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Supplementary Note 1:1
Inference of CTC and CTC cluster genealogies to study2
oligoclonal metastatic seeding3

4
Circulating tumor cells (CTCs) are shed from solid tumor lesions into the blood stream and carry the5
genetic profile of their clone of origin. Therefore, we can gain insights into the clonal composition6
of the CTC-disseminating areas of the primary tumor and metastases by sequencing CTCs. CTCs are7
often shed into the bloodstream as clusters of two or more physically associated cells and frequently8
admix with tumor-associated cells like white blood cells (WBCs). When these clusters cannot be9
physically broken into single cells without harming cell integrity, the joint DNA material of all cells in10
the cluster is sequenced in a single sample, resulting in an aggregate set of variants of the CTC cluster.11
We developed a pioneering computational method to deconvolve the aggregate read count profiles12
of CTC clusters. Using these profiles along with single CTCs, we jointly infer the genealogy of all13
sampled cells, as well as their individual genotypes. The clusters are thereby split computationally14
into their constituent cells in the tree, and the resulting genotypes of the single cells allow us to assess15
clonality of the CTC clusters. The model builds on our existing tree inference algorithms for single16
cell data SCITE and SCIΦ. However, here we model the aggregated nature of cells in CTC clusters.17
To our knowledge, this is the first computational approach to perform explicit genetic deconvolution18
of aggregated single cells.19

20

Model overview21
22

We consider the CTC genealogy, a leaf-labelled binary tree T in which the leaves correspond to single23
CTCs. Whenever a progenitor cell produces mutated offspring, this mutation event is placed on the24
edge connecting these cells (Supplementary Fig. 1). We constrain the space of genealogies to an25
infinite sites model, which assumes that each mutation occurs at most once throughout the whole26
process of somatic cell evolution and is passed on to all descendant cells. This assumption effectively27
restricts our model to heterozygous mutations, as a homozygous mutations would require two genomic28
alteration events on the same genomic site. A proposed genealogy yields an aggregate genotype for29
each CTC cluster and single cell, which can be compared to read data. This allows us to determine30
how well a genealogy, including mutational placements and splitting of CTC clusters, fit to total and31
variant read counts of all CTCs and CTC clusters.32

33
We use a Markov Chain Monte Carlo (MCMC) approach to perform Bayesian inference of the34

tree topology. More precisely, our algorithm takes total and variant read counts of CTCs and CTC35
clusters as input and outputs a set of tree topologies, where the number of the trees in the output set is36
proportional to their posterior probability. Each edge-labelled tree deconvolves the aggregate profiles37
of the CTC clusters. The tree may place cells from the same CTC cluster onto different branches,38
indicating that the genotypes of the component cells differ.39

40
For each output tree and CTC cluster, we compute a splitting score, reflecting the probability41

that the cells of the cluster originate from genetically distinct lineages, and average this probability42
over all output trees. Thus, the splitting score allows us to make inference about the clonality of a CTC43
cluster while accounting for the uncertainty in tree reconstruction. We also derive a consensus of each44
cell’s individual genotype to identify mutations that are unique for specific cells of the CTC cluster and45
annotate them according to their functional impact on protein activity.46
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Methods47
48

Input Data49
50

The model takes as input two matrices K and R with n′ rows labelled by mutation sites and m columns51
labelled by CTCs and CTC clusters. The observed mutated and total read counts ki,ℓ and ri,ℓ are52
encoded in the n′×m matrices K and R and summarized as D = (K,R). Additionally, for each CTC53
cluster, the number of tumor cells and WBCs is specified.54

55
Multiple displacement amplification model56

57
Single-cell DNA sequencing requires initial amplification of the available DNA material, such as58
Multiple Displacement Amplification (MDA). In this approach, a newly synthesized fragment becomes59
immediately available as a template for further amplification along with its own template. This results60
in a “rich gets richer” phenomenon, where fragments that happened to be among the first to be61
amplified end up over-represented in the final read count distribution. In particular, heterozygous62
mutations can produce a read count pattern where the fraction of variant reads is far from the expected63
50%.64

65
We account for this over-dispersion by employing a beta-binomial distribution akin to the Pólya

urn model that describes an experiment where a ball that is drawn in one round is replaced into the
urn along with an additional copy for the next round. Let r be the coverage at a sequence position,
α the number of variant alleles prior to amplification, and β the number of wild type alleles prior to
amplification. Then the probability of obtaining k reads through MDA is

