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Abstract: The molecular structure, luminescence behavior, and electronic energy level of an organic
optoelectronic materials are important parameters for its synthesis. The electro-optical properties can
be changed by modifying the structure of the molecule to make the electronic energy level adjustable.
In this article, a series of organic conjugated micro-molecules are successfully synthesized by linking
small compound units. This metal-free [2 + 2] click chemistry process generates donor–acceptor
chromophore substances with high yield, high solubility, and adjustable energy levels, which can be
widely used for sensors and nonlinear optics in different fields. A-TCNE, A-TCNQ, and A-F4-TCNQ
molecules are characterized comprehensively via UV-Vis-NIR spectra, 1H NMR spectra, infrared
spectroscopy, and mass spectrometry. The unique nonlinear optical phenomena and powerful intra-
molecular charge–transfer interactions of these new materials give them fascinating potential for
application as optoelectronic materials.

Keywords: energy level; click chemistry; nonlinear optical; sensing detection

1. Introduction

The precise docking of small cell groups to form highly stereoselective compounds
is at the heart of click chemistry, which has been applied to the synthesis of conjugated
molecules to obtain efficient and stable products [1]. This novel concept, introduced by
Sharpless, is a modular linkage method that allows the target compounds to be aligned
perfectly and quickly in the same manner as “keychain” reactions, while avoiding the
generation of harmful by-products and sensitivity to water and oxygen [2]. Cu(I)-catalyzed
azide–alkyne cycloaddition reactions (CuAAc) have received a lot of attention and have
numerous applications [3–6]. The Cu(I) catalyst plays an important role in lowering the
energy barrier during the whole transition metal ring formation process [7,8], with the
subsequent formation of triazole derivatives by ring contraction and protonation, which
has helped in the development of antibacterial and anticancer drugs and ion sensors [9–13].

Click chemistry is a high selectivity strategy that can be combined with ion sensing,
which also requires precise identification to obtain satisfactory chemical sensors. The
detection and identification of metal ions is valuable in addressing environmental pollution
and understanding human environmental conditions [14,15]. Lin developed a fluorescent
quenching chemical sensor based on CuAAc, which is a low-cost and efficient tool for the
detection of Cu2+ [16], while Tane et al. obtained a highly selective metal cation sensor using
carbazole derivatives, which was also achieved on the basis of CuAAc derivation [17,18].

In recent years, metal-free catalyzed thermal [2 + 2] cycloaddition reactions have
emerged as the focal point of click reaction types [19–21]. They maintain the “click”
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behavior without metal catalysis; furthermore, in the synthesis of organic conjugated
small molecules, they have energy level modulation properties and thermal stability
that other click reaction types such as CuAAc lack, and are vastly used in the synthe-
sis of optoelectronic materials [22]. The donor–acceptor chromophores with narrow band
gaps are obtained via cyclization of common electron acceptors such as tetracyanoethy-
lene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and 2,3,5,6-tetrafluoro-7,7,8,8-
tetracyanoquinodimethane (F4-TCNQ) with electron-rich alkynes in a “click-on” man-
ner [23]. The regulation of the energy level of the conjugated molecule is carried out by
the shift of the highest occupied molecular orbital (HOMO) and lowest occupied molec-
ular orbital (LUMO) [24,25]. Photoelectric materials are significantly favored by thermal
[2 + 2] click reactions, where the products acquire strong charge–transfer effects through
the optimization of electronic states, while the active photoelectric properties are suitable
for devices in multiple fields, such as photovoltaic cells, ion sensors, and nonlinear optical
materials [26–32].

In this study, conjugated photoelectric small molecules with strong redox activity are
obtained by introducing electron acceptor molecules on the side chain alkyne group of
4-((2,5-dibromophenyl) ethynyl)-N, N-dihexadecylaniline with no by-products, while the
quantitative consumption of the side chain alkyne group proved the high efficiency and
selectivity of the click reaction. The nonlinear optical properties, electrochemical properties,
and relative sensing ability of the products are described, showing the potential of the
“click” method for application in optoelectronic functional materials.

