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Abstract: The present study is aimed at disclosing metabolic profile alterations in the leaves of the
Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis
formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A
highly effective AM symbiosis was established in the period from the stooling to the shoot branching
initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive
accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves.
Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical
analyses made it possible to identify the clustering of various groups of 320 metabolites and thus
demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The
results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM
not only accelerates the transition between plant developmental stages but delays biochemical
“maturation” mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized
plants. Several methods of statistical modeling proved that, at least with respect to determining
the metabolic status of host-plant leaves, stages of phenological development have priority over
calendar age.

Keywords: Medicago lupulina; arbuscular mycorrhiza; Rhizophagus irregularis; symbiotic efficiency;
plant development; physiological stage; leaf; metabolic profile

1. Introduction

Arbuscular mycorrhiza (AM) is one of the oldest forms of widespread symbiosis and
was a factor in the land invasion of plants more than 400 million years ago [1]. Most
land plants form this symbiosis with fungi from the Glomeromycotina subdivision in the
Mucoromycota division [2]. AM promotes plant growth by enhancing mineral (primarily
phosphorus) nutrition [3] and increases plant adaptive fitness to biotic and abiotic fac-
tors [4–7]. AM fungi are obligate symbionts and receive 4–20% of their photosynthetic
products from the host plant in the form of glucose [8,9] and sucrose [8,10]. The intensity
of the host plant’s phosphate and carbohydrate metabolism in AM defines whether the
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interaction between symbiotic partners is mutualistic or parasitic [3,11,12]. Recent inves-
tigations have revealed the possible signaling function of sugars and Pi starvation in the
establishment of AM [8,13,14]. Close interaction between sugar and hormone signaling
extend the possible means by which plant growth and development are regulated as well
modulating the establishment of AM [15].

The complexity of this above organismic system requires a new integral method of
analysis. Recently, plant-AM fungi interactions have been subjected to a new systemic
approach. The full-scale transcriptome of M. truncatula [16,17] elaborated its alterations
during AM formation and subsequent development [18–20]. Particular interest was paid to
further functional protein analysis. A number of studies revealed several symbiosis-specific
protein groups: the AM-specific phosphate transporter MtPT4 in M. truncatula [21,22],
MtPT8 [23], AM-specific ATPase, Mtha1 [19,24], Mtsucs1 sucrose synthase, and sucrose
biosynthesis enzymes [25]. Sometime later, full metabolic profiling was performed on
M. truncatula roots. This revealed fatty acids that were particular to AM [26]. AM
plants were characterized by an increase in the total content of carbohydrates, glucose,
and starch [27].

Later on, the effect of R. irregularis inoculation on the metabolic profile of Senecio
jacobaea shoots and roots at the 70th DAI (10th week after treatment) was examined [28]. A
total of 33 compounds (including seven apocarotenoids) were shown to be accumulated in
the roots of colonized plants. However, the absence of significant changes in metabolites
was found in all OPLS-DA models of ragweed shoot tissues due to AM colonization [28].
A larger set of root metabolites (>600) was studied at the 50th DAI (day post inoculation)
in Solanum lycopersicum L. cv. Castlemart [29]. Significant changes in metabolite profiles
were found in the roots of the spr2 mutant with modified levels of R. irregularis mycorrhiza-
tion [29]. M. truncatula cv. Jemalong J5 plants inoculated with R. irregularis (strain BEG141)
showed an increase in the biosynthesis of flavonoids, terpenoids, jasmonic and abscisic acid
with a decrease in the biosynthesis of salicylic acid, as well as an increase in the expression
of transcription factor MYC2, the main regulator of JA-dependent reactions [30]. Data were
obtained at 28 DAI (4 weeks post-inoculation).

Thus, to summarize, the plant metabolome varies distinctly depending on the con-
ditions of mycorrhization and plant species. Significant AM-induced changes in the root
metabolome are not always accompanied by changes in the shoot metabolome [28]. Un-
fortunately, studies of the AM effect on the plant metabolome were non-systemic and did
not test for stages of host plant development. Rather, samples were taken at randomly
selected days after inoculation or sowing [29–33]. The data obtained for some plant species
is therefore difficult or sometimes even impossible to apply to other species [27]. For this
reason, the general mechanisms controlling the metabolism of different plant species in
AM have yet to be identified.

The collected data do not always allow for the determination of whether alterations in
metabolic profiles were caused by AM establishment or host-plant development. Recently,
the effect of mycorrhization with R. irregularis on metabolic and physiological alterations
was analyzed in the leaves of peas (P. sativum) at six key stages of host-plant development
from the 7th to 110th DAI [34,35]. It was significant even though this cv. Finale formed an
ineffective symbiosis with R. irregularis [34]. It was discovered that AM partially suspends
senescence of the leaves (i.e., prolongs the period of “youth” of the leaves) and possibly
leads to better accumulation of metabolites such as amino acids and unsaturated fatty acids.

How this metabolic AM effect would be modified in the case of effective AM symbiosis
is very questionable. The study is aimed at defining alterations in the leaf metabolome
of the highly mycotrophic M. lupulina MlS-1 line from the early to late stages of plant
development under conditions of low phosphorus levels in the substrate.
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2. Results
2.1. The Effect of Symbiosis with R. irregularis on Phosphate Accumulation in the Ecologically
Obligate Mycotrophic M. lupulina MlS-1 Line under Low Pi Conditions

The study showed that in inoculated M. lupulina plants, the frequency of AM fungus
R. irregularis mycorrhizal infection (F) continuously increased throughout the entire life
cycle of M. lupulina (Figure 1A), a significant (p < 0.05) F value increase was observed at the
stooling (ST) stage, by 1.5 times, and in the flowering development (FD) stage, by 1.3 times.
The data correspond to the previously published detailed development of AM structures
for this model object (intraradical mycelium, arbuscules, and vesicles of AM fungus) [12].

Figure 1. AM frequency in M. lupulina roots (F), (A) at different development stages, phosphate levels in M. lupulina leaves
(B) at common development stages in “−AM” (without AM) and “+AM” (inoculated with R. irregularis). “1L”, “3LI”, “SI”,
“ST”, “SBI”, “FI”, “FD”—see Table 1 in Section 4; Different letters (a–c) indicate significant differences within the same
mycorrhizal parameter (ANOVA and Tukey’s test; p < 0.05). The average values (log2 of means of tree replicates) with
standard errors are presented. The axis of the abscissa shows the days after sowing (DAS).

As can be seen from Table 1, the development of AM plants was ahead of control
plants without AM by one stage already starting from the second stage up to flowering. My-
corrhization led to a more intensive accumulation of phosphates in the leaves of M. lupulina
with AM vs. non-inoculated control plants. The analysis showed that not only plants
of the same stage (same DAS) but also plants of the same development stage with and
without AM had significant differences in the content of two out of five tested phosphates—
glycerophosphoglycerol and Pi (Figure 1B). The content of glycerophosphoglycerol was
5.6 times higher, and Pi was 2.0 times higher in plants with AM. The reliability of the differ-
ences was confirmed by the p-value (p = 0.002 and 0.003, respectively) and false discovery
rate (FDR = 0.007 for both) in Mann–Whitney–Wilcoxon analyses. VIP > 1 in OPLS-DA
assays indicates a significant effect of AM on Pi and glycerophosphate accumulation in
plants. Hence, R. irregularis inoculation stimulated the accumulation of these forms of
phosphates not only in total for all general stages of development but also for each stage
separately (1L, SI and FI), and the response to mycorrhization was observed early, already
at the first detection stage, 1L at 14 DAS.

Increased phosphate uptake in AM plants compared to control (“−AM”) was one
reason for the significant increase in M. lupulina’s productivity parameters, such as the
fresh weight of aerial parts and the number of leaves (Figure 2), as well as the height of
the main stem and the number of internodes on the main stem (Figure S1). A significant
(p < 0.05) early response to mycorrhization was observed for the fresh weight of aerial
parts and the number of leaves on the main stem already from the second stage (21 DAS;
Figure 2A,B); the symbiotic efficiency of these parameters was high (>50%) and significant
at 21 DAS (third leaf initiation stage, 3LI), followed by a maximum efficiency at 38 DAS
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(shoot branching initiation stage, SBI) (Figure S2). A significant (p < 0.05) response of the
height of the main stem and the number of internodes on the main stem was observed
from the very beginning of their development (from 24 DAS; Figure S1A,B); the symbiotic
efficiency of these parameters had one maximum at 38 DAS, especially the plant stem
height (+203.4%) (Figure S2). Thus, the symbiotic efficiency of the formed AM was already
high from the earliest stages, and MlS-1 line plants should be considered ecologically
obligatory mycotrophic under conditions of a low level of Pi in the substrate [12,36,37].

Figure 2. Fresh weight of aerial parts (A) and number of leaves (B) per one M. lupulina plant. “−AM” is the variant without
AM fungus inoculation, “+AM” is the variant inoculated with R. irregularis AM fungus. Different letters (a–j) indicate
significant differences within the same parameter of the productivity (ANOVA and Tukey’s test; p < 0.05). The axis of the
abscissa is DAS, see other notes in Figure 1.

2.2. Effect of R. Irregularis on the Photochemical Activity, Pigment Content and Leaf Area of the
M. lupulina MlS-1 Line

The analyzed plant-microbial system (PMS) “M. lupulina + R. irregularis” is highly
effective both for the host plant and for the AM fungus, which continues to actively
spread in the root system (Figure 1A) until the final stage of analysis, i.e., flowering
development (FD) and “green pod initiation” stage. It should be assumed that the products
of photosynthesis in such PMS are in demand by both symbiotic partners. Therefore, the
analysis of photochemical activity and the content of pigments in the youngest fully formed
leaf was carried out, as well as the assessment of the leaf area of M. lupulina (Figure 3
and Figure S3).

The maximum quantum yield of the PSII (Fv/Fm; Figure S3A) was significantly
(p < 0.05) higher in the leaves of AM plants compared with the plants without AM at
24–38 DAS (Figure S3A). This indicates a higher potential photosynthetic activity in
M. lupulina at the ST stage in AM plants. The effective quantum yield of PSII (Y(II))
characterizes the real photochemical activity of tissues. The effective quantum yield of
PSII (Y(II)) was lower than Fv/Fm (~0.55–0.65; Figure 3A) and did not differ in control and
inoculated plants at 14–21 DAS. However, it was higher in inoculated plants at 24 DAS
and 38 DAS, and lower at 45 DAS and 52 DAS. The dramatic drop in this value at 29 DAS
is notable.
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Figure 3. The maximum photochemical quantum yield of photosystem II, observed after dark acclimation (Fv/Fm); (A),
non-photochemical quenching in M. lupulina leaf tissues (NPQ); (B). Different letters (a–d) indicate significant differences
within the same parameter of the photosynthesis (ANOVA and Tukey’s test; p < 0.05). The axis of the abscissa is DAS, see
other notes in Figure 1.