PBBin(k | r, α, β) =
(
r

k

)
B(k + α, r − k + β)

B(α, β)

where B is the beta function. The total number of variant and wild type alleles depends only on the66
genotype in each of the cells (Supplementary Fig. 1).67

68
Allelic dropout model69

70
In addition to over-dispersion, MDA is also prone to allelic dropout, the process in which some alleles71
are randomly not amplified at all. To account for this issue, we introduce a dropout rate δ, which72
defines, for each allele, the probability to not partake in the amplification process. An example is given73
in Supplementary Fig. 2.74

75
Since we do not distinguish between alleles of the same type, the probability that p mutated

alleles drop out and q normal alleles drop out is the product of two binomial distributions,

PBin(p | α, δ)PBin(q | β, δ) =
(
α

p

)(
β

q

)
δp+q(1− δ)α+β−(p+q)

We do not know the number of dropped out alleles, so we marginalize over its distribution, i.e., we76
condition the read count distribution on the dropout and sum over all possible values of p = 0, . . . , α77
and q = 0, . . . , β, except the case p = α and q = β, as no reads would then be produced. In this case,78
we set the probability of observing reads to 0.79

80
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Supplementary Fig. 1. Example of oligoclonal four-cell cluster. Three cells exhibit a (heterozygous)
mutation M (red cross) and the fourth does not, which leads to a 3:5 ratio of variant and wild type
alleles, i.e., a variant frequency of µ = 37.5%. Accordingly, three out of the four cells are located
in the subtree below a M . After MDA, the read count fractions have shifted away from 37.5% to
4 : 16 = 25% due to random amplification bias. The figure was created using BioRender.com.

Supplementary Fig. 2. Dropouts in an oligoclonal four-cell cluster. Each allele is modelled to have
a probability δ to drop out, i.e., to not partake in the amplification process. In this example, instead of
starting the MDA process with a 3:5 ratio of variant and wild type alleles, p = 1 mutated allele and
q = 2 wild type alleles drop out (shown in grey), shifting the initial parameters for MDA to α = 2 and
β = 3. The figure was created using BioRender.com.
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Sequencing error model81
82

A third type of disturbances of read count fractions are sequencing errors. Sequencing takes place83
after amplification, and sequencing errors are much rarer than the other two types of errors, so we only84
consider them in cases where all alleles of one type have been lost such that the respective allele can85
only be introduced by sequencing errors.86

87
We assume that each wild type read is sequenced as mutated and vice versa independently88

at a global error rate ε. The probability to produce k mutated reads from r wild type reads through89
sequencing errors follows a binomial distribution PBin(k | r, ε). Likewise, PBin(r − k | r, ε) denotes90
the probability to produce r − k wild type reads from r mutated reads solely through sequencing91
errors. Then, under the assumption of independence of dropout events and sequencing errors, the joint92
probability that all wild type alleles drop out and not all mutated alleles drop out and that r − k wild93
type reads are produced from r reads is94

PBin(β | β, δ)(1− PBin(α | α, δ))PBin(r − k | r, ε) = δβ(1− δα)

(
r − k

k

)
εr−k(1− ε)k95

Symmetrically, the joint probability that all mutated alleles drop out and not all wild type alleles96
drop out and that k mutated reads are produced from r reads is obtained by swapping α and β in above97
formula and replacing r − k by k.98

99
Read count model100

101
Combining all three model parts, we obtain the full read count model for observing k mutated reads:102

PR(k | r, α, β, δ, ε) =

[
α−1∑
p=0

β−1∑
q=0

PBin(p | α, δ)PBin(q | β, δ)PBBin(k|r, α− p, β − p)

]
103

+ PBin(β | β, δ)(1− PBin(α | α, δ))PBin(r − k | r, ε)104
+ PBin(α | α, δ)(1− PBin(β | β, δ))PBin(k | r, ε)105

106
Probabilistic tree model107

108
Let Cℓ denote the set of cells in sample l. In total, we have n =

∑n′

i=1 |Cℓ| cells. Let m denote the109
number of mutated sites over all cells. We describe the cell genealogy as a binary leaf-labelled tree110
T with n leaves. Each leaf is associated with exactly one sample, while a sample can be associated111
with multiple leafs (indicating individual cells of CTC clusters). T is augmented by a vector σ =112
(σ1, . . . , σm) whose i-th entry indicates where mutation Mi is placed in the tree. We derive the expected113
variant and wild type allele counts αi,ℓ and βi,ℓ for a given sample Cℓ and mutation Mi by counting114
how many cells of Cℓ descend from Mi in the tree.115

