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Abstract

Successful navigation through the world requires accurate estimation of one’s own speed. To 

derive this estimate, animals integrate visual speed gauged from optic flow and run speed gauged 

from proprioceptive and locomotor systems. The primary visual cortex (V1) carries signals related 

to visual speed, and its responses are also affected by run speed. To study how V1 combines these 

signals during navigation, we recorded from mice that traversed a virtual environment. Nearly half 

of the V1 neurons were reliably driven by combinations of visual speed and run speed. These 

neurons performed a weighted sum of the two speeds. The weights were diverse across neurons, 

and typically positive. As a population, V1 neurons predicted a linear combination of visual and 

run speed better than visual or run speeds alone. These data indicate that V1 in the mouse 

participates in a multimodal processing system that integrates visual motion and locomotion 

during navigation.

Introduction

There is increasing evidence that the activity of the primary visual cortex (V1) is determined 

not only by the patterns of light falling on the retina1, but also by multiple non-visual 

factors. These factors include sensory input from other modalities2,3, the allocation of spatial 

attention4, and the likelihood of an impending reward5.

In mice, in particular, the firing of V1 neurons shows strong changes with locomotion6-8, 

but the precise form and function of this modulation are unclear. One possibility is that 

locomotion simply changes the gain of V1 neurons, increasing their responses to visual 

stimuli when animals are running compared to stationary6. Another possibility is that V1 
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neurons respond to the mismatch between what is seen by the animal and what is expected 

based on locomotion7. Overall, the computational function of locomotor inputs to V1 is still 

a mystery. Might they be useful for navigation?

One of the primary roles of vision is to help animals navigate. Successful navigation 

requires an accurate estimate of one’s own speed9-11. To obtain this estimate, animals and 

humans integrate a measure of speed gauged from optic flow with one gauged from the 

proprioceptive and locomotor systems9-15. Neural correlates of locomotor speed have been 

found in high-level structures such as the hippocampus16,17, but the neural substrates in 

which multiple input streams are integrated to produce speed estimates are as yet unknown.

Integration of multiple inputs has been observed in several neural circuits15,18-20, and 

typically involves intermediate neuronal representations21-24. In early processing, the input 

streams are integrated into a distributed population code, in which the two signals are 

weighted differently by different neurons21,24. Such an intermediate representation allows 

the integrated signal to be read out by higher level structures. Furthermore, properties of this 

intermediate representation (such as the statistical distribution of weights used by different 

neurons) are not random but adapted to the specific integration that must be performed21,25.

Here we studied how visual and locomotion signals are combined in mouse V1, using a 

virtual reality system in which visual input was either controlled by, or independent of 

locomotion. We found that most V1 neurons respond to locomotion even in the dark. The 

dependence of these responses on running speed was gradual, and in many cells it was non-

monotonic. In the presence of visual inputs, most V1 neurons that were responsive encoded 

a weighted sum of visual motion and locomotor signals. The weights differed across 

neurons, and were typically positive. As a population, V1 encoded positively weighted 

averages of speed derived from visual and locomotor inputs. We suggest that such a 

representation facilitates self-motion computations, contributing to the estimation of an 

animal’s speed through the world.

Results

To study the effects of visual motion and locomotion, we recorded from mouse V1 neurons 

in a virtual environment based on an air-suspended spherical treadmill26,27. The virtual 

environment was a corridor whose walls, ceiling and floor were adorned with a white-noise 

pattern (Fig. 1a). Four prominent landmarks – three gratings and a plaid – were placed at 

equal distances along the corridor (Fig. 1b). Head-fixed mice viewed this environment on 

three computer monitors arranged to cover 170° of visual angle (Fig. 1a), and traversed the 

corridor voluntarily by running on the treadmill at speeds of their own choosing (Fig. 1c, d 

& Supplementary Fig. 1).

While the mice traversed this environment, we recorded from populations of V1 neurons 

with multisite electrodes and identified the spike trains of single neurons and multi-unit 

activity with a semi-automatic spike sorting algorithm28 (Supplementary Fig. 2). We then 

used grating stimuli to measure the receptive fields of the neurons (receptive field size 24 ± 
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2 °, s.e., n = 81, receptive field centers 10°-70° azimuth, semi-saturation contrast 23 ± 3%, 

s.e., n = 38).

To measure the features that influenced neural activity in the virtual environment, we 

adopted a technique previously used for analysis of hippocampal place cells29,30. For each 

neuron, we estimated the firing rate as a function of one or more predictor variables (e.g. 

speed alone, position alone, or both speed and position). Using a separate data segment (the 

“test set”), we defined a prediction quality measure Q as the fraction of the variance of the 

firing rate explained by the predictor variables. This measure of prediction quality does not 

require that stimuli be presented multiple times (Supplementary Fig. 3), a key advantage 

when analyzing activity obtained during self-generated behavior.