The estimation of quenching non-photochemical fluorescence relied on the coefficient
NPQ, which is essential for protecting the machinery of photosynthesis from possible
damage by intense light. NPQ was ~0.2–0.5 at different stages of plant development. NPQ
was characterized by lower values for AM plants at 14, 24, 29, and 38 DAS. Therefore, in
inoculated plants, the light energy was used more for photochemical reactions than for non-
photochemical ones. At the final stages of development (FI and FD; 45 and 52 DAS), this
was significantly increased in AM plants (Figure 3B), which may be due to the processes
of faster aging of plant leaves during mycorrhization. At the same time, the leaf area of
AM plants during the development of lateral branches (SBI) at 29–38 DAS had an intensive
increase of 2.3 times (Figure S3B). The AM symbiotic efficiency (calculated by the increase
in leaf area) during the initiation of stooling (SI) from 24 to 38 DAS had the greatest increase
by 2.9 times from +57.5% to +164.7% (Figure S2).

It should be noted that the relationship of the indices of photochemical activity is
interconnected with the content of chlorophylls. Only in the period from 24 to 38 DAS
was there a significant excess of chlorophyll a and b content in the AM plant leaf tissues
vs. control (−AM) (Figure S4). The highest content of pigments, including the amount of
chlorophylls and the amount of carotenoids, was observed at 38 DAS in plants with AM at
the SBI stage (Figure S4). At the same time, the ratio of the sum of carotenoids to the sum
of chlorophylls was higher in plants without AM in comparison with AM plants at 14 and
24–38 DAS (Figure S5).
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The data presented—including M. lupulina root mycorrhization levels, leaf phosphorus
content, productivity parameters, photosynthesis activity, and pigment content—allow
for the assumption that one of the most important development stages of efficient AM
symbiosis is the transfer of plants into the stooling stage (ST): 24 DAS (SI), 29 DAS (ST),
and 38 DAS (SBI). At 38 DAS (SBI), a highly efficient AM symbiosis was formed between
M. lupulina and R. irregularis.

2.3. General Characteristics of Metabolite Profiles of M. lupulina Leaves

The metabolite profiles of M. lupulina leaves included 320 metabolites, of which 83
were identified exactly and only the class of compounds was determined for another 80
(Tables S1 and S2). Sugars (86 metabolites), including pentoses, hexoses, and oligosac-
charides and their derivatives, such as sugar alcohols and sugar acids, and other sugar
derivatives were most widely represented in the determined profiles. 25 amino acids
(including all proteinogenic), 12 carboxylic acids, energy metabolism intermediates, 8 fatty
acids and their derivatives, as well as nitrogenous bases, sterols, etc., were also identified.

One of the key tasks was to assess changes in the general M. lupulina metabolic profile
with reference to the plant development stage and the resulting influence of mycorrhization.
First of all, metabolite profiles were represented in low dimension space to unveil the
similarities between them. Two methods based on different mathematical principles were
used. First, PCA, as the most common method in metabolomics, was applied and based
on the representation of metabolite content dispersion. Secondly, MDS (multidimensional
scaling) was used. This method is less common and based on maintaining pairwise
distances between observations. The use of metabolite content for comparative description
of metabolomes is not always entirely good as it depends on normalization. This limitation
can be overcome via the correlation coefficient as a measure of similarity. Therefore, we
augmented our analysis by using MDS with Pearson’s distance (1–r).

It can be seen that the profiles were grouped according to the development stage.
This trend was more clearly observed when the dimensionality was reduced using MDS
(multidimensional scaling) with the Pearson’s distance (Figure 4A and Figure S6) or the
Euclidean distance (Figure 4B and Figure S6). Analysis showed that the development at
the metabolic level is a complex nonlinear and uneven process. The nonlinearity of the
development is expressed in the fact that the direction of changes varies, sometimes even
to orthogonal, which indicates deep differences in metabolic changes between different
stages from leaf formation to the stages of flowering and fruiting. However, the profiles
showed some tendency to shift in time along PC1, explaining 33% of the variance. Thus,
we can suppose some general trends in development. Note that the 1L and 3LI stages were
quite similar, whereas stooling was accompanied by significant changes. In the case of
+AM plants, the difference between the 1L and SI stages looked less significant than in
the control plants (−AM). Large-scale metabolic changes that occurred in control plants
(−AM) during the transition from 3LI to SI were postponed in +AM plants for the period
from SI to ST. The branching stage turned out to be quite similar to stooling, while the
transition to flowering and fruiting was again accompanied by significant rearrangements.

It is important to note that the metabolic profiles in the +AM variant compared to
−AM at the same stage shifted towards physiologically younger plants. This effect was
especially pronounced at the SI stage.
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Figure 4. Representation in low-dimension spaces of metabolite profiles revealed from leaves sampled −AM and +AM
plants at comparable stages. (A) PCA—score plots, %—percent of variance. (B) MDS—metabolite profiles in the space
revealed using multidimensional scaling (MDS) with 1–r as a measure of distance between observations, where r is Pearson’s
correlation coefficient. Ellipses—90% CI.

2.4. Analysis of Changes in Leaves Metabolite Profiles during Mycorrhized and Control
M. lupulina Plants during Development
2.4.1. Changes in the Metabolite Profiles of M. lupulina Leaves

The identification of general patterns of metabolite content dynamics was provided
through OPLS modeling using the age of plants as responses. The parameters of −AM
and +AM plant models are very similar. In both cases, about 30% of the variance was
associated with the predictive component. Figure 5 shows a heat map of the normal-
ized metabolite content in −AM control plants. The barplots of the OPLS model factor
loadings of the predictive component and mean decrease accuracy from random forest
are located on top. Most of the identified metabolites showed positive loadings, which
was a consequence of their accumulation during development. This effect was achieved
mainly due to sugars, mostly oligosaccharides, which were accumulated at later stages. In
contrast, a decrease was observed in the content of carboxylic acids, amino acids, and other
nitrogen-containing compounds.

In order to compare the changes in the +AM and −AM plants metabolite profiles, a
SUS-plot (shared and unique structures) graph was constructed wherein the metabolites are
represented in the factor loading space of the two OPLS models described above (Figure S7).
It can be seen that a small number of metabolites exhibited noticeable differences in the
value of loadings. Thus, during mycorrhization, there was no consistent accumulation of
fatty acids and phosphate over time. In addition, mycorrhization did not reduce the content
of certain amino acids (GABA, tryptophan) and carboxylates (fumarate, citrate, succinate,
and malate). However, it is obvious that most of the metabolites had the same signs
of loadings and there is a correlation between them (Spearman’s correlation coefficient
ρ = 0.77, p = 10−15). The correlation and the same signs indicated the similarity of the
changes that occur during development.
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Figure 5. The dynamics of mean metabolites levels in −AM plant leaves of M. lupulina. Data were normalized per sample median, log-transformed, and standardized. Inside class
metabolites sorted by OPLS (with DAS as response) loadings (p), represented at the upper barplot (black bars—loadings with VIP > 1, positive values—increasing with aging). Lower
barplot—MDA, mean decrease accuracy from random forest. DAS—day after sowing. Contractions: MAG—monoacylglycerol, FA—fatty acid, oligo-complex carbohydrates (di-,
oligosachrides, molecules with sugar parts), ni—not identified, RI—retention index.
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2.4.2. The Role of the Phenological Stage in the Metabolite Profile Determination

The age of a plant can be determined not only by a calendar day, for example, the day
after inoculation or sowing (DAS/DAI), but also by the phenophase onset (the stage of
plant development). In addition to its fundamental biological significance, this question is
of particular importance in the comparative analysis of plants developing under different
conditions, since the answer determines the correctness of the choice of time point pairs
for comparing experimental plants. In this study, a PLS-DA analysis was conducted
involving four observation groups each consisting of three classes. Two of these groups
had equal DAS and different developmental phases, and two had the same developmental
phase and different DAS. As can be seen from Figure 6, in which the profiles are scattered
in the space of the accounts of the first two predictive components, the action of AM
was associated with one of them and development was associated with the other. In
both cases, plants that were in the same phase, but of different ages, were closer to each
other in the space of the component with which development was associated. Thus,
the metabolomic analysis indicates that the metabolic status is determined more by the
phenological phase of development than the calendar age. Therefore, it is necessary to
choose plants corresponding to one phenophase for a comparative analysis.

Figure 6. The role of the phenological stage and calendar age (DAS) of plants on metabolite profiles. Figures represent score
plots of PLS-DA models of four groups of observations consisting of three classes, two of which had the same calendar age
(DAS) and different stages of development and two had the same developmental stage but different ages.
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2.4.3. The Effect of Mycorrhization on Leaves of the Metabolite Profile at First Leaf Stage

The constructed OPLS-DA model included two orthogonal components: R2X = 0.79,
R2Y = 0.99 (p = 0.03), Q2Y = 0.88 (p = 0.03). A total of 28% of the variance was associated
with the mycorrhization status. Figure 7 shows graphs of the loadings of the predictive
component (an up arrow indicates that the loading sign corresponds to a higher level
during mycorrhization). At the 1L stage, mycorrhization contributed to the accumulation of
certain amino acids: lysine, leucine, serine, glutamine, and some other nitrogen-containing
compounds. During mycorrhization, the content of fatty acids increased. In the +AM
plant leaves, a higher content of unidentified hexoses was observed and more phosphates
accumulated.

Figure 7. Mycorrhization effects on metabolite profile at stages of first leaf (1L), stooling initiation (SI), and flowering
initiation (FI). Heatmap of OPLS-DA loadings (of predictive component), p. Up arrows refer to positive p corresponding to
level increased under mycorrhization.
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The control (−AM) plants were characterized by a higher content of carboxylates,
such as fumarate, succinate, and citrate, as well as some amino acids such as GABA,
cyanoalanine, oxoproline, and arginine. The distinctive features of the −AM plant profiles
included the accumulation of pentoses: ribose, xylose, and lyxose.