116
We compute the likelihood to observe the read count data given a tree T augmented by the117

mutation placement σ and model parameters θ = (δ, ε) as118

P (D | T, σ, θ) =
m∏
i=1

n′∏
ℓ=1

PR(kiℓ | riℓ, (αiℓ)T,σ, (βiℓ)T,σ, θ) (1)119
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For the posterior distribution, we apply Bayes’ theorem, and we marginalize out the attachment120
points of the mutations, akin to [1]:121

P (T, θ | D) =
∑
σ

P (T, σ, θ | D)122

∝
∑
σ

P (D | T, σ, θ)P (T, σ, θ)123

∝
∑
σ

P (D | T, σ, θ)P (σ | T, θ)P (T, θ)124

=
∑
σ

m∏
i=1

n∏
ℓ=1

PR(kiℓ | riℓ, (αiℓ)T,σ, (βiℓ)T,σ, θ)P (σi | T, θ)P (T, θ)125

=
m∏
i=1

∑
σi

n∏
ℓ=1

PR(kiℓ | riℓ, (αiℓ)T,σ, (βiℓ)T,σ, θ)P (σi | T, θ)P (T, θ)126

In the last line, the terms were rearranged, such that each mutation can be placed and evaluated127
independently, which reduces the size of the search space from (2n − 1)m(2n − 3)!! to (2n − 3)!!128
[2]. This is possible as long as the prior factorizes as P (σ | T, θ) =

∏m
i=1 P (σi | T, θ).129

130
Prior distributions131

132
Some of the CTC clusters contain WBCs. We assume that WBCs have lower mutational burden133
compared to cancer cells; hence they should be attached close to the root of the tree. To account for this,134
we penalize the cell attachment of WBCs proportionally to the inferred genetic distance of the WBC135
from the root. In probabilistic terms, we define the prior probability P (σi | T, θ) to be proportional to136
exp(−hσi

), where hσi
is the number of WBCs descending from the position of mutation attachment137

σi. For the joint prior distribution of tree and model parameters P (T, θ), we choose a uniform prior on138
the parameter space.139

140
Inference141

142
We explore the parameter space of trees T and dropout and error rates θ = (δ, ε) with an MCMC143
approach to sample from the posterior distribution P (T, θ | D). We use the Metropolis-Hastings144
algorithm to generate a sequence of trees by iteratively changing one randomly chosen parameter at a145
time, according to a proposal distribution.146

147
We specify the tree moves akin to [1] as follows: The rearrangement by subtree pruning and148

regrafting selects a node uniformly at random, removes the subtree defined by the descending nodes149
from the tree, and attaches this subtree to an edge uniformly chosen from the remaining tree [2].150
Node swapping selects two nodes of the tree uniformly at random and swaps them together with their151
subtrees. The error parameters are explored through a Gaussian random walk with standard deviation152
of 0.1 centered around the current value.153

154
We compute the acceptance probability at which the new parameter configuration becomes155

the next state of the chain (otherwise the old configuration is kept). The resulting Markov Chain is156
ergodic, such that its stationary distribution is guaranteed to be the posterior distribution of the model.157
Asymptotically, the Markov Chain generates a set of trees sampled from the posterior distribution.158
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159
Assessing the clonality of a CTC cluster160

161
We seek to determine if a CTC cluster contains two cells from independently evolving lineages. In162
terms of the underlying tumor phylogenetic tree, we ask whether the CTC cluster splits up into cells163
that are placed on different branches of the trees, i.e., whether there are mutations on both branches164
separating the cells and connecting them to their most recent common ancestor.165

166
The main idea to answer this question is the following: Given a CTC cluster, we define a167

splitting score which measures how much evidence a tree provides for splitting the cluster. We sample168
trees from the posterior distribution as described above, derive the score for each tree, and then average169
the score over the set of trees. We use this score as a test statistic, and assess its null distribution from170
simulated monoclonal CTC clusters. Average splitting scores significantly larger than what we expect171
from monoclonal CTC clusters are thus an indication for oligoclonal CTC clusters.172

173
Specifically, given a tree T , we account for the uncertainty of the mutation placement by174

considering each mutation’s probability of mapping to either of two branches. The cluster splits with175
low probability if for one of the branches it is unlikely that any mutation maps to it. On the other hand,176
it splits with high probability if for each of the branches there exists a mutation likely mapping to it177
(Extended Data Fig. 2b). The following splitting score encodes this:178