We first measured V1 responses in a closed-loop condition, where the virtual environment 

was yoked to running speed and thus faithfully reflected the movement of the animal in the 

forward direction. For each neuron, we computed our ability to predict the firing rate based 

on position alone (QP), on speed alone (QS), and on both position and speed (QPS: 

Supplementary Figs. 4 and 5). The responses of most V1 neurons (181/194) were 

predictable based on both the position and speed in the environment (QPS>0; Supplementary 

Fig. 5). Here we concentrate on 110 of these neurons whose firing rates were particularly 

predictable (QPS>0.1). Some of these neurons (51/110) showed clear modulation in firing 

rate as a function of position (QP>0.1). This tuning for position was expected due to the 

different visual features present along the corridor, and indeed neurons often responded most 

strongly as the animal passed the visual landmarks (Fig. 1e, Supplementary Fig. 5). The 

response of most neurons (81/110) also showed a clear dependence on speed (QS > 0.1). 

Typically, speed explained a larger fraction of the response than position (75/110 cells with 

QS> QP, Fig. 1g). Indeed, for many neurons the responses were as well predicted by speed 

alone as by speed and position together (QS/QPS ~ 1, Fig. 1g and Supplementary Fig. 5). 

Speed, therefore, exerts a powerful influence on the responses of most V1 neurons in the 

virtual environment.

But what kind of speed is exerting this influence? In virtual reality, the speed at which the 

virtual environment moves past the animal (virtual speed) is identical to the speed with 

which the animal runs on the air-suspended ball (run speed). Neurons in V1 can gauge 

virtual speed through visual inputs, but to gauge run speed they must rely on non-visual 

inputs. These could include sensory input from proprioception, and top-down inputs such as 

efference copy from the motor systems. Ordinarily, virtual and run speeds are identical, so 

their effects on V1 cannot be distinguished.

One way to isolate run speed from virtual speed is simply to eliminate the visual input. To 

do this, we turned off the monitors and occluded all other sources of light, and thus 

measured responses to run speed in the dark. Running influenced the activity of many V1 

neurons even in this dark environment (39/55 well-isolated neurons were significantly 

modulated, p<0.001) modulating their activity by 50% to 200% (Supplementary Fig. 6). The 

dependence of firing rate on run speed was graded, rather than a simple binary switch 

between different rates in stationary and running periods (Fig. 2a-c). Indeed, among the 

neurons modulated by running, most (27/39) showed a significant (p<0.001) dependence on 

Saleem et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2014 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



run speed even when we excluded stationary periods (run speed < 1 cm/s). About half of 

these neurons (16/27) showed a band-pass tuning characteristic, responding maximally to a 

particular run speed (Fig. 2b,d; Supplementary Fig. 7); in the rest, firing rate showed either a 

monotonic increase with run speed (Fig. 2a, 7/27 neurons), or a monotonic decrease with run 

speed (Fig. 2c, 4/27 neurons). Similar results were obtained when the monitors were turned 

on but displayed a uniform gray screen (not shown). Thus, the responses of V1 neurons 

depend smoothly and in diverse ways on the speed at which the animal runs, even in the 

absence of visual inputs.

To understand how run speed affects V1 responses to visual stimuli, we reconfigured the 

virtual reality environment into an open-loop condition. In this condition we simply replayed 

movies of previous closed-loop runs, irrespective of the animal’s current run speed. Whereas 

in the closed-loop condition virtual speed and run speed were always equal, in the open-loop 

condition the animal went through the virtual environment at different combinations of 

virtual and run speeds (Fig. 3a). We could investigate the influence of both speeds because 

the mice did not attempt to adjust their running based on visual inputs: there was little 

correlation between run speed and virtual speed (r = 0.07 ± 0.05). Similarly, V1 neurons did 

not modify their responses in the two conditions: when the two speeds happened to match 

during open-loop, V1 responses were similar to those measured in closed-loop 

(Supplementary Fig. 8). We therefore used the open-loop responses to measure the effects 

and interactions of the two speeds.

In the open-loop condition, V1 responses were modulated by both run speed and virtual 

speed. Some neurons were strongly influenced by virtual speed (Fig. 3c,d; 28/173 with QV > 

0.1); this was expected because translation of the virtual corridor causes strong visual 

motion across the retina, and visual motion is a prime determinant of V1 responses. The 

responses of many neurons were also modulated by run speed (39/173 with QR > 0.1; Fig. 