In order to identify the biochemical pathways that are most susceptible to AM, a set
enrichment analysis [38] was performed using the predictive component loadings from
the OPLS-DA model for ranking. As can be seen (Figure S8), mycorrhization leads to
an increase in the activity of pathways associated with the metabolism of carbohydrates
and sterols. On the other hand, there was a repression of the activity of the tricarboxylic
acid cycle (TCA cycle) and pathways associated with the exchange of carboxylates and
amino acids.

2.4.4. Metabolomic Differences between the First Leaf (1LI) and the Stooling
Initiation (SI) Stages
The Changes in the −AM Plant Metabolomes

For nonmycorrhized plants, there were two stages for this period which lasted from
1L to 3LI (14–24 DAS) and from 3LI to SI (24–29 DAS). The designed OPLS-DA models
included two orthogonal components for the classification of 1L–3LI: R2X = 0.74, R2Y = 0.99
(p = 0.03), Q2Y = 0.89, (p = 0.01); 3LI–SI: R2X = 0.78, R2Y = 0.99 (p = 0.02), Q2Y = 0.90,
(p = 0.03). For the first stage, 22% of the variance was associated with the predictive
component, and in the case of the second stage, it was −25%. Thus, despite the fact
that the second stage was twice as short as the first, the changes were more pronounced.
This might indicate large-scale changes in metabolism during the transition to a new
stage of morphogenesis. This was consistent with the representation of profiles in a low-
dimensional space, wherein stooling initiation observations were removed from those at
the previous stage (Figure 4 and Figure S6).

As can be seen from Figure 8, quantitative changes in the oligosaccharide content
occurred during the formation of leaves; the content of sucrose and major hexoses (fructose
and glucose) decreased in particular. Multidirectional trends were revealed for amino acids:
the levels of glutamate, oxoproline, phenylalanine, proline, and alanine decreased, and
the level of β-alanine, asparagine, and cyanoalanine increased. Only a small portion of
the carboxylates was characterized by significant changes in content: the level of glycolate
increased and the level of mesoxalate and glycerate decreased. There was also a notable
decrease in phosphates during this period. Sterols showed a content decrease against the
background of an increase in the level of linolenic acid. Enrichment analysis revealed that
no pathways were significantly associated with metabolome changes during this period,
apparently due to the multidirectional metabolite content changes.

In contrast to the leaf formation stage, when the dynamics of various groups of com-
pounds was complex, and sometimes multidirectional, the process became much more
uniform during the transition to stooling. Most differences were associated with the inten-
sive accumulation of oligosaccharides, including sucrose. An increase in the acylglycerol
content was observed and the linolenic acid content continued to increase during this stage.
Furthermore, enrichment analysis showed that this stage featured an activation of various
pathways associated with the starch and hexoses metabolism (Figure S8).

Differences between 1L–3LI and 3LI–SI illustrate the factor loadings contrast (Figure S9),
between which there is a weak but negative correlation (ρ = −0.28, p = 10−4). Thus, during
this period, there was variation in the dynamics of metabolites, reflecting changes in the
development vector.
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Figure 8. Metabolomic changes accompanying transfer between stages in −AM plants. Heatmap of OPLS-DA loadings (of
predictive component), p. Up arrows refer to positive p corresponding to level increased at the later phase.

The Changes in the +AM Plants Metabolome

Plants forming arbuscular mycorrhiza (+AM) reached the stooling initiation stage
when non-inoculated plants (−AM) were still at the stage of two to three leaves (24 DAS). In
order to determine how mycorrhization affects development from the 1LI to SI stages, the
corresponding OPLS-DA model was designed. This included one orthogonal component,
R2X = 0.60, R2Y = 0.96 (p = 0.02), Q2Y = 0.88, (p = 0.005); 31% were associated with the
predictive component. As can be seen from Figure 9 and Figure S8, during the transition
to stooling, a large number of metabolites, including fatty acids and sterols, as well as
phosphates, decreased in +AM plants leaves. Similar processes occurred in −AM plants
during this period (14–24 DAS), between the first and second/third leaf stages.
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Figure 9. Metabolomic changes accompanying transfer between phases in +AM plants. Heatmap of OPLS-DA loadings (of
predictive component), p. Up arrows refer to positive p, corresponding to level increased at the later phase.
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In order to compare the changes between the 1LI and SI stages in +AM and −AM
plant metabolite profiles, a comparison of OPLS-DA models was fulfilled. It turned out that
the proportions of variance associated with the predictive component did not differ in the
case of +AM and −AM plants (about 30%). An SUS-plot graph (Figure S10A), wherein the
metabolites are scattered in the loading space of the OPLS-DA models, showed that they
have a lot in common and there was significant positive correlation between them (ρ = 0.50,
p = 10−16). On the other hand, there were also differences that were mainly associated with
metabolites, the accumulation of which was not noted during the transition to the stooling
of AM plants (these metabolites are in the lower right sector of the graph). Among them
were oligosaccharides and hexoses, as well as some carboxylates. An intensive increase in
the content of the latter was observed in −AM plants during the transition to SI. Note that
the accumulation of carboxylates was observed in +AM plants at the next ST stage, which
coincides with SI in −AM plants in time.

2.4.5. The Effect of Mycorrhization on the Leaf Metabolite Profile at the SI Stage

Changes in the metabolite profiles of leaves were also noted at the next stage of plant
development. The OPLS-DA model, including one orthogonal component, showed that
28% of the variance was associated with the mycorrhization status (R2X = 0.57, R2Y = 0.99,
p = 0.005; Q2Y = 0.91, p = 0.005). Factor loadings (Figure 7) showed that most of the
metabolites were characterized by a decrease in the content level during mycorrhization.
This dynamic was common to a number of sugars and their derivatives, both mono- and
oligosaccharides. Perhaps it was due to the fact that the level of sugars in +AM plants
increased sharply only at the next stage. Nonmycorrhized plants were characterized by a
high content of a number of carboxylates, such as malate, citrate, fumarate, succinate, and
malonate, among others. Additionally, in the leaves of plants of this variant, the content of
some amino acids was higher, both proteinogenic and none. These were, among others,
β-alanine, tryptophan, cyanoalanine, aspartate, asparagine, glycine, proline, and GABA.
There was also an increase in the content of other nitrogen-containing compounds such as
uridine, allantoin, urea, etc. The higher content of phosphorus-containing compounds—
phosphate, ethylphosphonate, glycerophosphate—was a distinguishing feature of the +AM
plants leaves. AM contributed to the accumulation of serine and methionine amino acids,
as well as terpenes, phytol, and squalene.

Enrichment analysis revealed that mycorrhization was mainly associated with the
repression of the Krebs cycle, the exchange of carboxylates and amino acids (Figure S8),
and the decrease in the level of starch and hexose metabolism in the leaf. At the same time,
an increase in the activity of sterol metabolism was observed.

To compare the effect of AM on plants in different phenophases, a SUS-plot was de-
signed. The scattering of the predictive components of the OPLS-DA models in the loading
space for the influence of AM at the 1LI and SI stages (Figure S10A) demonstrated that
they differed significantly, but there was a significant correlation between them (ρ = 0.39,
p = 10−7). The metabolites on which the AM influence differs were concentrated in the
lower right sector of the graph. AM had a negative effect on the accumulation of these
compounds. These were mainly hexoses and oligosaccharides.

2.4.6. Metabolic Differences between the Stooling Initiation (SI) and Flowering
Initiation (FI) Stages
The Changes in −AM Plants Metabolome

In non-mycorrhized (−AM) plants, two stages are identified during this period: from
SI to SBI (29–45 DAS) and from SBI to FI (45–52 DAS). The designed OPLS-DA models
included one orthogonal component for the stage from the SI to SBI: R2X = 0.65, R2Y = 0.98
(p = 0.01), Q2Y = 0.90, (p = 0.02); whereas for the stage of SBI and the FI, these indicators were
equal to: R2X = 0.62, R2Y = 0.99 (p = 0.04), Q2Y = 0.98, (p = 0.04). For the first stage, 36% of
the variance was associated with the predictive component. In the case of the second stage,
the variance was 42%, which was more than for the previous stage, despite the fact that this
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stage was twice as short as the previous one. This may indicate a change in metabolism
during the transition to flowering and is consistent with the above representation of the
metabolomic profiles in a low-dimension space, wherein the FI observations were distant
from the previous development stages (Figure 4 and Figure S6). Between 29 and 45 DAS
in −AM plants, the content of fatty acids and sterols increased, the exchange of hexoses
and oligosaccharides was activated, and the phosphate content increased, reaching values
specific to +AM plants of the same age. At the same time, the content of many amino acids,
nitrogen-containing compounds, and carboxylates decreased (Figure 8). As the enrichment
analysis showed, at 29–45 DAS, changes affected a larger number of biochemical pathways
compared to the previous stage (Figure S8).

Changes up to 45 DAS and further on to 52 DAS were quite different. This was
evidenced by the graph of factor loadings of the last tested stages (Figure 8 and Figure S9).
In contrast with the previous stage, the accumulation of pentoses occurred while the level
of lipophilic compounds and phosphates decreased. There were numerous differences
in the dynamics of the content of amino acids and carboxylates. At the same time, the
accumulation of oligosaccharides and hexoses continued at the last stage, which was
associated with a further increase in carbohydrate metabolism (Figure S8). The SUS
plot graph clearly illustrates differences in the dynamics of metabolites between stages
29–45 DAS and 45–52 DAS (Figure S9). Between the values, a weak negative correlation
was exhibited (ρ = −0.38, p = 10−8).

The differences in the changes at these stages became even more noticeable with
enrichment analysis (Figure S8). As can be seen, in the period from SI to SBI, a number of
pathways were repressed, including the metabolism of amino acids, TCA, and carboxylate
exchange. On the other hand, the pathways of lipid synthesis (sterols and fatty acids),
starch, and sugar metabolism were activated.

The Changes in +AM Plants Metabolome

For mycorrhized plants, two time periods from SI to ST stage (24–29 DAS) and from
ST to FI (29–45 DAS) were distinguished. The OPLS-DA models generated included one
orthogonal component. For the first segment, the parameters were: R2X = 0.49, R2Y = 0.95
(p = 0.005), Q2Y = 0.80, (p = 0.005); for the second segment, the parameters were: R2X = 0.44,
R2Y = 0.99 (p = 0.01), Q2Y = 0.96, (p = 0.01). For the first period, 31% of the variance was
associated with the predictive component, and for the second it was 33%. A similar depth
of metabolomic alterations in periods that differ in duration indicated an inhomogeneity of
the development and a strong shift in metabolic status during ST.