ST (c1, c2) := min
j=1,2

max
1≤i≤m

P (Mi maps to bj)179

where c1 and c2 are the cells associated to the same CTC cluster, and bj is the path from cj to the most180
recent common ancestor of both cells, for j = 1, 2.181

182
To additionally account for the uncertainty in the tree inference, we compute the splitting score183

for each sampled parameter and tree and form the average. Since the parameters are sampled from the184
posterior distribution, the splitting score is (approximately) weighted by the posterior probability of185
the parameters. The average splitting scores is186

S(c1, c2) =

∫
T,θ

ST (c1, c2)dP (T, θ | D)187

A high value relative to the null distribution suggests that the data is unlikely to be generated by a pair188
of cells of monoclonal origin (Extended Data Fig. 2a).189

190
Simulation of monoclonal CTC clusters191

192
We simulated monoclonal CTC clusters to approximate the null distribution of the average splitting193
score in the absence of oligoclonality.194

195
As a first step, we identified a set of genotypes that is consistent with the phylogeny by using196

the tree’s output to call the genotypes of single cells in the dataset as done in [1], and averaged the197
calls over all sampled trees. These genotypes served as templates for our simulations. This step was198
necessary to ensure that the genotype of a simulated monoclonal CTC cluster matches the underlying199
true genealogy, as genotypes that cannot be explained by the true genealogy are likely to bias the tree200
reconstruction towards incorrect genealogies.201

202
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In our simulation, each allele may be removed at equal rate. The model above does not describe203
the distribution of total read counts. Therefore, we assessed the empirical distribution of total read204
counts given by the matrix R by fitting a zero-inflated negative-binomial distribution. The total reads205
for a simulated CTC cluster were drawn from this distribution. Mutated read counts were produced206
by a beta-binomial distribution. Non-mutated reads were randomly be converted to mutated reads and207
vice versa. Dropouts occured at a rate of 0.35 and errors at a rate of 0.0015, chosen according to the208
MAP estimate of the posterior sampling. For each dataset, we simulated four 2-cell CTC clusters, three209
3-cell CTC clusters, two 4-cell and two 5-cell CTC clusters.210

211
We assess the posterior distribution of trees including simulated CTC clusters and derive the212

distributions of ST (c1, c2). For each cluster size, we aggregated these distributions to obtain cluster213
size-specific null distributions. A CTC cluster is considered oligoclonal, if the value S(c1, c2) exceeds214
the 95%-quantile of the empirical null distribution for at least one pair of cells (c1, c2) associated to the215
cluster.216

217
Identifying individual genotypes in a CTC cluster218

219
Exchanging two cells from the same cluster in the tree gives rise to the exact same inferred aggregate220
genotype of the CTC clusters. Since the likelihood (Eq. 1) depends only on this aggregate genotype221
and not the genotypes of the individual cells, the tree model cannot distinguish between two tumor222
cells of the same CTC cluster. We leveraged this fact to define a co-occurrence distance metric on the223
set of mutations. Given a CTC cluster, a private branch is defined as the path from a leaf belonging to224
the cluster to the node just below the most recent common ancestor of all cells in the cluster. Given225
a tree, two mutations M1 and M2 either do or do not co-occur on any of the private branches. We226
therefore define the co-occurrence distance227

d(M1,M2) := 1− #co-ocurrences of M1 and M2 in a private branch
#sampled trees

228

Each CTC cluster found oligoclonal gives rise to a matrix of distances among all mutations.229
After filtering mutations distant to all other mutations, we clustered mutations hierarchically by average230
linkage and cut the resulting dendrogram to obtain at most as many clusters as there were cells in the231
CTC cluster. Since the clustering signal was typically very strong, we determined the number of232
clusters by visual inspection (Supplementary Fig. 3).233

234
The clustered mutations indicate the genetic differences separating cells of the same CTC235

clusters. To interpret these differences further, mutations in the clusters were annotated using SnpEff236
[3], and the number of variants with high annotation impact and with moderate annotation impact were237
counted.238
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Supplementary Fig. 3. Representative clustering of genes for a two-cell CTC cluster. a, Distance
matrix of all mutations for the distance metric d, indicating how often mutations co-occur on the
same branch of the tree throughout tree sampling, represented by a heatmap. b, Distance matrix after
filtering variants that are distant to all others. The CTC cluster does likely not carry these variants. c,
Dendrogram on the filtered mutations exhibits two distinct clusters of variants.