3b-d). This modulation was not due to eye movements (Supplementary Fig. 9). As in the 

absence of visual stimuli, responses varied smoothly with run speed. Indeed, firing rates 

were better predicted by a smooth function of speed, than by a binary function with one 

value each for the stationary and running conditions (Qbinary< QR: p < 10−8, sign-rank test).

There was no obvious relationship, however, between tuning for virtual speed and for run 

speed (Supplementary Figure 10); rather, the firing of most cells appeared to depend on the 

two speeds in combination, with different cells performing different combinations. To study 

these combinations, for each neuron we derived a “speed map”, an optimally smoothed 

estimate of the response at each combination of run and virtual speeds (Fig. 3b-d). 

Predictions of the firing rates based on these speed maps were superior to predictions based 

on either speed alone (QRV> max(QR,QV): p < 10−11; sign-rank test). In total, 73/173 

neurons were driven by some combination of virtual and run speeds (QRV > 0.1) and were 

selected for further analysis.

To summarize and quantify how a neuron’s firing rate depends on virtual speed and run 

speed, we adopted a simple model based on a weighted sum of the two speeds. This model 

requires a single parameter θ, the “interaction angle” determined by the two weights, and a 

nonlinear function f that operates on the weighted sum (Fig. 3e). We found that the modeled 
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responses not only visually resembled the original speed maps (Fig. 3f-h), but also provided 

cross-validated predictions of the spike trains that were almost as accurate as those based on 

the original two-dimensional speed map (Fig. 3i, Qmap - Qmodel = 0.006 ± 0.002). Therefore, 

each neuron’s responses depend on a linear combination of virtual speed and run speed.

To study the relative weighting that neurons give to virtual and run speed, we estimated for 

each neuron the optimal interaction angle θmax that gave the best cross-validated prediction 

of its spike trains. This angle ranges from 0 to π, and describes the linear combination of 

speeds best encoded by each neuron. The most common value of θmax, seen in about half of 

the neurons (34/73), was θmax ≈ π/4, indicating that these neurons responded to an equal 

weighting of run and virtual speeds. Among the other neurons, some were selective for run 

speed only (27/73 neurons with θmax ≈ π/2; Fig. 3j), and a few for virtual speed only (6/73 

with θmax ≈ 0). Even fewer neurons (5/73) were selective for the difference between virtual 

speed and run speed (θmax ≈ 3π/4), which measures the mismatch between locomotion and 

visual motion7. Overall, the relative weighting of virtual speed and run speed varied between 

neurons, but showed a clear preference for equal weighting.

The fact that V1 neurons encode diverse combinations of run and virtual speed suggests that 

a downstream area could read out from the population of V1 neurons diverse combinations 

of visual and non-visual information. To investigate these population-level consequences of 

the single-neuron properties, we applied a decoding method to the spike data, aiming to infer 

the combination of run speed and virtual speed that had generated the data. We used the 

activity of simultaneously recorded V1 neurons (Fig. 4a) to estimate different linear 

combinations of run and virtual speeds, parameterized by the interaction angle. For example, 

to test whether the V1 population encodes a given combination of run and virtual speed (θ = 

π/3) we asked whether the decoder could predict this particular combination as a function of 

time (Fig. 4b), based on parameters obtained from a separate training set. The quality of the 

prediction depended on the linear combination of speeds being predicted (Fig. 4c, d). The 

combination that was decoded best had positive and approximately equal weighting of the 

two speeds (at θ ≈ π/4, circular mean = 52°). By contrast, virtual speed (θ ≈ 0 or π) and run 

speed (θ ≈ π/2) were decoded less precisely. The difference between the speeds (θmax ≈ 

3π/4) was predicted least precisely of all (circular-linear correlation p<10−3, Fig. 4c, d).

To assess the robustness of these results, we performed various additional tests. First, we 

established that these results did not overly rely on responses measured during stationary 

conditions. To do this, we restricted the decoding to epochs when both run speed and virtual 

speed were > 3 cm/s, and we found a similar dependence of decoding performance on 

interaction angle (gray curves of Fig. 4c,d: circular mean = 42°; circular-linear correlation 

p<0.01; the reduction in decoding performance in the restricted analysis suggests that the 

population encodes both smooth changes of speed and binary changes: stationary vs. 

moving). Second, we ensured that these results did not depend on the precise choice of 

decoding algorithm. Indeed, the same dependence of decoding performance on interaction 

angle was observed with two alternative decoders (Supplementary Fig. 11). Finally, we 

asked whether these results reflect the distribution of optimal interaction angles that we have 

measured. We used simulations of V1 populations with different distributions of interaction 

angles (Supplementary Fig. 12). We could replicate the profile of decoding performance 
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present in the data only when the distribution of interaction angles in the simulated 

population resembled that of the real population (Supplementary Fig. 12c-j).