Significant changes from the stooling initiation to stooling stages were mainly char-
acterized by a large-scale decrease in the content of many metabolites, primarily sugars,
during the transition to SI (Figure 9 and Figure S8). This illustrated the metabolites scat-
tering (Figure S9) in the loading space of the predictive components from the OPLS-DA
models for 1L–SI and SI–ST. The opposite relationship was confirmed by a weak but reli-
able negative correlation (ρ = −0.17, p = 10−10). Thus, in mycorrhized plants, a decrease
in the content of a large amount of sugars was first observed from 1L to SI (24 DAS)
following a restoration of their concentration at ST (29 DAS). The advance of AM plant
development compared to control −AM plants led to similar processes (although they
were synchronous in both variants). However, these were observed in +AM plants at later
stages of development.

At the next stage, from ST to FI, the content of hexoses and oligosaccharides continued
to rise. During this period, there were also increases in the levels of pentoses. A similar
process was observed during the transition to flowering of control −AM plants. During the
transition to flowering of both +AM and control −AM plants, there was also a diminution
in the level of sterols, possibly due to a decrease in their exchange level.
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The similarity of changes in −AM and +AM plants occurring during the transition
from SI to FI was visualized on the plot (Figure S11B). There was a strong reliable correlation
between the loading values (ρ = 0.72, p = 10−16). Thus, the transition to flowering induces
similar metabolic changes in the control (–AM) and during mycorrhization.

2.4.7. The Effect of Mycorrhization on the Metabolite Profile of Leaves at Flowering
Initiation (FI) Stage

Differences in the metabolite content at the FI stage were insignificant, a fact indicated
by a smaller proportion of variance associated with the predictive component, namely 18%,
despite the fact that when R2Y = 0.99, Q2Y was only 0.6 (for the predictive component,
only ≈0.3). The significance of the obtained parameters was also low: P(Q2Y) = 0.16,
P(R2Y) = 0.08.

Mycorrhization at this stage had a smaller effect than at previous ones. The effect of
mycorrhization (Figure 7) included a decrease in the carboxylates level, which probably
reflects the repression of TCA cycle and pyruvate metabolism. The level of sterols and fatty
acids also decreased. In addition, the content of a number of hexoses and oligosaccharides
was reduced during mycorrhization. Amino acids showed multidirectional trends. As in
the previous stages, AM contributed to a greater accumulation of phosphate.

A comparison of AM influence at SI and FI stages (Figure S10B) showed that the
loadings of the corresponding models, as in the previous case, differed, but the reliable
correlation between them was weak (ρ = 0.27, p = 10−4). As in the previous case, the
differences in the effect at SI and FI stages were mainly associated with the negative effect
of AM on the level of a wide range of metabolites at the SI stage.

2.4.8. Metabolic Changes between Flowering Initiation (FI) and Flowering Development
(FD) Stages

The revealed OPLS-DA model included one orthogonal component; the parameters
were as follows: R2X = 0.55, R2Y = 0.94 (p = 0.04), Q2Y = 0.81, (p = 0.02); 19% of the
variance was associated with the predictive component, which was lower compared to the
previously analyzed transitional stages. As the loading diagram showed (Figure 9), the
metabolic changes were virtually unrelated to the oligosaccharide content. This was quite
unusual since their content changed quite rapidly in previous stages. Nitrogen exchange
fluctuated noticeably during this period. The content of glutamine, uridine, guanine, and
uric acid increased while serine, valine, leucine, putrescine, and ethanolamine decreased. It
can also be noted that during the transition to fruiting, the content of carboxylates increased:
malate, malonate, fumarate, and citrate. In addition, there was an increase in the content of
sterols and fatty acids. In this context, there was a decrease in the level of monosaccharides,
including fructose. Enrichment analysis (Figure S8) revealed that these changes were
mainly related to the activation of the synthesis of lipophilic compounds (fatty acids and
sterols), the activation of the TCA cycle and carboxylates in comparison with the repression
of hexose and pentose exchange. An evaluation of the changes during the transition
to flowering with the previous period revealed a significant alteration in the dynamics
of metabolites, expressed in the inverse correlation of factor loadings corresponding to
OPLS-DA models (Figure S9) (ρ = −0.45, p = 10−10).

2.4.9. Comparison of the Effects of Mycorrhization and Plant Development on the
Leaf Metabolome

In Figure S12, a SUS plot is shown, wherein metabolites are scattered in the space
of loadings from two OPLS-DA models for comparison of −AM versus +AM plants at
the SI stage (abscissa) and control −AM plants at the 2L and 3L stages (ordinate). As
can be seen, the dependence between loadings was inverse (ρ = −0.44, p = 10−16), which
indicates a lag in the metabolic development of +AM plants from −AM plants in the
same phenological phase. This mainly concerned the delay in the accumulation of sugars
described above. A comparison of the AM effect at the FI stage with previous metabolic
changes also showed their negative dependence (ρ = −0.28, p = 10−7). This was consistent
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with the representation of metabolite profiles in a low-dimensional space, wherein the
+AM profiles of plants shifted slightly towards the previous phase compared to the −AM
plants profiles at the same development stage (Figure 4).

To sum up, we can conclude that AM not only accelerated development but also allow
for the initiation of morphogenetic processes earlier, which is to say in metabolically more
“young” plants.

2.5. Metabolite Networks
2.5.1. The Dynamics of Metabolite Content during M. lupulina Development

To identify the influence of AM on changes in intra-system connections during
M. lupulina development, metabolites were mapped by correlations of average values
of their concentrations. Figure 10 shows graphs where the nodes correspond to metabo-
lites, and the edges correspond to a reliable correlation (p ≤ 0.01). A common feature for
all graphs was the presence of a large dense group consisting mainly of carbohydrates,
essentially complex sugars. The second cluster was connected to the first by multiple
negative correlations. This cluster consisted of carboxylates, amino acids, and a small
group of lipophilic compounds. Dense clusters were surrounded by a sparse network
characterized by the presence of nitrogen and lipophilic compounds. It should be noted
that in the case of –AM plants, amino acids and carboxylates formed distinctive groups.
The behavior of monosaccharides also attracts attention. In the case of +AM plants, they
were adjoined to the oligosaccharide cluster, but in the case of –AM, some of them formed
small group clusters near the carboxylate-amino acid cluster. Analysis of the correlation
values distribution for +AM and –AM plants (Figure 10) showed that they were far from
the normal distribution. A special feature of the distributions was the high frequency of
strong correlations. This presumably reflected the dynamics of metabolite pools, which
were determined by rearrangements of metabolism with changes in development. Inter-
estingly, the number of strong negative correlations decreased with AM. On the other
hand, the disappearance of negative correlations may be the result of the fact that, for
+AM, an increase in the pools of some compounds in this case did not require a decrease
in the content of others. This could be a result of the fact that mycorrhization provides
better growth conditions with a better supply of mineral nutrients to the plant and thus
stimulates biosynthetic processes. In order to determine how the correlations in the content
of metabolites differs due to mycorrhization, the correlation values were compared for
all pairs of metabolites at +AM and control –AM. A positive correlation between them
(ρ = 0.57, p = 10−16) was calculated. This suggests that the structure of correlations of the
metabolites levels was quite similar in +AM and –AM plant development.

In addition, to determine how AM affects the connection of metabolites to each other
during development, a graph was constructed wherein the metabolites were scattered
in the space of the number of strong correlations (|r| ≥ 0.7) in –AM and +AM plants
(Figure S13). In +AM groups, compounds containing phosphorus and the amino acid
containing sulphur (methionine) became more associated with other metabolites, while the
number of correlations between amines and carboxylates was greatly reduced. However,
in common, the number of connections between +AM and –AM plants was similar, as
evidenced by a positive correlation (ρ = 0.43, p = 10−15).
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Figure 10. Comparative analysis of the correlations of metabolite levels. Mapping metabolites by correlations of their mean levels at different time points in the –AM and +AM plants.
Nodes correspond to the metabolites, edges correspond to the significant r (p ≤ 0.01): red—positive, blue—negative. Positive correlations bring nodes together, negative ones push nodes
apart as a physical force. Histograms illustrate differences in r frequencies under test (+AM) and control (−AM).



Plants 2021, 10, 2506 19 of 37

2.5.2. Correlation of Metabolite Content

As mentioned earlier, compounds with a similar chemical nature and that are related
metabolically are often located close to each other in the correlation network (Figure 10).
This may indicate the influence of metabolic connections on the variability of the metabolome.
To test this hypothesis, the average values of correlations within groups of metabolites
gathered by a common biochemical pathway (KEGG) were considered (Figure 11A). It
turned out that the metabolically related compounds were mainly associated with positive
correlations. Different pathways showed various correlation interconnection of metabo-
lites, depending on the status of mycorrhization. A strong positive relationship within
the metabolic pathways was demonstrated by the boxplot, which shows the values of
correlations of metabolites among themselves (the median was about 0 and the range of
the values is from −1 to +1) and the average values of correlations for biochemical groups
(Figure 11B,C). Note that they were strongly shifted towards positive values (Figure 11B).
Therefore, metabolites within biochemical clusters are associated with positive correlations,
even when their concentrations vary.

3. Discussion
3.1. Advantages of an Efficient Symbiotic Pair “M. lupulina + R. irregularis” Application

Most studies of the symbiotic relationships established between the host plant and the
arbuscular mycorrhiza fungus are focused on the identification of mechanisms that increase
the resistance of this above-organism system to the effects of unfavorable factors [39]. These
include: a lack of water, an increase in temperature, an increase in the content of heavy
metals, salinity [40], the intensity of the light mode [41], a lack of potassium [42] and
nitrogen, and an excess [43] or lack of phosphorus [12,44,45]. For the most part, symbiosis
is distinguished by a positive effect, but the intensity of the response varies over a wide
range. This can be principally attributed to the genetic diversity of symbiotic pairs. The
host plant’s responsiveness to the co-development with the mycobiont is quite important.
Over comparative analysis, such a universal indicator as DAI (days after inoculation) is
often used. For example, in the work [46], the interaction of Funelliformis mosseae and
Solanum lycopersicum was evaluated on 7, 14, 21, and 28 DAI; and in the work [47], the
contact of Acaulospora tuberculata and Zea mays was determined at 7, 14, 21, and 30 DAI.
In these studies, the value of AM frequency (F) reached the highest values toward the
end of the experiment (28–30 DAI). A study involving a responsive Cucumis melo plant
with Rhizophagus irregularis revealed a significant F increase from 30 to 45 and 60 DAI [48],
and in Nicotianatabacum with Glomus etunicatum from 20 to 40 DAI [49]. Thus, authors
mainly considered relatively early stages of AM development and, due to the application
of DAI, do not take into account the development stage of the host plant in the discussion
of the results. However, even the above-listed plants differ in the time of start, and even in
the existence, of such stages as leaf formation, stem formation (stooling), tillering, lateral
branching, budding, and others.