239
CTC cluster annotation240

241
We used the following annotation of CTC clusters: We considered CTC clusters to show evidence242
for branching evolution, if the splitting score exceeds the defined threshold. Moreover, we infered243
mutations to distinguish the different genotypes as described above and categorized CTC clusters with244
evidence for branching evolution according to the functional impact of these separating mutations.245

246
Supplementary Results: Simulation-based performance assessment of the tree algorithm247

248
To characterize the overall ability of the tree-based algorithm to determine the oligoclonality status of249
CTC clusters and its deconvolution performance, we simulated monoclonal CTC clusters as described250
above, and oligoclonal CTC clusters by aggregating the read counts from randomly sampled genetically251
distinct single tumor cells (Supplementary Fig. 4). For each of these simulated clusters as well as252
the non-aggregated genetically distinct single cells, we computed the mean splitting scores averaged253
over all samples from the posterior distribution (sampling size = 1000, Supplementary Fig. 4). Our254
comparison shows that simulated monoclonal CTC clusters consistently exhibit a low mean splitting255
score with a mean of 0.074, a median of 8.97 ·10−4 and a 90%-percentile of 28.6%, while for simulated256
oligoclonal clusters the mean splitting scores were elevated with a mean of 0.64, a median of 0.66 and a257
10%-percentile of 0.37. This shows that the splitting score is strongly indicative of the clonality status258
of the CTC clusters. With a mean of 0.73 and a median of 0.94, the splitting scores of single tumor259
cells are higher than for simulated oligoclonal clusters. An increase in performance with respect to260
CTC clusters is to be expected, since the tree inference algorithm can additionally exploit information261
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of co-occurrence of mutations obtained from single-cell exomes. The splitting score of the simulated262
monoclonal clusters has a standard error of 0.17 and is lower compared to 0.22 and 0.37 for simulated263
oligoclonal CTC clusters resp. single cells. This can be explained by varying degrees of genetic264
dissimilarity of the constituent cells of simulated oligoclonal CTC clusters, which may provide a265
differing amounts of evidence for oligoclonality. Our analyses proved that the tree-sampling based266
deconvolution in combination with the splitting score is a suitable instrument to distinguish monoclonal267
CTC clusters from oligoclonal CTC clusters.268

Supplementary Fig. 4. Simulation study to asses the performance of the phylogenetic tree-based
assessment of oligoclonality. Boxplots show the empirical distributions of mean splitting scores
computed for 50 simulated monoclonal CTC clusters, simulated oligoclonal CTC clusters, and
genetically distinct single tumor cells, respectively. A higher mean splitting score indicates stronger
evidence for oligoclonality. The centers of the boxplots are defined as the medians of the estimates,
upper and lower hinges show the first and third quartiles, respectively, and whiskers reach out to the
furthest points whose distance from the hinges is smaller than 1.5 times the inter-quartile range. All
outliers are plotted as points.
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Supplementary Note 2:269
Simulation of the proportion of unique barcodes within cell pools for in270
vivo engraftment to model clonal expansion271

272
We sought to model clonal expansion in vivo through orthotopic engraftment of uniquely barcoded273
cancer cells, ensuring that the duplicate barcode fraction is low in the engrafted cell population. To274
estimate the proportion of unique barcodes within cell pools of a given complexity, we simulated our275
experimental design of clonally labeling LM2 breast cancer cells with molecular barcodes as follows.276

277
We generated barcode read count data based on next-generation sequencing (NGS) quality278

control (QC) data of the Clonetracker XP barcode library (provided by manufacturer) in R to obtain279
a pool of barcode IDs, where each barcode is represented according to the NGS read distribution.280
We randomly sampled a number of observations from the generated pool of barcode IDs, reflecting281
increasing numbers of initially transduced cells (between 104 and 5 · 105 cells). We then replicated282
the sampled barcode IDs eight times, simulating three rounds of cell replication within the 72h period283
between transduction and cell engraftment (considering an approximate cell doubling time of 24 h for284
the LM2 cell line). From the replicated pool of barcode IDs, we then randomly sampled a number of285
barcodes corresponding to the number of cells for in vivo engraftment (between 102 and 5 · 104 cells)286
and evaluated the proportion of unique barcode IDs in the final sample.287