The population of V1 neurons therefore encodes positively-weighted linear combinations of 

run speed and virtual speed more accurately than virtual speed or run speed alone.

Discussion

Measuring activity in visual cortex in a virtual reality environment revealed a number of 

interactions between visual motion and locomotion. First, we replicated the observation that 

running affects V1 responses6,7, even in the absence of visual stimuli, and we extended it by 

showing that these responses vary smoothly and often non-monotonically with run speed. 

Further, we found that V1 neurons typically respond to combinations of run speed (gauged 

from locomotor and proprioceptive systems) and visual speed (gauged from optic flow). 

This combination of run speed and visual speed is simply a weighted sum, with weights 

varying across neurons. Most neurons gave positive weights to visual and run speeds. 

Accordingly, the population of V1 neurons was most informative as to positively weighted 

linear combinations of run and visual speeds.

The fact that V1 integrates locomotor and visual signals in this manner suggests that it may 

be an early stage of a pathway for estimating an animal’s speed through the world, which 

can then help functions such as navigation. However, two alternative hypotheses have also 

been suggested for the presence of run speed signals in V1.

A first alternative hypothesis is that locomotion simply changes the gain of V1 sensory 

responses, without affecting the selectivity of visual neurons. In support of this hypothesis 

are observations that locomotion scales, but does not modify, the visual preferences of V1 

neurons6. Our data are not fully consistent with this interpretation for multiple reasons. First, 

we and others7, find responses to run speed even in the absence of visual stimuli, suggesting 

that locomotor signals provide a drive to V1 neurons, and not just a modulation of visual 

responses. Also, there is evidence that even the visual preferences of V1 neurons 

(particularly preferred stimulus size) can be altered by locomotion8. Further, we found that 

responses to running were different across neurons, inconsistent with modulation of an 

entire visual representation by a single locomotor-dependent gain function. Previous data 

appeared to suggest that the effect of locomotion was binary6, as would be expected if 

running caused a discrete change in cortical state31. However, we found that a binary model 

did not predict the firing rate responses as well as a continuous dependence on firing rate. 

Our data therefore indicate that locomotor effect on the responses of V1 neurons go well 

beyond a uniform difference in gain between running and stationary animals.

A second alternative hypothesis holds that V1 signals the mismatch between actual visual 

stimuli and those that should have been encountered given the locomotion. This explanation 

fits the theoretical framework of predictive coding32, and is supported by a recent report 

using two-photon imaging of superficial V1 neurons7. By exploring all combinations of run 

speed and visual speed, however, we found that only a small minority of V1 neurons (5/73) 

were selective for mismatch. Perhaps this discrepancy results from different selection biases 
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in the two recording methods: while our silicon probe recordings primarily recorded neurons 

from the deeper layers of cortex, two-photon imaging reports only neurons from layer 2/3; 

the possibility that prediction errors are specifically encoded in superficial layers has in fact 

been suggested by computational models33. However, a more likely reason may be 

differences in stimulus design. We avoided sudden perturbations of the visual stimulus, 

while the previous study7 specifically focused on such sudden perturbations. Such 

perturbations may trigger a change in alertness and often evoked behavioral response 

(slowing down) in their study. Behavior can evoke calcium responses in sensory cortex34,35, 

making it hard to disambiguate the influence of sensory mismatch from its behavioral 

consequences. Thus, the lack of sudden perturbations of the visual stimulus in our 

experiments might explain the differences in the observations.

What circuit mechanisms might underlie the effects we describe? The effects of locomotion 

on visual cortical processing may involve neuromodulators such as norepinephrine36. Our 

data are not inconsistent with this possibility, although the smooth (and sometimes 

bandpass) modulation of firing with running speed would require the neuromodulatory 

signal to encode speed in an analog manner. Furthermore the diverse effects of running we 

observed across neurons would suggest a diverse prevalence of receptors or circuit 

connections underlie the tuning for run speed. These receptors or circuits are most likely the 

same that support the effects of locomotion on spatial integration: locomotion can affect 

size-tuning, preferentially enhancing responses to larger stimuli8. This finding is compatible 

with our current results, but not sufficient to predict them; for example, the tuning for run 

speed that we observed here in the dark certainly could not be predicted by changes in 

spatial integration.