Therefore, the study of the efficient AM formation mechanisms in this research was
provided on leaves of the obligate mycotrophic M. lupulina MlS-1 line, responsive to
inoculation with AM fungus R. irregularis under conditions of a low Pi level in the substrate.
Furthermore, mycorrhization efficiency was simultaneously analyzed relative to the period
after inoculation (DAI), and during M. lupulina’s development stages.
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Figure 11. Relationship between biochemical pathway, chemical class, and metabolite level variations during M. lupulina plant development. Boxplots of Pearson’s correlations (“r”)
between all pairs of metabolites (“All”) and for r counted for metabolites of the same KEGG pathway (A); for mean values of r inside each KEGG pathway (B); for r counted for metabolites
of the same chemical class (C).



Plants 2021, 10, 2506 21 of 37

The analysis of the symbiotic development of M. lupulina plants showed an increase
in the number and area of leaves, the plant height, the number of internodes, and fresh
weight of aerial parts, which confirmed our earlier data [12,36,37,50]. This suggests that
this line is highly responsive to different stages of the host plant’s development (Figure S2).
It is noted that the stooling process (24–29 DAS) is accompanied by a temporal decrease
in symbiotic efficiency of the number and area of leaves, as well as in the parameters of
photosynthetic activity (Figure 3 and Figure S3). However, the next stage, SBI (38 DAS),
can be considered as the “key” period for the formation of a highly efficient AM symbiosis
between M. lupulina and R. irregularis. At the same time, the highest content of chlorophylls
a and b in the leaves of mycorrhizal plants was detected during this period (Figure S4). A
more detailed analysis of the AM effect on the intensity of the photosynthetic process of M.
lupulina was carried out by examining photochemical indices. Thus, Y(II) (the amount of
energy reaching the reaction centers of PSII) was higher (by 5.4%; p < 0.05) at 24 DAS and
38 DAS in M. lupulina plants with AM, which indicated a higher real photochemical activity
of plant tissues with AM under conditions of a low Pi level. At later stages (45 DAS and
52 DAS), the effect was the opposite: Y(II) was lower (by 4–11%; p < 0.05) in mycorrhizal
plants. The obtained data, in the mean, correspond to the previously detected increase in
photosynthetic activity during the establishment of AM for various plant species, including
various species of the Fabaceae family [51,52]. However, we can assume complicity of
photosynthetic processes dynamics, which can be determined both by the own “needs” of
the host plant and by the emerging structures of the AM fungus.

In summation, we suggest that the MlS-1 line of M. lupulina is responsive to the
formation of AM under conditions of low phosphorus content in the soil. Over the course
of establishing the symbiotic relationship, there are a number of changes in the host plant’s
development and in biochemical processes. For example, the effect of mycorrhization on
the growth and development of pea plants growing under the same conditions in a pair
with the same symbiont differs significantly [34]. However, the mycorrhization efficiency
in M. lupulina is not a constant parameter, and it changes during the development of the
host plant, reaching a maximum at the SBI stage, 38 DAS.

3.2. The Effect of the AM Fungus R. irregularis on the Phosphorus Content in M. lupulina

The stimulating effect of AM on the plant is associated primarily with the benefits
of mineral nutrition intensification. In the present study, mycorrhization by the AM
fungus R. irregularis led to a significant increase in the content of Pi (free phosphate) and
glycerophosphoglycerol in the M. lupulina leaves (Figure 1). An increase in the Pi content
in leaves under the influence of AM has been described in various plant species [33,52–54].
However, this phosphorus-caused “growth effect” of AM is not always detected. For
example, some studies have demonstrated that the differences in growth intensity between
inoculated and control (without a symbiont) plants may be insignificant [33]. Perhaps the
lack of efficiency depended on the concentration of minerals in the soil, which were not
enough for the development of AM. On the contrary, there were no differences in the mass
of shoots at high Pi [26]. In the case of Plantago major, mycorrhization had practically no
effect on the growth of the biomass of the aboveground parts, but there was an increase in
the Pi content in the leaves at late development stages [52].

3.3. M. lupulina Leaves Metabolite Profiling
3.3.1. General Metabolic Patterns in M. lupulina Leaves Development

Metabolomic analysis revealed the distinctiveness of plants at different growth phases.
The main feature of development at the metabolomic level is strong nonlinearity (Figure 4
and Figure S6). The absence of monotonicity and irregularity of biochemical and physio-
logical changes during growth of biological systems are common [34,35,55]. An important
feature of these processes is the different proximity of phases that mirror the scale of
metabolic shifts. It can be noted that the most extensive metabolic rearrangements accom-
pany the transition to stooling (Figure 4 and Figure S6).
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Metabolomic alterations are accompanied by drastic physiological changes owing
to mycorrhization. The transition to stooling is marked by an explosive increase in AM
efficiency (Figure S2). It is accompanied by a dramatic growth in NPQ and a decrease in
Y(II) (Figure 3). There was also a rapid increase in the ratio of the carotenoid sum to the sum
of chlorophylls (Figure S5). Then, NPQ decreased and Y(II) increased in M. lupulina AM
plants in the SBI stage vs. the noninoculated control (Figure 3). These data are consistent
with results in Salvia fruticosa with R. irregularis [56]. Thus, it was during the stooling
process that the beginning of global metabolic rearrangements occurred in AM plants,
including the photosynthetic activity, biochemical status, and interaction with the fungus.

The second period of large metabolic perturbations is a flowering initiation (Figure 4
and Figure S6). Both +AM and –AM plants at the flowering stage were characterized by
a low ratio of carotenoids to chlorophylls (Figure S5) relative to the previous stages, and
an increase in the photosystem II (PS II) efficiency level. Moreover, the late development
stages of –AM plants were characterized by an increase in the NPQ level more intense than
in +AM plants. Similarly, in Salvia fruticosa, Y(II) was higher, and NPQ was lower in plants
inoculated with R. irregularis at 133 DAS vs. –AM plants [56].

3.3.2. The Effect of the AM Fungus R. irregularis on the M. lupulina Leaves
Metabolite Profile

The development of close symbiotic interaction between the participants of AM
symbiosis involves an intensive exchange of metabolites, primarily carbohydrates, nitrogen-
and phosphorus-containing compounds, etc. In this regard, a system analysis of changes in
the leaf metabolite profiles during the formation of AM-symbiosis is of particular interest.

The development of modern methods of metabolite detection, including gas chro-
matography coupled with mass spectrometry, permits researchers to perform metabolic
profiling in the comparative analysis of leaves in a number of model species: Anadenanthera
colubrina, Artemisia annua, Castanospermum australe, Catharanthus roseus, Citrus tangerina,
Cynara cardunculus, Fortunella margarita, Hordeum vulgare, Hypericum perforatum, Libidibia
ferrea, Lotus japonicus, M. truncatula, Mentha viridis, Origanum vulgare, Plantago lanceolata,
P. major, Plectranthus amboinicus, Rosmarinus officinalis, Stevia rebaudiana, Ocimum basilicum,
Vitis vinifera (Rev. [27]), and Glycine max [57]. The accumulated data indicate a significant
AM influence on both the primary and secondary metabolism of plants. However, it is
interesting to note that the biochemical changes are extremely species-specific, even when
closely related plant species are compared [31–33,58,59]. Thus, the question arises of the
validity of applying the results of plant metabolic spectra analysis over different symbiotic
pairs [27,33].

Previously, a comparative leaf metabolic analysis of Lotus japonicus cv. Gifu plants
inoculated with the BEG 12 Glomus mosseae strain (according to the new classification:
Funneliformis mosseae; [60]) at late development stages of the host-plant DAI against a –AM
variant was performed at 70, 77, and 84 DAS [61]. PLS-DA revealed some similarities
between the control and the variant with the mycosymbiont. The analysis of factor loadings
separating mycorrhizal and non-mycorrhizal plants still allowed us to determine the main
set of metabolites specific for each of the variants. In general, the results showed a negative
systemic effect of AM colonization on the content of organic acids that play a role in the
main catabolism pathways and in amino acid metabolism [61]. However, the importance
of metabolic profiling is supported by the data of a recent study conducted on the leaves
of a plant that is unresponsive to AM, Pisum sativum. A significant dependence of the
metabolic profile on the rate of mycorrhization of peas was revealed [34]. It was shown
that the development of AM with P. sativum significantly prolonged the active phase of the
host plant’s metabolism in the absence of a growth response. At the metabolomic level, this
could be recognized as a delay in development and the delayed aging of mycorrhizal plants.

The effect of AM on the metabolome increased during the beginning of stooling,
when the AM efficiency started to increase (Figure S2), and the development of symbiosis
interfered with photosynthetic activity. The PSII efficiency values and the chlorophyll
content in +AM plants became higher and NPQ lower than in –AM plants (Figure 3 and
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Figure S4). Then, during the transition to flowering, the metabolomic differences of +AM
and –AM plants were reduced. The AM efficiency during this period also decreased.

A very particular phenomenon was discovered during this investigation. Mycorrhized
plants moved to the next phenological stage earlier than control (–AM); however, its
metabolic status did not yet pass through all the biochemical changes that took place in
the corresponding stages of plants without AM. Some similarity can also be observed with
respect to the dynamics of physiological parameters, in particular, the dynamics of growth
(Figure 2), changes in the Y(II) and NPQ indicators (Figure 3). For example, at 38 DAS, the
NPQ level was decreased in both +AM and –AM plants, followed by a sharp increase to
45 DAS. However, in the case of the +AM variant, this period lasted from SBI to FI, and in
–AM plants, it continued from ST to SBI. A Y (II) level decrease was noted in both studied
variants at 29 DAS (Figure 3), followed by an increase at 45 DAS. However, the +AM SI
stage at 24 DAS maintained a Y(II) value that was still high, whereas the –AM SI stage
corresponded to 29 DAS when the value of Y(II) had already decreased. The reverse was
the case when the +AM ST stage stood at 29 DAS: a low Y(II) level, whereas the –AM ST
stage corresponded to 38 DAS when the value of this parameter was high again. Thus, the
values of a number of analyzed physiological and metabolic parameters in +AM plants
were similar to those in –AM plants, but at the previous phenological phase.

