could result from competition between bacterial popula-

tions for different types of soil organic matter according

to their copiotrophic/oligotrophic attributes (Bernard

et al. 2007; Fierer et al. 2007).

Organic content, C:N ratio and pH are strongly

impacted by land management and especially agricultural

practices (Arrouays et al. 2001). This is coherent with the

strong discrimination of bacterial communities observed

between forest and croplands, which exhibited differences

in soil characteristics. The influence of agricultural land

management, which had been separated into different

clusters based on cropping intensity and soil disturbance

by tillage, did not reveal any significant discrimination of

bacterial community composition between these clusters.

This result is not in agreement with previous experimen-

tal trials where tillage intensity was shown to be an

important driver of soil microbial communities (Acosta-

Mart�ınez et al. 2010; Lienhard et al. 2013). Therefore, soil

characteristics rather than agricultural practices have a

stronger influence on bacterial community composition

at a landscape scale and only important modifications in

land management type would impact bacterial commu-

nity composition (Lauber et al. 2008; Kuramae et al.

2012).

By characterizing the distribution of bacterial and ar-

chaeal taxonomic groups at the landscape scale, we were

able to compile, for the first time, original maps for the

19 most abundant phyla constituting the community.

These maps revealed a heterogeneous and spatially struc-

tured distribution for all taxa except the Acidobacteria

and c-Proteobacteria phyla. The absence of significant

spatial patterns for these two taxa might be partly due to

the low pH variability across the landscape as pH is

known to be an important driver for them (Lauber et al.

2008; Lauber et al. 2009; Nacke et al. 2011). It is interest-

ing to note the contrasting distribution patterns of each
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bacterial taxon across the landscape, with patches ranging

from 493 to 1147 m depending on the taxon. Different

types of distribution patterns, characterized by large,

medium or small patch size, could be distinguished at

this scale. Bacterial taxa such as Bacteroidetes, Nitrospira,

and a-Proteobacteria exhibited spatial patterns character-

ized by small patches (about 500 m), which partly

matched with the distribution of land management types

across the landscape. Fibrobacteres, Armatimonadetes,

Gemmatimonadetes, Crenarchaeota, and b-Proteobaceria
were distributed in larger patches (around 600 m), which

matched both the distribution of land management clus-

ters and physicochemical characteristics. Contrastingly,

the spatial patterns of taxa including Chlorobi, Actinobac-

teria, Planctomycetes, and d-Proteobacteria were charac-

terized by an intermediate patch size (about 700 m)

which matched with soil characteristics and geomorphol-

ogy, especially in the case of the “Sans fond” river loca-

tion. Finally, taxa belonging to Thaumarchaeota,

Verrucomicrobia, Elusimicrobia, and Firmicutes exhibited

larger patches across the landscape (about 1000 m),

which also matched with variations in soil characteristics

and geomorphology. These contrasting patterns suggest

that different drivers contrastingly shape bacterial taxa

across the landscape. It also suggests that bacterial taxa

might be differentially influenced by neutral processes

(i.e., dispersal capabilities).

Variance partitioning analysis of bacterial and archaeal

taxa variation revealed that soil physicochemical charac-

teristics and land management mainly contributed in

explaining the spatial distribution of 16 of the 19 taxa.

This suggests that the main process shaping the distribu-

tion of bacterial and archaeal taxa across the landscape is

environmental selection determined by physicochemical

properties and land-use. Repeated reports of the strong

influence of local soil environmental heterogeneity had

led to the conclusion that selection was the only process

shaping soil microbial communities (Fierer and Jackson

2006; Rousk et al. 2010). Interestingly, we systematically

recorded a significant contribution of space in explaining

the distribution of bacterial and archaeal taxa (except for

Planctomycetes), which suggests that dispersal may also

contribute to producing the observed patterns. However,

demonstrating the influence of a dispersal process in

shaping the distribution of soil microbial communities

and populations is neither easy nor frequent in microbial

ecology with few studies using appropriate sampling

designs and modeling approaches (Hanson and Fuhrman

2012). In our case, the contrasting contribution of space

depending on the taxa could result from different dis-

persal capabilities, which would include their abilities for

passive dispersal and to successfully settle in locations

characterized by contrasting environmental conditions

(Hanson and Fuhrman 2012). This differential contribu-

tion of space could also result from mass effects with

populations being maintained at particular locations by

the constant emigration of individuals from distant hot-

spots (Leibold et al. 2004). This could be especially

important for phyla with spatial patches outside the range

of soil physicochemical characteristics and land manage-

ment practices (e.g., Nitrospirae, Bacteroidetes, Firmicutes

and Elusimicrobia). On the other hand, the relatively

poor impact of space in determining the distributions of

bacterial and archaeal taxa belonging to a-Proteobacteria,
Planctomycetes, Crenarchaeota, and Verrucomicrobia

could reflect the weak impact of dispersal-mediated pro-

cesses. This is in agreement with the size of the patch,

which matches with physicochemical variability across the

landscape.