In our experiments we recorded from animals that navigated a familiar environment, in 

which the distance between the animal and the virtual wall (equivalently, the gain of the 

virtual reality system) was held constant. The mice had experienced at least three training 

sessions in closed-loop mode before recording, which would be sufficient for the 

hippocampus to form a clear representation of the virtual environment15, and are 

presumably sufficient for the animal to learn the stable mapping between movements and 

visual flow. In a natural environment, however, an animal’s distance to environmental 

landmarks can rapidly change. Such changes can lead to rapid alteration in visuo-motor 

gain, accompanied by changes in neural activity at multiple levels, as demonstrated for 

instance in zebrafish37. Furthermore, both animal behavior and neural representations can 

adjust to the relative noise levels of different input streams, in a manner reminiscent of 

Bayes-optimal inference19,38. In the case of mouse navigation, such changes should cause a 

reweighting of run and visual speeds in the estimation of an animal’s own running velocity. 

Such a reweighting could occur through alteration of the V1 representation, by changing the 

distribution of weights of visual and running speed to center around a new optimal value. 

Alternatively, however, such changes could occur outside of V1. The latter possibility is 

supported by the fact that the representation we observed in V1 allows readouts of a wider 

range of run-visual mixtures than a simulated population in which all neurons encoded a 

single interaction angle (Supplementary Fig. 12). Further experiments will be required to 

distinguish these possibilities. We also note that, while head-fixed animals are certainly 

capable of navigation in virtual reality15,27,39-41, animals that are not head fixed gain an 
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important cue for speed estimation from the vestibular system. To understand how this 

vestibular signal affects integration of visual and locomotor information requires further 

recordings from V1 neurons in freely moving animals42,43.

Our results suggest that the function of mouse visual cortex may be more than just vision. 

Indeed, a growing body of evidence suggests that neocortical areas are not specific to a 

single function, and that neurons of even primary sensory cortices can respond to a wide 

range of multimodal stimuli and non-sensory features2,3,5,44,45. Our results provide a 

striking example of such integration, and suggest an ethological benefit it may provide to the 

animal. Estimation of speed through the world is a critical function for navigation and is 

achieved by integrating inputs from the visual system with locomotor variables. Our data 

indicate that, at least in the mouse, this integration occurs as early as primary visual cortex.

Online Methods

Experiments were conducted according to the UK Animals (Scientific Procedures) Act, 

1986 under personal and project licenses issued by the Home Office following ethical 

review.

Surgery and training

Five wild-type mice (C57BL6, 20-26g) were chronically implanted with a custom-built head 

post and recording chamber (4 mm inner diameter) under isoflurane anesthesia. No 

statistical methods were used to predetermine group sizes; the sample sizes we chose are 

similar to those used in previous studies. We did not require blinding and randomization as 

only wild-type mice were used. In subsequent days, implanted mice were acclimatized to 

run in the virtual environment in 20-30 min sessions (4-12 sessions), until they freely ran 20 

traversals of the environment in 6 minutes. One day prior to the first recording session, 

animals were anesthetized under isoflurane and a ~1 mm craniotomy was performed over 

area V1 (centered at 2.5 mm lateral from midline and 0.5 mm anterior from lambda). The 

chamber was then sealed using silicone elastomer (Kwik-Cast).

Recordings

To record from V1 we inserted 16-channel linear multi-site probes (with site of size 312 or 

430 μm2, spaced 50 μm apart, NeuroNexus Tech.) to a depth of 900 μm. Recordings were 

filtered (0.3 - 5 kHz), threshold crossings were auto clustered using KlustaKwik46 followed 

by manual adjustment using Klusters47. A total of 194 units were isolated, of which 123 

were in deep layers (channel > 10), 11 in superficial layers (channel < 6, numbered surface 

to deep; we found layer 4 to be located around channels 6-10 based on a current source 

density analysis). 46 isolated units were judged to be well-isolated (Isolation distance48 

>20). All examples shown in the manuscript are well-isolated units. The analysis of data 

included all units (except dark condition), as restricting the analysis of the data to only well-

isolated units did not affect the results. Indeed, there was no correlation between spike 

isolation quality and QR (ρ = 0.06) or QPS (ρ = 0.07). The firing rate of each unit was 

calculated by smoothing its spike train using a 150 ms Gaussian window. All the stimuli and 

spiking activity were then sampled at 60 Hz, the refresh rate of the monitors.
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Virtual environment

Visual scenes of a virtual environment were presented on three monitors (19-inch LCD, 

HA191, Hanns.G, mean luminance 50 cd/m2, 35 cm away from the eye) that covered a 

visual angle of 170° azimuth and 45° elevation). Mice explored this environment by walking 

over an air-suspended spherical treadmill49 (Fig. 1a).