2. Materials and Methods
2.1. Materials

The chemicals required for the synthesis were purchased from J&K (Beijing, China)
and Aldrich (Shanghai, China). The 2,5-dibromoaniline was subjected to diazotization
reaction and Sandmeyer reaction (a) to produce 2,5-dibromoiodobenzene, which was
then metal coupled with 4-ethynyl-N, N-dihexadecylaniline (b) to obtain the electron-rich
4-((2,5-dibromophenyl) ethynyl)-N, N-dihexadecylaniline, with the specific synthesis pro-
cedure based on the literature method [28,33,34].

1H NMR spectra were measured with samples held at 20 ◦C on a AV300 NMR spectrom-
eter (300 MHz, Bruker, Karlsruhe, German) while describing the resonance multiplicity of
the product, with SiMe4 as the solvent. Infrared spectra (IR) were acquired using a JASCO
FT/IR-4100 spectrometer. MALDI-TOF-MS spectra were recorded on a AXIMA-CFR mass
spectrometer manufactured by Shimadzu, Kyoto, Japanat 20 kV accelerating potential with
dithranol base in linear positive ion mode. UV-Vis-NIR spectra were obtained on a Shimadzu
JASCO V-570 spectrophotometer. The elemental analysis was performed using a Flash EA
1112 instrument (Thermo, Massachusetts, U.S.). Electrochemical studies were taken using
Ag/Ag+/CH3CN/Bu4NPF6 as the reference electrode for cyclic voltammetry measurements.
The iron–ferrocene (Fc/F+

c ) couple as the potential standard was also used to obtain specific
data on a CHI 660C instrument (Shanghai Chenhua Instruments Co., Shanghai, China) at rt.
The Z-scan curves depict the nonlinear optical properties (NLO) and the required laser pulses
were powered by a mode-locked Nd:YAG laser (EKSPLA: PL2143B).

2.2. Methods

TCNE (25.6 mg, 0.2 mmol) was added in a solution of 1,2-dichloroethane (5 mL) dis-
solved in A (79.7 mg, 0.1 mmol) to a round-bottom flask and then the mixture was stirred at
25 ◦C for 1 h. The solvent was removed in a vacuum and the crude product was purified via
column chromatography of SiO2 and CH2Cl2 to give A-TCNE (87.9 mg, 95%) as a brown
solid. 1H NMR (CDCl3, 300 MHz): δ = 0.90 (m, 6H), 1.29 (s, 52H), 1.58 (m, 4H), 3.39 (m, 4H),
6.68 (d, J = 5.7 Hz, 2H), 7.57 (d, J = 5.1 Hz, 1H), 7.60 (s, 1H), 7.63 (d, J = 5.1 Hz, 1H), 7.68
(d, J = 5.4 Hz, 2H) ppm. FT-IR (KBr): ν = 2922, 2853, 2216, 1602, 1487, 1416, 1367, 1340, 1207,
1183, 1030, 821, 722 cm−1. MALDI-TOF-MS (dithranol) m/z: calcd for C52H73Br2N5:
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925.42 g·mol−1, found: 926.3 g·mol−1 [MH] [MH]+.Elemental analysis calcd (%) for:
C 67.30, H 7.93, N 7.55; found: C 67.27, H 7.96, N 7.57.

TCNQ (40.8 mg, 0.2 mmol) was added to A (79.7 mg, 0.1 mmol) in 1,2-dichloroethane
(5 mL), and the mixture was stirred at 60 ◦C for 1 h. The solvent was removed in a vacuum
and the crude product was purified by column chromatography (SiO2, CH2Cl2) to obtain a
greenish-black A-TCNQ (97.1 mg, 97%) solid. 1H NMR (CDCl3, 300 MHz): δ = 0.90 (m, 6H),
1.36 (s, 52H), 1.64 (m, 4H), 3.39 (m, 4H), 6.66 (d, J = 5.4 Hz, 2H), 7.22 (d, J = 5.4 Hz, 4H), 7.56
(s, 1H), 7.60 (d, J = 5.1 Hz, 1H), 7.63 (d, J = 5.1 Hz, 1H), 7.68 (d, J = 5.4 Hz, 2H) ppm. FT-IR
(KBr): ν = 2923, 2852, 2204, 1604, 1582, 1521, 1457, 1399, 1367, 1364, 1324, 1182, 1095, 884,
827, 722 cm−1. MALDI-TOF-MS (dithranol) m/z: calcd for C58H77Br2N5: 1001.45 g·mol−1,
found: 1002.3 g·mol−1 [MH]+. Elemental analysis calcd (%) for: C 69.38, H 7.73, N 6.97;
found: C 69.34, H 7.77, N 6.96.