Consequently, the metabolic profiling of another legume, M. lupulina, characterized
by a high efficiency of interaction with the AM fungus, is of particular interest. The
obtained data indicate that the M. lupulina leaf metabolite spectrum consists of more than
300 compounds (Table S1). They represent a large variety of carbohydrates and their
derivatives, typical for plant leaves [34,62]. The subsequent development of the host plant
and the symbiotic pair is clearly characterized by significant changes in the metabolic
profiles and/or the metabolite content. An initial comparison of the data set using the
principal component method demonstrated that the profiles are grouped according to
the development stage (Figure S6). The obtained data proved that development at the
metabolic level is a complex nonlinear and nonuniform process. However, it remains
unclear which of the factors or their combination determines these changes.

3.4. M. lupulina Mycorrhization, Phenophase and Age: Factors Interference

The assessment of the R. irregularis influence on the development of M. lupulina was
considered as a sequential change of developmental stages. The processes occurring
in the host plant were supposed to be a result of the sequential activation of its own
developmental program, and as a result of its modification due to interaction with the
AM fungus.

This study shows that plants without AM significantly lagged behind mycorrhizal
plants in development (Figure 2). Therefore, to correctly determine the “time points” for
comparison of +AM and –AM plants, it is necessary to determine what better characterizes
the plant’s biochemical status: calendar age (DAS/DAI) or phenophase. The obtained
data indicate that the metabolome is associated more with the stage of development than
the age of the plant (Figure 6). However, it should be noted that most of the identified
processes occur synchronously during the formation of AM and in its absence. Perhaps
they serve to mediate the possibility of the transition of mycorrhizal M. lupulina plants to
the next phenophase at a relatively “younger metabolic age” (Figure 6). The following are
some examples.

The evaluation of changes in the metabolic profiles of M. lupulina under the influence
of the AM fungus R. irregularis revealed a number of features already at the 1L stage. In
+AM plant leaves, a decrease in the content of compounds metabolically associated with
the TCA cycle was observed (Figure 7). Previously, a similar process was shown for the
roots of mycorrhizal M. truncatula [26]. This reaction was typical for the M. truncatula leaf
metabolome [33] and many other dicotyledonous plants [33,34,52,61]. The revealed effect
of mycorrhiza was probably due to the negative effect of symbiosis on central catabolism
as a result of increased carbon transport from the host plant to the AM fungus. In addition,
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carbon redistribution between catabolism and protein synthesis may occur as a result
of changes in the nitrogen–phosphorus balance [33,61]. It is interesting that in previous
studies on other objects, this effect was demonstrated at late stages, but in our investigation
on M. lupulina, it clearly appeared already at the 1L stage. This pattern can be explained
by a high level of responsiveness to mycorrhization in the M. lupulina line expressed in
a more intense effect of AM on the formation of the aerial organs biomass, an effect that
was not observed in previous studies [33]. Note that the content of some amino acids in
the M. lupulina leaves increased during mycorrhization (Figure 7). Previously, a similar
phenomenon was detected in mycorrhizal plants Plantago lanceolata, P. major, Veronica
chamaedrys, M. truncatula, and Poa annua [33]. In M. truncatula, the activation of plastid
metabolism was shown in response to mycorrhization. It was expressed in an increase in
the level of a number of amino acids, as well as some fatty acids [26]. The last study was
the most detailed in terms of the duration of the experiment: analyses were performed at
seven time points weekly from 14 to 56 DAI [26]. A significant increase in the frequency of
AM (F) was shown from 27% to 88% during 21–35 DAI. However, changes in the number of
arbuscules and vesicles in the roots, as well as changes in AM efficiency, were not analyzed
during this long-term experiment. However, for the first time, AM-specific fatty acids, such
as palmitvaccenic and vaccenic acids, were considered as markers of colonization by the
AM fungus Rhizophagus sp. [26].

Further analysis was to determine changes at the SI stage and during the transfer of
the phenophase from 3LI to SI. A negative relationship between the action of mycorrhiza
and developmental changes in the metabolome was revealed (Figure S12). At the SI stage,
when this effect was most pronounced, this dependence was primarily associated with
an earlier transition of +AM plants to SI, even before the accumulation of sugars began.
This led to a lower level of sugars in the leaves of mycorrhizal plants compared to plants
that do not form AM at the SI stage. The question arises: what mechanisms are behind the
acceleration of +AM plant development? What is the role of the large-scale accumulation
of sugars observed in plants during the transition to stooling? What is the relationship of
this process with mycorrhization if it is the case that +AM plants pass to stooling without
it and the accumulation of sugars is observed already in the process of stooling?

It can be assumed that the effect of mycorrhization was due to differences in metabolic
networks that were in demand at different stages of host-plant development (for example,
in the SI and FI stages). However, along with this, it is necessary to take into account the
constant change in the mutualistic interaction, since both the costs of the plant (photoas-
similates) and the benefits (Pi) change during the AM interaction [52]. A similar pattern
was observed in analysis of the AM effect on the P. sativum [34] and Senecio jacobaea [28]
leaf metabolome. For the M. truncatula roots, the dominant role of host plant growth in
the determination of the metabolome in relation to the regulatory value of AM symbiosis
was established [26]. This once again confirms the priority of the host plant’s ontogenetic
program, including at the metabolomic level.

At the stooling stage (ST), the vast majority of metabolites were characterized by a
lower level of content in the +AM variant compared to non-mycorrhizal plants (Figure 7).
Similarly, it was noted that the number of metabolites whose level decreased in the leaves
of mycorrhizal P. major was several times higher than the number of metabolites whose
content increased. Perhaps this is due to an increase in the outflow of photoassimilates
to the growing AM fungus [52]. The intensity of this outflow can reach 20% of the host
plant photoassimilates [63]. This may explain the revealed decrease in the level of oligosac-
charides and hexoses at this stage in +AM plants. Interestingly, the increase in the sugar
accumulation was observed in their development later and coincides in time with that in
plants without AM.
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The transition to flowering and fruiting is the final stage not only of the development
of the host plant but also of the entire plant-microbial system as a whole. As expected,
during this period, there was a weaker effect of AM fungus on both the metabolic spectrum
and the dynamics of the content of individual compounds (Figure S6B).

3.5. The Relationship of the Topology of Metabolic Pathways with the Correlation of the
Metabolite Content

An important aspect of omics research is the analysis of the relationships between
the components of biological systems. The correlation can be used to assess how closely
metabolites are related to each other [64]. This is possible because they behave in a
consistent manner and changes caused by external or internal factors lead to a modification
of the state of the entire system, i.e., to a change in the connections between the metabolites,
which will be reflected in their correlation patterns [65–67]. It has been shown that it relates
specifically to organs and tissues [68,69]; to the genotype, including point mutations [68];
and to environmental conditions [70,71].

An analysis of biochemical networks indicates that such a network is scale-free and
was proposed to characterize the Internet and social networks. In scale-free networks, the
degrees of nodes (the number of connections) are distributed according to a power law.
Such networks are characterized by heterogeneity and the presence of a small number
of nodes with a high number of connections. Such nodes are called hubs. It is believed
that hubs can play an important biological role [72,73]. Interestingly, in contrast to non-
biological networks, where the number of node connections is fixed and with an increase
in the number of them, the network diameter increases in metabolic networks and the
diameter of the networks may not differ in more complex and simple organisms owing to
the fact that the number of reactions in which the substrate participates may increase with
the complexity of the organism [72].

Many different approaches exist for evaluating the metabolite relationships [67,74,75].
The correlation coefficients are basic ones. To analyze the effect of mycorrhization on
the structure of the relationships of dynamic changes in the levels of metabolites during
M. lupulina development, they were mapped by reliable (p < 0.01) correlations of their
average content (Figure 10). The data of the resulting network corresponded to a scale-free
organization with its inherent heterogeneity. The diameter of the analyzed networks, both
with and without mycorrhization, was 14. In the networks we built, the average path
lengths (4.49 for –AM and 4.72 for +AM) as well as other global characteristics of the
networks did not differ significantly. In our case, during mycorrhization, the number
of strong negative correlations decreased and positive ones increased. A decrease in the
number of strong negative correlations may be the result of the fact that at +AM, an increase
in the pools of some compounds did not require a decrease in the content of others. It
resulted in positive correlation prevalence. The reason for this may be more favorable
growth conditions provided by mycorrhization.

The prevalence of positive correlations was also observed in other biological objects,
such as the roots and leaves of Arabidopsis [68], human tumor cell cultures [71], and
microalgae cultures [55,76]. The reason for the high positive correlation may be proximity
to equilibrium and a high level of metabolic flow. Such a quasi-stationary state leads to
indirect system-wide correlations between remote metabolites [65,77]. Correlation is a
property of a system, and not of a single reaction, enzyme, or metabolite since they are the
result of a combination of all reactions and regulatory processes [65–67]. Another feature of
the distributions in our networks is the high frequency of strong correlations. Usually, most
of the correlations in biological systems have moderate values [65]. Perhaps the reason
for the rising of correlations is the strong influence of the developmental program on the
dynamics of metabolic profiles.
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At the next step, we compared the correlation values for all pairs of metabolites, with
+AM and –AM variants. The positive correlation (ρ = 0.57, p = 10−16) indicated that the
structure of the metabolite level correlations was quite similar in the development of both
+AM and –AM plants. The conservativeness of correlations under changing conditions
has been encountered before. Thus, when the E. coli cultivation conditions changed, many
correlations were conservative, for example, those associated with the TCA cycle [68]. As
can be seen from Figure 10, in the case of M. lupulina, clusters associated primarily with
complex sugars and amino acids were preserved. The formation of clusters and regions
according to the chemical nature and pathways of biosynthesis was also observed in the
other model system, “Pisum sativum + R. irregularis” [34]. The study of the roots and aerial
parts of Arabidopsis and potatoes showed that there was also an amino acid cluster [69].
Fatty acids and terpene derivatives also form small groups, some of which are located on
the periphery of the network. The largest cluster was formed by sugars. There was also an
area that unites carboxylates, among which there were many intermediates associated with
TCA cycle, and some amino acids, which may be the result of their metabolic connection.