The environment was simulated in Matlab using the Psychophysics toolbox50, 51. The virtual 

environment was a corridor (120 cm × 8 cm × 8 cm) whose walls, ceiling and floor were 

adorned all along the corridor with a filtered white noise patterns of full Michelson contrast 

(overall RMS contrast: 0.14), and four positions in the corridor had prominent patterns as 

landmarks: gratings (oriented vertical or horizontal of full Michelson contrast, overall RMS 

contrast: 0.35) in three positions and a plaid (overlapping half-contrast horizontal and 

vertical gratings, overall RMS contrast: 0.35) in the fourth (Fig. 1a, b). Movement in the 

virtual reality was constrained to one-dimensional translation along the length of the room 

(the other two degrees of freedom were ignored). All speeds < 1 cm/s were combined into a 

single bin unless otherwise specified. The gratings had a spatial wavelength of 1 cm on the 

wall, which is equivalent to a spatial frequency of 0.09 cycles/° at a visual angle of 45° 

azimuth and 0° elevation. The white noise pattern was low-pass Gaussian filtered with a 

cutoff frequency of 0.5 cycles/° at 45° azimuth. Due to the 3-dimensional nature of the 

stimulus, the spatial frequency (in cycles/s) and visual speed (in °/s) presented are a function 

of the visual angle. Therefore, the speed of the visual environment is defined in terms of the 

speed of movement through the virtual reality environment, the virtual reality speed (virtual 

speed in cm/s). In closed-loop, this is the speed matched to what the animal would see if it 

were running in a real environment of the same dimensions. For reference, at a visual angle 

of 60° azimuth and 0° elevation, a virtual speed of 1 cm/s corresponds to a visual speed of 

9.6 °/s, 10 cm/s to 96 °/s and 30 cm/s to 288 °/s. The running speed of the animal is 

calculated based on the movement of the air-suspended ball in the forward/backward 

direction, as captured by the optical mice49.

The closed-loop condition was run first (>20 runs through the corridor), followed by two 

sessions of the open-loop condition. On reaching the end of the corridor on each run, the 

animals were returned (virtually) to the start, after a 3 s period during which no visual 

stimuli were presented (gray screen). In the open-loop condition, movies generated in 

closed-loop were simply played back, regardless of the animal’s run speed. For three 

animals (6 sessions), the closed-loop condition was repeated after the open-loop sessions. 

Following the measurements in virtual reality for all animals, we mapped receptive fields 

using traditional bar and grating stimuli. Each animal was taken through 1-3 such recording 

sessions.

Response function

The response of each neuron (shown in Figs. 1 and 3) was calculated as a function of the 

variables of the virtual environment and their various combinations using a local smoothing 

method previously used to compute hippocampal place fields52-54. For example, a neuron’s 

firing rate y(t), at time t, was modeled as a function χa(a(t)) over the variable a. To estimate 

the model χa, the variable a was first smoothed in time (150 ms Gaussian) and discretized in 
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n bins to take values a1, a2,…, an (the number of bins n was taken as 150 for position, 30 for 

speeds; the precise bin numbers were not important as response functions were smoothed) 

We then calculated the spike count map S and occupancy map Φ. Each point of the spike 

count map was the total number of spikes when a(t) had a value of ai: Si = Σt:(a(t)=ai)y(t), 

where i is the index of bins of variable a. The occupancy map was the total time spent when 

the variable a had a value of ai: Φi = Σt:(a(t)=ai) Δt where Δt was the size of each time bin (Δt 

= 16.67 ms). Both the spike count (S) and occupancy (Φ) maps were smoothed by 

convolving them with a common Gaussian window whose width σ (ranging between 1 bin 

to total no. of bins) was optimized to maximize the cross-validated prediction quality 

(explained below). The stationary/static bins were not included in the smoothing process. 

The firing rate model was then calculated as the ratio of the smoothed spike count and 

occupancy maps:

where ηa (0, σ) is a Gaussian of width σ, and the operator ‘*’ indicates a convolution. Based 

on the model, fit over training data, we predicted the firing rate over the test data as:

where ya(t) is the prediction of firing rate based on variable a. A similar procedure was 

followed for the 2D “speed maps”, where two independent Gaussians were used to smooth 

across each variable.

Prediction quality

Response functions and models were fit based on 80% of the data and the performance of 

each of models was tested on the remaining 20% (cross-validation). We calculated the 

prediction quality Qa of model χa, based on variable a, as the fraction of variance explained:

where y(t) is the smoothed firing rate (150 ms Gaussian window) of the neuron at time t, 

ya(t) was the prediction by model χa for the same time bin and μ is the mean firing rate of 

the training data. A value of Q close to 0 suggests the model does not predict the firing rate 

of the neuron any better than using a constant and a higher Q suggests good performance. 