F4-TCNQ (55.2 mg, 0.2 mmol) was added at 80 ◦C to a solution of A (79.7 mg, 0.1 mmol)
in 1,2-dichloroethane (5 mL) by stirring the mixture for 1 h. After removal of the solvent in
vacuum, a purified crude product was made using column chromatography (SiO2, CH2Cl2)
to obtain A-F4-TCNQ (97.7 mg. 91%) as a scarlet red solid. 1H NMR (CDCl3, 300 MHz):
δ = 0.91 (m, 6H), 1.32 (s, 52H), 1.58 (m, 4H), 3.42 (m, 4H), 6.66 (d, J = 5.4 Hz, 2H), 7.55 (d,
J = 4.8 Hz, 1H), 7.62 (s, 1H), 7.67 (d, J = 5.4 Hz, 1H), 7.72 (d, J = 5.4 Hz, 2H) ppm. FT-IR
(KBr): ν = 2924, 2853, 2197, 1632, 1598, 1433, 1388, 1355, 1192, 1044, 973, 818, 720 cm−1.
MALDI-TOF-MS (dithranol) m/z: calcd for C58H73Br2F4N5: 1073.42 g·mol−1, found: 1074.7
g·mol−1 [MH]+. Elemental analysis calcd (%) for: C 64.74, H 6.s84, N 6.51; found: C 64.70,
H 6.86, N 6.54.

3. Results

A series of unique nonplanar donor–acceptor push–pull chromophores were synthesized
from A with olefins such as TCNE, TCNQ, and F4-TCNQ attached with strongly electron-
absorbing groups through click reactions. Compound A is one of the ingredients used in
the click chemistry synthesis process, which is obtained from 2,5-dibromoaniline via the
substitution of the amino position to an equivalent amount of the alkyne group after the
Sandmeyer reaction and the catalytic coupling with Cu(I) (Figure 1). As shown in Figure 1,
the click reagents were reacted with the pink mark acetylenic bonds, after which the samples
turned dark. The synthesis of donor–acceptor chromophores was performed using aromatic
precursors (strong donor groups) substituted by amines, and the reaction rates for the different
click reagents strongly depended on the concentration and temperature. Practically, it was
proven that high-yielding products can be produced using accurate click-type synthesis
methods without generating by-products. The NMR and IR spectra and mass spectrometry
data for the products also provided evidence of their good purity. Together with their
promising solubility in common solvents such as acetone, these results greatly facilitate
the post-processing and further use of click products to a considerable extent for modular
synthesis. Distinct from conventional click chemistry, the present work does not cover the
participation of metals beyond fulfilling the basic click reaction characteristics, making this
a new promising type of click chemistry. This type of reaction promises as much electron
uptake as possible in a narrow potential range, which is of great importance for the further
optimization of optoelectronic materials and their properties.
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Figure 1. Synthesis routes of click compounds: (a) NaNO2, KI, HCl/H2O; (b) Pd(PPh3)4,
CuI, Et3N/THF, rt.

4. Discussion
4.1. Spectral Analysis

The UV-Vis-NIR absorption spectra of the click derivatives prepared from A and click
reagents measured in CH2Cl2 solution are shown in Figure 2a. Compared to A, A-TCNE, A-
TCNQ, and A-F4-TCNQ show a clear broadening of the absorption band as well as a strong
CT band with end-absorption wavelengths up to the NIR region. The strongly electron-
absorbing group present in TCNE is attributed to the red shift of the plot of the A-TCNE
product relative to A. In addition, the red shift of A-TCNQ is caused by the lengthening of
the conjugation length of the TCNQ molecular backbone. The fluorine atom introduced in
F4-TCNQ further enhanced the electron absorption ability of the group, which resulted
in a remarkable strengthening of its electron affordability, with the maximum absorption
peak located at 979 nm and the terminal absorption reaching 1433 nm. In conclusion, the
introduction of different click molecules in A shifted the CT band from 366 to 506, 790,
and 979 nm, while the terminal absorption wavelengths shifted from 434 to 925, 1180, and
1433 nm, respectively.