The following question then arises: does a relationship between the structure of a
biochemical network and variation in metabolite levels exist? To answer that, distributions
of correlations within sets of metabolites for certain biochemical pathways (extracted from
KEGG) were analysed (Figure 11A,B). In addition, correlations in metabolite sets, combined
by the molecular similarity, were also calculated (Figure 11C).

In our study for M. lupulina, it was revealed that the values of correlations within
biochemical groups are significantly shifted in a positive direction. The reason for the
increased correlations within the biochemical pathways may be the restrictions imposed
by the sequences of biochemical reactions on the possibility of independent changes in the
levels of metabolites.

Different groups of metabolites diverged significantly in the variation of correlations.
At the same time, the status of mycorrhization significantly affected the distribution of
correlations within groups. A high level of correlation connectivity was demonstrated by a
number of highly specialized pathways, including the exchange of fatty acids, lipids, and
sugar metabolism. Note that during mycorrhization, the binding of fatty acids was much
lower. Similar dynamics were found for amino acids. For some groups, the distribution of
correlations was characterized by a distribution that did not differ from the general range.
Such segments of the metabolic network and chemical classes can be considered as “inter-
sections” of several metabolic pathways with stronger internal regulatory connections—for
example, carboxylates, which are intermediates of many processes.

3.6. M. lupulina Mycorrhization, Phenophase and Growth Duration: Distances Covered

In conclusion, we will focus on such an indicator as the duration and distance of
transitions between different phenophases. Earlier, we assumed that the AM-symbiosis for-
mation program interferes with the developmental program (the host-plant development
program), which leads to the fact that the effect of mycorrhization at different phenological
phases differs both qualitatively and quantitatively. As it turned out, the differences be-
tween –AM and +AM plants first increased and then decreased up to the flowering stage
(Figures 4 and 12 and Figure S6B). Perhaps the decrease in the action of AM during the
transition to flowering is explained by the rigid determination of this stage since it is the
most important for the realization of reproductive function. On the other hand, according
to the literature data for some plant species, the effect of AM was more pronounced pre-
cisely at the late stages [26,52], which indicates the possibility of implementing various
scenarios of interaction between the fungus and the host plant depending on the genotype.
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Figure 12. The scales of metabolic changes during development with or without mycorrhization. Gray numbers—distances
(a.u.) in the Euclidean space of normalized metabolite levels.

To assess the quantitative changes in the metabolite profiles that occur during my-
corrhization and development, visualization of the “distances traveled” in the space of
the metabolite content levels was carried out (Figure 12). The purpose of this approach
was to demonstrate the correlation of quantitative changes, and, consequently, the “work”
carried out by the plant in the ontogenesis process and during the development of AM
symbiosis. Figure 12 shows the cumulative distance between the three general stages of
development: the first leaf (1L), the stooling initiation (SI, beginning of stem development),
and the flowering initiation (FI) along the abscissa axis (Figure 12). In Figure 12, all stages
are connected by heavy lines. The segments within these distances are represented not by
absolute length but by proportional fragments of the section within which they are located
(thin lines). Based on these results, several important hypotheses can be formulated. Firstly,
the distances that +AM and –AM plants “passed” were very close (on similar segments in
the phenophase). However, mycorrhizal plants passed a slightly longer distance. This was
due to the greater nonlinearity of their development, which is perfectly illustrated by the
representation of profiles in a low-dimension space (Figure 4 and Figure S6). Consequently,
mycorrhization caused a complication of the development of the host plant. Secondly, the
distances between time points grew until FI. This was especially clearly observed in the
variant of control plants. Perhaps this was connected with more significant rearrangements
in the M. lupulina metabolic profile. Thirdly, there was a high nonlinearity of the processes
(Figure 4 and Figure S6), expressed in the non-additivity of the distances covered. So, for
example, within the transition of –AM plants from SI to FI with a length of 23.5 a.u., two
stages of 21.6 and 24.2 a.u. were nested. Finally, the distances in the initial space between
+AM and control –AM plants, although lower than between the stages, were insignificant.
At the same time, as we have already observed, the strength of changes between different
stages and the strength of the influence of mycorrhization were unequal in different periods
of plant growth (see also Figures 4 and 7 and Figure S6).
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The analysis of the configuration of the influence of mycorrhization and phenophase
using PCA and MDS (especially in Euclidean space) suggests that the revealed differ-
ences may be due to a more narrowly directed effect of mycorrhization compared to
changes occurring as a result of a larger-scale influence of ontogenetic programs (change
of phenophases).

4. Materials and Methods
4.1. Biomaterials: Model Plant and Test of Arbuscular Mycorrhizal Fungus

The Medicago lupulina model plant was used to study AM-mediated metabolic alter-
ations in leaves. The selected MlS-1 line from cultivar-population VIK32 was used in this
study. Plants of this line showed the signs of dwarfism in the absence of inoculation with
AM fungus at a low level of available phosphorus in the soil (Pi) [12,36,37,50].

The Rhizophagus irregularis strain RCAM00320 was obtained from the collection of
Laboratory of Ecology of Symbiotic and Associative Rhizobacteria at the All-Russia Re-
search Institute for Agricultural Microbiology (ARRIAM). The strain, previously known as
the Glomus intraradices Shenck&Smith strain CIAM8) used for inoculation, was previously
characterized as a fungus forming highly effective AM symbioses with a majority of agricul-
tural crops [12,36,37,78–82]. Accurate identification of the strain was provided [83]. Since
AM fungi are obligate symbionts, the strain was grown with Swedish ivy (Plectranthus
australis R. Br. = P. verticillatus (L.f.) Druce, P. nummularius Briq.) under standard conditions
in our Laboratory (fungal inoculum preparation is described in Figure S14).

4.2. Experimental Design and Collection of Plant Material

M. lupulina seeds were surface sterilized as follows: scarification for 5 min in con-
centrated H2SO4 and then multifold rinsed with sterile water for 120 min. Sterilized
M. lupulina seeds were put on sterile paper filter in Petri dishes for 1 day at +4 ◦C for
stratification. Then, M. lupulina seeds were germinated for 2 days at +27 ◦C in the darkness.
Seedlings of equal size were planted with the growth substrate described in ‘plant growth
conditions’. Half of the plants were inoculated with fungal inoculum before planting
(+AM); the other half was not treated by fungal inoculum as control (–AM). Twelve plants
per treatment were taken for each biochemical and microscopic analyses at random at
each stage of plant development. The plants were removed from the soil and their root
systems were thoroughly washed. The plant height; fresh weight of plant roots and aerial
parts; and the number of leaves, internodes, and peduncles with buds, flowers, and fruits
were determined. After measuring the growth parameters, the youngest fully developed
leaf from each analyzed plant was cut off. Leaves from 8 plants were allocated to a single
biological replicate, weighed and frozen in liquid nitrogen in a 2 mL Eppendorf Safe-Lock
tube, and then stored at −80 ◦C. At least three biological replicates for each time point
were collected for biochemical analysis. For arbuscular mycorrhiza analysis, fragments of
roots were collected individually from each plant and were dried at room temperature.

4.3. Plant Growth Conditions

Four seedlings were planted in one pot filled with 210 g of a soil:sand (2:1) mixture
(agrochemical soil characteristics are presented in Table S3; P content available to plants
was calculated using the Kirsanov reaction and was very low according to [84], since one
was <25 mg/kg). The substrate for growing was autoclaved at 134 ◦C, 2 atm. for 1 h
with repeated autoclaving after 2 days. Such a procedure prevents mycorrhization. The
microvegetative method provided optimal conditions for AM development and allowed to
avoid spontaneous infection by rhizobia and other symbiotic microorganisms. The first
datapoint was collected at the 14th day after sowing and inoculation. Further testing was
carried out at the key stages of plant development. Biochemical and microscopic analyses
of plants were performed on the 14th, 21st, 24th, 29th, 38th, 45th, and 52nd day after sowing
(DAS) and inoculation (DAI = DAS in our research) (Table 1).
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Table 1. The plant development stages in Medicago lupulina under the condition of a low phosphorus level in substrate and
with/without AM inoculation.

Analysis No Day after Sowing (DAS) Host Plant Development Stage
−AM +AM

1 14 1st leaf development (1L) 1st leaf development (1L)

2 21 2nd leaf initiation (2LI) 2nd leaf development,
3rd leaf initiation (3LI)

3 24 2nd leaf development,
3rd leaf initiation (3LI) stooling initiation, 3rd leaf (SI)

4 29 stooling initiation, 3rd leaf (SI) 4th leaf, stooling (ST, stem formation)

5 38 4th leaf, stooling (ST) 5th leaf development, shoot branching
initiation (SBI)

6 45 5th leaf development, shoot
branching initiation (SBI)

6–7th leaf development, shoot branching,
flowering initiation (FI)

7 52 6–7th leaf development, shoot
branching, flowering initiation (FI)

8–9th leaf, green pod initiation, flowering
development (FD)

Note: “−AM” is the variant without AM fungus inoculation, “+AM” is variant with inoculation with R. irregularis AM fungus.

4.4. Evaluation of Mycorrhization Parameters

The method of maceration and staining of root samples, designed by J.M. Phillips and
D.S. Heyman for the estimation of AM infection in the roots of leguminous plants [85],
was used for the microscopic analysis of AM development, including staining with try-
pan blue in solution containing 10% lactic acid, glycerine, distilled water, and “Trypan
blue” dye in a ratio of 62 mL: 62 mL: 875 mL: 0.3 g, respectively [36]. For microscopic
analysis of AM structures in crushed preparation: dried, macerated, and cut (10 mm long)
M. lupulina roots for analysis by light microscopy (Mikmed-2 var.2 microscope, LOMO,
Russia; characteristics: eyepiece 10, lens 10, front lens in the flange of the binocular adjust-
ment 1.0). The estimated length of the microscope field of view was 1.69 mm. Subsequently,
mycorrhization indices were calculated [86]: F (the frequency of mycorrhizal infection
in the roots), M and m (the intensity of AM in the roots and mycorrhized parts of roots,
respectively), A and a (the abundance of arbuscules in the roots and mycorrhized parts of
roots, respectively), and B and b (the abundance of arbuscules in the roots and mycorrhized
parts of roots, respectively). The microscopic analysis of AM development was provided
by computer program for calculating the mycorrhization indices of plant roots developed
by A.P. Yurkov et al. [87]. The minimum biological replication in each of studied variants
was eight.