Values of Q close to 1 are unlikely as the intrinsic variability in the response of neurons, 

which is uncorrelated to the stimulus, is not captured by any of the models. Very low values 

of Q suggest that the response is unreliable. Therefore, we only concentrated on neurons 

whose responses were reliable for further analysis by setting a limit of Q > 0.1 (Fig. 1g: 

110/194 neurons with QPS> 0.1 and Fig 2j: 73/194 neurons with Qmap> 0.1). To compare 

the metric explained variance of the mean response which is more commonly used, we 
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calculated Q and explained variance on direction tuning of neurons. We found that neurons 

with a model for direction tuning of Q > 0.1 had an explained variance in the range of 

0.75-0.97 (two examples are shown in Supplementary Fig. 3). To test the alternative 

hypothesis of a binary model of run speed, we only considered two bins, which were 

whether the animal ran (Speed > 1 cm/s) or not. We used the mean firing rate of the training 

data in these bins, to predict firing rate of the test data and calculate Qbinary.

Responses in darkness

We trained a separate set of animals (n = 3) with an additional 5-10 minute condition of 

complete darkness. The darkness was achieved by turning all the non-essential lights and 

equipment in the room off. Light from essential equipment outside the recording area (e.g. 

recording amplifiers) was covered with a red filter (787 Marius Red; LEE filters), rendering 

any stray light invisible to mice. As a result, the recording area was completely dark both for 

mice and for humans (luminance <10−2 cd/m2, i.e. below the limit of the light meter). We 

used 32-channel, 4 shank multisite probes (spaced 200 μm apart) to record one session on 

each animal; each shank had two sets of tetrodes spaced 150 μm apart (Each electrode had 

recording sites of 121 μm2, Neuronexus). We recorded a total of 145 units of which 55 were 

well-isolated units (Mahalanobis distance > 20). We only considered the well-isolated units 

for analysis in the dark condition. Similar results were obtained when considering all units 

(not shown). The dark condition during the three recording sessions lasted 8, 9 and 13 mins. 

In this condition, speed was defined as the amplitude of the two-dimensional velocity vector.

Responses in the dark condition were calculated by discretizing the run speed such that each 

speed bin contained at least 7% of the dark condition (>30 s). In cases where the animal was 

stationary for long periods of time (>7%), the stationary speed (≤ 1 cm/s) bin had more data 

points. We calculated the mean and error of the firing rate in each of the speed bins (Fig. 2). 

The speed in any bin was the mean speed during the time spent at that speed bin. To assess 

statistical significance of modulation by run speed, for each neuron we recalculated the 

firing rate as a function of speed in each bin after shuffling the spike times. As a 

conservative estimate we considered a neuron’s response to be significantly modulated by 

run speed if the variance of its responses was greater than 99.9% of the variance of the its 

shuffled responses (p<0.001). To test if the neuron’s response was significantly non-binary, 

we followed the same procedure as above, but restricting the test to only periods when run 

speed was > 1 cm/s.

To characterize the run speed responses we fit the mean responses to speed s (s > 1 cm/s) by 

the following descriptive function55, 56:

where σ(s) was σ− if x < xmax and σ+ if x > xmax, and ymax, xmax, σ− and σ+ were the free 

parameters. We fit three curves by adding constraints on xmax: a) a monotonically increasing 

function was fit by constraining xmax to be greater than ≥ 30 cm/s, b) a monotonically 

increasing function was fit by constraining xmax to be ≤ 1 cm/s, and c) a bandpass curve by 

not constraining xmax. These three curves were fit on 80% of the data and we tested the 
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fraction of explained variance of the firing rate on the remaining 20%. We considered a 

neuron bandpass only if the variance explained by the band-pass curve was greater than both 

a monotonically increasing or decreasing curve and when xmax was > 2 cm/s and < 25 cm/s.

Weighted sum model

The firing rate of a neuron i at time t, yi(t) was modeled as:

where α = sin(θ), β = cos(θ), V(t) is the virtual speed, R(t) the run speed of the animal at time 

t. The function f [ ] was estimated using a 1d version of the same binning and smoothing 

procedure described above for estimating response functions. For each cell, the model was 

fitted for a range of integration angles θ from 0 to π in steps of π/16. The optimal integration 

angle θmax was chosen as the value of θ giving the highest cross-validated prediction quality.