Unsurprisingly, pH emerges as the filter exhibiting the

most important correlation with the distribution of most

of the phyla, thus confirming its strong influence on the

community composition as a whole. a-Proteobacteria, d-
Proteobacteria, Planctomycetes, and Verrucomicrobia

were strongly correlated with soil pH (both positively and

negatively). The acidophilic attributes of some genera

belonging to a-Proteobacteria and Verrucomicrobia and

the basophilic attributes of some genera belonging to

Planctomycetes and d-Proteobacteria are coherent with

the correlation between these taxa and pH reported in

recent studies (Nacke et al. 2011). Soil texture, repre-

sented by clay or sand contents, was the second most

important soil driver for b-Proteobacteria, Bacteroidetes,
and Chloroflexi. This suggests that some taxa are better

adapted to live in less protected and oligotrophic habitats

represented by coarse textured soils whereas others live in

more protected and copiotrophic habitats represented by

fine textured soils (Dequiedt et al. 2009; Constancias

et al. 2014). More precisely, b-Proteobacteria were nega-

tively influenced by clay content indicating that coarse

textured soils are more favorable habitats for this taxon.

These observations confirmed the affinity of some genera

belonging to b-proteobacteria and Bacteroidetes for a dis-

turbed environment and matched with their ecological

attributes as r-strategists (Cleveland et al. 2007). Soil

organic carbon content and C:N ratio, representing tro-

phic quantity and quality, were less shared drivers of the

bacterial and archaeal taxa and explained smaller amounts

of their variation. This contrasts with Fierer et al. (2007),

who demonstrated experimentally that most of the bacte-

rial phyla could be simply described according to their

copiotrophic and oligotrophic attributes. This discrepancy

could result from the low variations in soil organic con-

tent and C:N ratio that occurred across the studied land-

scape. Nevertheless, the spatial distribution of d-
Proteobacteria, Chlorobi and Actinobacteria was mainly
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influenced by soil organic content. More precisely, d-Pro-
teobacteria and Chlorobi were positively influenced

whereas Actinobacteria was negatively affected by trophic

quantity, thus confirming the respective copiotrophic and

oligotrophic behaviors of some genera belonging to these

phyla (Cleveland et al. 2007; Pascault et al. 2013).

The confrontation of soil bacterial and archaeal taxa

variation with land use revealed that a-Proteobacteria, Fi-
brobacteres, and Bacteroidetes phyla were strongly

impacted by a coarse level of land use discrimination

(forest vs. croplands). These observations confirmed

recent studies which highlighted a greater relative abun-

dance of Fibrobacteres, Bacteroidetes, and a lower relative

abundance of a-Proteobacteria in agricultural soils as

compared to forest ecosystems (Jangid et al. 2008; Nacke

et al. 2011; Shange et al. 2012). Similarly, the distribu-

tions of d-Proteobacteria, Planctomycetes, Verrucomicro-

ba, and Gemmatimonadetes were impacted by an

increasing cropping intensity represented by crops versus

forest and perennial crops. Planctomycetes and d-Proteo-
bacteria, which have been described as K-strategists,

(Buckley et al. 2006; Pascault et al. 2013) might have an

advantage under less disturbed environmental conditions.

In the F�enay landscape, the catch crop mainly consisted

in leguminous plants that could explain the observed eco-

logical optimum of Nitrospirae, which includes taxa

known to interact with plant communities. Bacterial and

archaeal taxa including Bacteroidetes, Thaumarchaeota,

Crenarchaeota, Armatimonadetes, and Fibrobacteres

exhibited their ecological optima at the highest level of

land management disturbance, represented by conven-

tional tillage. Bacteria belonging to the Bacteroidetes

phyla have been recently described as r-strategists and

stress resistant which could explain their affinity for

highly disturbed soil environments (Eilers et al. 2010).

However, Thaumarchaeota, Crenarchaeota, Armatimona-

detes, and Fibrobacteres are usually pooled as minor taxa

(<1%), and therefore, to date, we do not possess any sig-

nificant knowledge about their ecological attributes. Nev-

ertheless, our study suggests that they can be considered

as r-strategists.

Altogether, by studying bacterial community composi-

tion and taxa distribution at a landscape scale, we evi-

denced that the distribution of each taxon, as well as the

community composition as a whole, is heterogeneous and

spatially structured. The results of our study also empha-

size that environmental selection may not be the only

process that explains patterns of soil microbial commu-

nity distribution. The selection process results from soil

physicochemical filters (pH, texture and nutrient status),

to a large extent, but also from disturbance intensity aris-

ing from human activities. Even though our study did

not directly demonstrate that the influence of space was

exclusively due to dispersal limitation of the populations

constituting the community, our data would support this

hypothesis. In addition, a spatial approach was used to

complete and define new ecological attributes for most of

the taxa identified. Further investigations should now be

devoted to the spatial patterns of fungal communities to

fully depict the mechanisms and drivers of soil microbial

biodiversity, and a more thorough analysis of the link

with soil functioning.
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of each map indicates the extrapolated relative abundance

values.
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