Figure 2. (a) Normalized UV-Vis-NIR spectra of compounds in CH2Cl2. (b) UV-Vis-NIR spectral
change of A with the addition of TCNE reaction to the electron-rich alkyne. Inset: Plot of TCNE
addition vs. absorbance increase at 532 nm.
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A quantitative TCNE solution dissolved in 1,2-dichloroethane was added dropwise at
room temperature to A dissolved in CH2Cl2, which had a yellow color. The liquid then shifted
to a dark red color followed by a gradual increase at about the 532 nm CT band. The isotopic
points corresponding to 312 nm and 392 nm in the UV-Vis-NIR spectral region are strong
evidence for the absence of side reactions, indicating that a complete reaction was carried out,
consistent with click chemistry (Figure 2b). An equivocal reaction between the alkyne group
of compound A and TCNE occurred, as shown in the inset in Figure 2b, since the addition of
TCNE and the absorbance of A at 532 nm in the figure exhibit a linear variation.

4.2. Electrochemical Properties

To express the influence of different extents of the π-conjugated system on the redox
activity of the donor–acceptor chromophore, the electrochemical properties of the A and
click derivative products were characterized using cyclic voltammetry and density flooding
theory (DFT). The cyclic voltammograms of the A and target products are shown in Figure 3.
Table 1 provides their oxidation and reduction potentials together with the HOMO and
LUMO orbital energy levels and electrochemical band gaps (Eg). The energy levels of A,
A-TCNE, A-TCNQ, and A-F4-TCNQ were calculated from −4.8 eV of ferrocene (Fc) with
respect to the vacuum (0 eV). The oxidation potential of Fc (the reference electrode was
Ag/AgCl) was tested at 0.21 V. The energy level calculation formulas were:

EHOMO = −e
[
Uon

ox − U1/2,Fc + 4.8 V
]

(1)

ELUMO = −e
[
Uon

red − U1/2,Fc + 4.8 V
]

(2)

where U1/2,Fc is standardized to the semi-wave potential of Fc/F+
c [35,36].

Figure 3. Cyclic voltammograms of all compounds in CH2Cl2 with 0.1 M Bu4NPF6 at rt, at a scanning
rate of 0.1 V·S−1, with Ag/AgCl as the reference electrode.
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Table 1. Optical and electrochemical properties of the compounds.

Materials λ (nm) Eon
ox 1

(V)
Eon

red 1

(V)
HOMO

(eV)
LOMO

(eV)
Eg 2

(eV)
Eg 3

(eV)

β

(×10−11

m/W)

n2
(×10−18

m2/W)

A 366 0.54 - −5.13 - - 2.86 - -
A-TCNE 414,506 0.96 −0.45 −5.55 −4.14 1.41 1.34 −3.6 −2.4
A-TCNQ 470,790 0.52 −0.30 −5.11 −4.29 0.82 1.05 43.0 -

A-F4-
TCNQ 494,979 0.55 −0.12 −5.14 −4.47 0.67 0.87 - -

1 Onset potentials determined from cyclic voltammograms. 2 Band gaps calculated from the energy levels of cyclic
voltammograms. 3 Band gaps estimated from the end-absorption wavelengths of optical absorption in CH2Cl2 solution.

From Table 1, it can be seen that the onset reduction potentials (Eon
red) of A-TCNE,

A-TCNQ, and A-F4-TCNQ gradually increase and the LUMO orbital energy level gradually
decreases. The Eon

red values of A-TCNQ and A-F4-TCNQ increase by 0.15 eV and 0.33 eV,
whereas the LUMO orbital energy levels decrease by 0.15 eV and 0.33 eV over that of A-
TCNE. This illustrates that the electron-accepting ability of the click derivatives is affected
by the stretch of the π-conjugation structure and the addition of strong electron-absorbing
groups, which makes it easier to form the donor chromophore fraction. Both A-TCNQ
and A-F4-TCNQ exhibit lower Eg values than the A-TCNE, possibly because of the π-
conjugation depletion of the acceptor molecules. In most cases, these electrochemical band
gaps are well in accordance with the optical band gaps determined by terminal absorption.