288
For each combination of initially transduced cells and final cell pool for engraftment, we report289

the mean proportion of unique barcodes and the standard deviation after resampling ten thousand times290
(Extended Data Fig. 3c).291

292
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Supplementary Note 3:293
Measuring distortion in the representation of clones among CTC clusters294

295
Next, we measured the presence of clones in CTC clusters from xenograft models with clonally296
barcoded primary tumors and compared the relative abundance of clones among CTC clusters with297
their measured frequency in the primary tumor. To gain a clearer insight into the process of formation298
and selection of CTC clusters intravasating the blood stream, we took as a basis a model according to299
which the probability of a CTC originating from a clone is proportional to the prevalence of that clone300
in the primary tumor. Since a CTC cluster can contain cells from at most as many different clones as it301
consists of cells, it could not be assumed that the presence of different clones in the same CTC cluster302
are independent. Let rj be the size of CTC cluster j, t be the number of clones in the primary tumor303
and assume that we know the vector f := (f1, . . . , ft) of the (strictly positive) proportions of all clones.304
We formulated the null hypothesis that the number of times that each of the clones appear in cluster305
j is multinomially distributed with rj trials and the probability vector (f1, . . . , ft). We derived and306
applied a statistical test to detect when the clonal composition of CTC clusters could not be explained307
by random sampling.308

For this, we additionally assumed that the proportions of clones in the primary tumor correspond309
exactly to the proportions of measured barcode counts. However, the RNA-sequencing based barcode310
counts were too noisy as to provide a reliable estimate of the exact number of cells in a CTC cluster311
belonging to a specific clone. To avoid making additional assumptions, we were agnostic towards to312
exact clonal composition of the CTC clusters. Instead, we measured the presence (dij = 1) or absence313
(dij = 0) of clone i in cluster j as a binary variable. Treating the multinomially distributed clonal314
composition as a latent variable, the expected indication of dij is given by315

Eij = 1− (1− fi)
rj316

We defined a test statistic, akin to the classical G-test statistics [4]:317

Gj = 2
t∑

i=1
dij ̸=0

dij log

(
dij
Eij

)
318

For each CTC cluster size and mouse model, the distribution of Gj was simulated with a sampling size319
of 10000 and defined the p-value of a single CTC cluster as the probability of observing a G-score at320
least as high as that of the CTC-cluster. To obtain a final p-value, we assumed independence of Gj321
between different CTC clusters and combined their p-values using Fisher’s method.322

323
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Supplementary Note 4:324
Quantitative assessment of monoclonality in CTC clusters325

326
Furthermore, we used the xenograft models to measure the prevalence of oligoclonal CTC clusters327
and associate it with cluster size and primary tumor complexity. From this model, we derived and328
applied a statistical test to detect if more CTC clusters were found monoclonal than expected under the329
multinomial model from Supplementary Note 3.330

331
Let t be the number of clones in the primary tumor and assume we know the vector f =332

(f1, . . . , ft) of proportions of all clones. Then the probability of a CTC cluster j of size rj to be333
monoclonal is334

P (f) =
t∑

i=1

f
rj
i335

336
We modelled the random selection of a CTC cluster from the liquid biopsy akin to a random337

draw from an urn filled with balls of two different colors (representing monoclonal vs oligoclonal338
clusters) with replacement. This amounts to saying that the number of monoclonal CTC clusters is339
binomially distributed where the number of trials is the number of CTC clusters of a certain size and340
the success probability is given by P (f). This binomial distribution defines our null distribution. The341
test measures how likely it is to observe a given number of monoclonal CTC clusters or more.342

343
We estimated the vector f from the barcode counts. We assumed that the likelihood of observing344

a barcode count configuration given some clonal proportions is multinomially distributed. Assuming a345
uniform prior distribution of primary tumor clone proportions, and given a vector of absolute barcode346
counts (s1, . . . , st), the posterior probability distribution is Dirichlet distributed with parameter vector347
(1+s1, . . . , 1+st). To compute the p-value of the statistical test, we marginalized out the latent vector348
f . The p-value was then computed as349

∫
f

(
n

k

)( t∑
i=1

f
rj
i

)k(
1−

t∑
i=1

f
rj
i

)n−k

PDir(f, (1 + si)i)df350

where the integral was taken over the parameter space351 {
(fi)1≤i≤t

∣∣∣∣∣
t∑

i=1

fi = 1 and fi ∈ R≥0

}
352

We approximated the integral by Monte-Carlo integration, through sampling of the parameter f .353
354
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