Population decoding

The smoothed (0.9 s Gaussian window) firing rate vector of all simultaneously recorded 

neurons was used to predict a linear combination of virtual speed and run speed (sin(θ) V(t) 

+ cos(θ) R(t)) for a range of interaction angles θ from 0 to π in steps of π/16. As our 

hypothesis is to test the decoding of speed relevant to navigation, we consider all speeds < 3 

cm/s to be stationary (Red curves in Fig. 4b-d), or ignored all the times when either run 

speed or visual speed were < 3cm/s (Gray curves in Fig. 4c,d; we only considered sessions 

(9/11) where >100 seconds fulfilled this criterion). Reducing the limit to < 1 or 0.03 cm/s 

did not affect the trend in the decoding performance (shown in Supplementary Figs. 11 & 

12). We used a linear decoder (ridge regression, with the ridge parameter optimized by 

cross-validation), to evaluate how well an observer could decode a combination of speeds 

given the firing rate of the population. The performance of the decoder was tested as the 

fraction of variance explained on an independent 20% of the data that was not used to train 

the decoder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neuronal responses in V1 are strongly influenced by speed
a. Examples of visual scenes seen by the animal during virtual navigation. b. The virtual 

environment was a corridor with four landmarks (three gratings and one plaid). Movement 

in the environment was restricted to the forward direction. Dots indicate the positions of the 

example scenes in a. c. The paths taken by an animal in 15 runs through the corridor. d. The 

same paths expressed in terms of speed at each position. Red dots: spikes generated by a V1 

neuron. e-f. The firing rate of two neurons as a function of animal position and speed. Right: 

Dependence of firing rate on position alone. Top: Dependence of firing rate on speed alone; 

the leftmost point corresponds to all speeds ≤ 1 cm/s. Error bars are the standard deviation 

over different training sets. g. The relative power using position alone (QP/QPS) and speed 

alone (QS/QPS) to predict firing rate. The dotted line denotes QP + QS = QPS. Red dots 

indicate neurons in e and f. Solid dots indicate well isolated single units. Example neurons 

shown here and in all figures are all well-isolated units.
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Figure 2. Tuning of V1 neurons for run speed in the dark
a-c. Dependence of firing rate on run speed for three V1 neurons measured in the dark. 

Error bars indicate 2 s.e. The sampling bins were spaced to have equal numbers of data 

points; curves are fits of a descriptive function (see Methods). Arrows indicate the speed at 

the maximal response, and open circles the firing rates when the animal was stationary. d. 
The preferred run speed (peak of the best fit curve) for the neurons that show a significant 

non-binary modulation of firing rate as a function of run speed (n = 27 well-isolated 

neurons). Neurons where the preferred speed was <2 cm/s are considered low-pass (Low; 

example in c); neurons where the preferred speed was >25 cm/s are considered high-pass 

(High; example in a), while the remainder are considered bandpass (example in b).
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Figure 3. V1 Neurons are tuned for a weighted sum of run speed and virtual speed
a. Some paths in virtual speed and run speed taken by an animal in the open-loop condition. 

b-d. “Speed maps” showing firing rate of three example neurons as a function of virtual 

speed and run speed. Right: Dependence of firing rate on run speed alone. Top: Dependence 

of firing rate on virtual speed alone. e. In the weighted sum model, firing rate is a nonlinear 

function f of a weighted sum of virtual speed V and run speed R. The weights α and β are 

summarized by a single interaction angle θ = tan−1(α/β). f-h. The model captures the main 

features of the full speed maps (left; compare to b-d). Right: the model’s predictive power as 

a function of θ. The optimal interaction angle θmax is highlighted in red and indicated as a 

vector in the left panel. The dashed line represents the predictive power of the original speed 

map. i. Comparison of predictive power using the weighted sum model (Qmodel) at the 

optimal interaction angle (θmax), to that using the speed map (QRV). Dotted line indicates 

equal performance. Blue points mark the examples in f-h. Solid dots indicate well-isolated 

units. j. Distribution of optimal interaction angles θmax across neurons. The black bars 

indicate the distribution for well-isolated units.
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Figure 4. V1 population activity encodes positive combinations of virtual and run speed
a. The activity of 24 V1 neurons during an epoch of open-loop navigation, represented as a 

grayscale map. The firing rate of each neuron was normalized for illustration purposes. b. 
Population activity was used to predict linear combinations of run speed and virtual speed 

using a linear decoder that was trained and evaluated on separate parts of the dataset. The 

black curve shows a weighted average of virtual speed and run speed (interaction angle θ ~ 

π/3), and the red curve its prediction from population activity, for the same epoch as in a. c. 
Performance of the population decoder as a function of interaction angle (θ), for a single 

experimental session. Error bars are s.e. across 5 runs of cross-validation. The dotted line 

indicates the mean performance across all interaction angles. The highlighted point indicates 

the example shown in b. The gray curve shown the performance when the decoding is 

restricted to periods when both virtual speed and run speed were > 3 cm/s. d. Decoding 

performance as a function of θ across recording sessions. Error bars are s.e. across sessions.
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