4.3. Nonlinear Optical Properties

The Z-scan technique is an important method relying on the spatial distortion of the
beam to study the nonlinear optical properties (NLO) of the target product. Figure 4 shows
the NLO results of the click products produced by the reaction of different click reagents
without nonlinear optical phenomena. Additional respective parameters are shown in
Table 1. After being clicked by TCNE, A-TCNE obviously exhibited nonlinear saturable
absorption because of the strong absorption intensity of A-TCNE at 532 nm. Strong proof
that A-TCNE can be used as a nonlinear optical material can be found from n2 < 0.
The values are of a similar order of magnitude to the common acridone, chalcone, and
quinazolinone derivatives [37–39]. From A-TCNE to A-TCNQ, the nonlinear absorption
coefficients β of materials were found to change from negative to larger positive values, and
a trend from nonlinear saturable absorption to nonlinear inverse saturable absorption was
found, which was attributed to the extended conjugation length of the molecular backbone.
If F4-TCNQ was used as the click reagent, the nonlinear optical phenomena disappeared.
Perhaps, as an electron-withdrawing group, the moiety from F4-TCNQ was so strong that
the nonlinear optical response time was clearly shortened.

4.4. Sensing Detection

The donor–acceptor sensor molecule, which is obtained via click reaction using the
alkyne group as a donor and then selecting a suitable acceptor substance, has promising
research potential and has a strong visible absorption band that is explained by the intra-
molecular CT interactions. According to Figure 5 (Inset), when Ag+ was chosen as a tight
receptor molecule, the inverse anions of the examined metal cations of trifluoromethanesul-
fonic acid (OTf) were inert in the recognition event. In DMF, the CT band had a maximum
peak position at 896 nm, which was lower than in CH2Cl2. The position of the peak did
not change; however, a linear increase in intensity was apparent with the amount of Ag+

added. A red shift of the other peak (at 450 nm) occurred as a result of an increase in the
addition of Ag+.
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Figure 4. Z-scan results of the compounds in CH2Cl2.

Figure 5. UV-Vis–NIR spectral changes of the sensors with Ag+ (A-F4-TCNQ/DMF: 1 × 10−4 mol/L;
AgSO3CF3/DMF: 0.2 mol/L, titration dose: 2 µL each, rt). Inset: Intermolecular interaction between
A-F4-TCNQ and Ag+.

On titration, the isotopic points appeared at 525 and 1027 nm, meaning that no side
reactions occurred in the whole reaction system and only click reactions were present.
Same titration experiments were made for other click compounds, without being able to
detect particular phenomena. According to the inset in Figure 5, an individual A-F4-TCNQ
molecule contains four −CN, which can theoretically react with four molecules of AgOTf
in coordination [40,41], while the actual titration process also confirmed the quantitative
relationship between A-F4-TCNQ and the added Ag+ close to 1:4, at the same time proving
the interaction between −CN and Ag+. The phenomenon in Figure 5 also excluded the
potential for intermolecular aggregation. It was also suggested that the cyanide of A-F4-
TCNQ has a high electron density distribution, and may show strong electronegativity or
even an ionic nature.
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5. Conclusions

A set of substituted alkyne-acceptor molecules were synthesized in high yields via
metal-free [2 + 2] cycloaddition click reactions, whereby the strength of the conjugation sys-
tem in the acceptor module had a great influence on the properties of the whole molecule.
The synthesized A-TCNE, A-TCNQ, and A-F4-TCNQ were characterized using 1H NMR,
UV-Vis-NIR, and MS. When conjugated with increasing intensity of the acceptor molecules
and the electron-absorbing groups, an apparent red shift in the UV-VIS-NIR spectra
of the click derivatives was exhibited, which was caused by the strong intramolecular
charge–transfer effect. By testing the electro-chemical properties, it was found that in
combination the expansion of the π-conjugated system and the electronic absorbing groups
enhanced the formation of donor chromophores in the conjugated molecules. However,
the nonlinear optical effect of the material disappears in A-F4-TCNQ, which may be due to
the sharp shortening of the response time of the nonlinear optics caused by multiple strong
electron-absorbing groups (–CN), thereby exhibiting a nonlinear optical phenomenon dif-
ferent from that of A-TCNE and A = TCNQ. In particular, there are direct recognition sites
for Ag+ in the donor–acceptor chromophores. In conclusion, the new materials synthesized
in this paper are of high application value as optoelectronic materials in terms of their
modulation performance, sensing detection, and nonlinear optics.
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