4.5. Evaluation of AM Symbiotic Efficiency

The efficiency (mycorrhizal growth response) was calculated for parameters of pro-
ductivity of the plants using Odum’s formula:

E = ([+AM] − [−AM]) × 100%/[−AM] (1)

where E is the AM symbiotic efficiency, [+AM] is the value of productivity parameters
in mycorrhized plant (for example, fresh weight), and [–AM] is the value of productivity
parameters in plants without AM.

4.6. Evaluation of Leaf Photochemical Activity and Pigment Content

The central leaf blade in the youngest completely formed leaf was measured by the
fluorescence method to evaluate the leaf photochemical activity. Plants (three biological
repeats for each variant) in pots were placed in a light-tight chamber and pre-adapted
to darkness for 15 min before the measurements. The kinetics of the chlorophyll a fluo-
rescence induction was acquired at room temperature by pulse amplitude modulation
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(PAM) fluorometric analysis using a portable chlorophyll fluorometer PAM-2500 (Heinz
Walz GmbH, Effeltrich, Germany). To secure the leaflets, a 2030-B clamp equipped with a
quantum and temperature sensor was used. The chlorophylls in PS II were excited by the
light-emitting diode characterized by the wavelength of 750 nm. Fluorescence detection
was performed using a PIN photodiode protected by a "long-pass" filter characterized
by the wavelength of 715 nm and 50% transmission. Using PAMWin-3 Software and
Instruction manual for PAM-2500 [88], the following fluorescent parameters were obtained:
Fv/Fm, the maximum PSII photochemical efficiency in the darkness-adapted state [89];
Y(II), the effective quantum yield of photochemical energy conversion in PSII [90]; ETRmax,
the maximum electron transport rate at light saturation; IK, minimum saturating irradiance;
qP, the coefficient of photochemical quenching of chlorophyll fluorescence; and qN, the
coefficient of non-photochemical quenching of chlorophyll fluorescence [91]. The leaflet
area was calculated using Fovea Pro v. 4.0 for Adobe Photoshop [92].

Leaf pigment analysis was conducted with 3 biological repetitions. The leaf samples
(0.01 g) were ground three times for 2 min in 2 mL microtubes with 3 metal balls 3 mm
in diameter in liquid nitrogen by using a Tissue Lyser LT (Qiagen, Hilden, Germany)
bead mill at a 50 hits s−1 frequency. The pigments were quantitatively extracted with
methanol as described by Smolikova et al. [93]. The absorption spectra of the extracts were
measured at 470.0, 652.4, and 665.2 nm in quartz cuvettes with a 1 cm light path (Reachim,
St. Petersburg, Russia) by using a UV/Vis spectrophotometer Spekol 1300 (Analytik
Jena AG, Jena, Germany). The chlorophyll and carotenoid contents were calculated as
recommended by Lichtenthaler [94] and Lichtenthaler and Buschmann [95] and normalized
to fresh weights.

4.7. GC-MS Analysis

Leaves were sampled at 14, 24, 29, 45, and 52 DAS. Samples were processed as
previously described [82]: 100 mg of samples were immediately frozen with liquid nitrogen.
Then samples were grounded with bead mill (MM 400, Retsch, Haan, Germany) and
subjected to a single-stage extraction with a 2 mL methanol:chloroform:water mixture
(5:2:1) with continuous shaking 900 rpm at 4 ◦C in a thermoshaker (BioSan TS-100C, Riga,
Latvia). Tissue debris was removed by centrifugation at 12,000× g for 10 min at 4 ◦C. The
supernatant was collected and evaporated in a vacuum concentrator (CentriVap, Labconco,
Kansas City, MO, USA). For GC-MS analysis, dried material was dissolved in pyridine with
the tricosane (normal hydrocarbon) as internal standard. The samples were then supplied
with the silylating agent BSTFA:TMCS 99:1 (Sigma-Aldrich, Saint Louis, MO, USA) and
derivatizated at 90 ◦C for 20 min.

GC-MS analysis was performed with an Agilent 5860 chromatograph equipped with
a DB-5 MS capillary column and coupled with an Agilent 5975 quadropole mass selective
detector under control of Agilent ChemStation software (Agilent Technologies, Santa Clara,
CA, USA). The helium flow rate was 1 mL/min. The inlet temperature was 250 ◦C at
splitless mode. The column temperature started from 70 ◦C and increased up to 320 ◦C
by 5 ◦C per min. Electron impact ionization was performed at 70 V and an ion source
temperature of 230 ◦C.

The analysis of the GC-MS data was processed using the PARADISe software (De-
partment of Food Science Faculty of Science, University of Copenhagen, Denmark; [96])
coupled with NIST MS Search (National Institute of Standards and Technology (NIST),
USA). Moreover, for deconvolution and metabolite identification, the AMDIS (Automated
Mass Spectral Deconvolution and Identification System, NIST, Gaithersburg, Maryland,
USA) was used. Compounds were identified by obtained mass-spectra and Kovats reten-
tion indices using libraries: NIST2010, Golm Metabolome Database (GMD; [97]), and an
in-house library. The peak was referred to the identified metabolite when the match factor
was >800. Additionally, the Kovats retention indices were used for identification. When
one compound was represented as several peaks (isomers or several TMS forms), its areas
were summed.
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4.8. Statistical Analysis

All data on plant growth, mycorrhiza development, pigment accumulation, and
chlorophyll fluorescence were processed with one-way ANOVA. The SPSS 12.0 package
(SPSS Inc Chicago, IL, USA) was used for ANOVA. The Tukey’s HSD test as a post hoc test
was used to compare differences in mycorrhization parameters at different stages of plant
development. All data were expressed as the mean ± standard error. The differences were
considered as significant at the confidence level of p ≤ 0.05.

Statistical analyses of the metabolomic data were processed in the R language environ-
ment 3.6.3 [98]. For quantitative interpretation, the peak area was normalized against the
area of the internal standard (tricosane). Data were normalized against the sample median.
Outlying values were excluded on the basis of Dixon’s test in outliers package [99]. The
data were log2-transformed and standardized. If a compound was not detected in a sample
but was present in the other replicates, it was considered as a technical error and imputed
by KNN (k-nearest neighbors) with the impute R package [100].

A heatmap was made with ComplexHeatmap [101]. Principal component analysis
(PCA) was performed with pcaMethods [102]. The random forest method (RF) was carried
out in randomForest [103]; the mean decrease accuracy (MDA) was used for assignment of
feature relation to class difference. (Orthogonal) Partial Least Squares ((O)PLS-DA) was
performed with ropls. Factor loadings (p) and variable importance in projection (VIP), used
as statistics to access the relationship between features and parameters, were modeled [104].
For metabolite set enrichment analysis (MSEA), the fgsea algorithm was used [38].

Metabolite sets for metabolite pathways for M. truncatula were downloaded in the
KEGG database [105] using KEGGREST [106]. List of metabolites for pathways were man-
ually corrected: poorly represented or extra-large sets were excluded; for some metabolites,
obligatory needful pathways were added, and compounds identified up to class (hexose,
disaccharide, among others) were joined relevant pathways (Tables S1 and S2).

Graphs were built using the Cytoscape software [107].

5. Conclusions

The results of the study indicate the suitability of using the highly sensitive M. lupulina
MlS-1 line as a host plant to investigate the mechanisms of arbuscular mycorrhiza forma-
tion. Apparently, the high responsiveness of M. lupulina allowed us to demonstrate not
only a mycorrhiza-induced intensification of development but also an acceleration of the
change in phenophases. Along with the strong phenotypic expression, the intensification
of biophysical (photosynthesis indicators) and biochemical processes (accumulation of pig-
ments, etc.) is shown. It should be emphasized that the estimated mycorrhization efficiency
is a dynamically changing parameter which, for most indicators, grows at the stooling
stage and reaches a maximum at the SBI at 38 DAS. The use of GS-MS detection allowed
not only for characterization of the metabolome of M. lupulina leaves but also to provide
detailed metabolic profiling. The obtained data strongly indicate the presence of dynamic
biochemical rearrangements during plant development (with a change of phenophases)
and with arbuscular mycorrhiza development. It was concluded that the metabolic changes
realized during the development of the host plant are more extensive than those caused
by the emerging arbuscular mycorrhiza, even under the condition of high responsiveness
on the part of the plant under analysis. Most of the biochemical processes predicted by
the KEGG database are realized synchronously during AM formation and in its absence.
Presumably, they mediate the possibility of mycorrhizal M. lupulina plants passing the
transition to the next phenophase at a relatively “younger metabolic age”. The application
of complex mathematical analysis made it possible to identify the clustering of various
groups of metabolites and demonstrate the central importance of the carbohydrate cluster.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10112506/s1, Figure S1. The height of the main stem (B) and the number of internodes
(D) per one M. lupulina plant. “−AM” is the variant without AM fungus inoculation, “+AM” is
the variant inoculated with R. irregularis AM fungus. The axis of the abscissa is DAS. Figure S2.
Symbiotic AM-efficiency calculated as the increase in fresh weight (EFW) of aerial parts, the increase
in plant height (EPH), the increase in the number of leaves (ENL), the increase in the number of
internodes (ENI), the increase in the area of leaves (EAL) per 1 M. lupulina MlS-1 plant. The axis
of the abscissa is DAS. Figure S3. The effective photochemical quantum yield of photosystem II
(Y(II) = Fv’/Fm’); (A) and area of leaves (B). The axis of the abscissa is DAS, see other notes in
Figure 1. Figure S4. The chlorophyll a (Chl-a), chlorophyll b (Chl-b) and total carotenoid content
(ΣCar) in M. lupulina leaf tissues. *—significant (p < 0.05) differences in the average values of pigment
content in “−AM” variant (without AM) and “+AM” variant (inoculated with R. irregularis). The
axis of the abscissa is DAS. Figure S5. The ratio of the total carotenoid content (ΣCar) to the total
chlorophyll content(ΣChla+b). *—significant (p < 0.05) differences in the average values of pigment
content in “−AM” variant (without AM) and “+AM” variant (inoculated with R. irregularis). The
axis of the abscissa is DAS. Figure S6. Representation of metabolite profiles of leaves sampled in
mycorrhized (+AM) and nonmycorrhized (−AM) Medicago lupulina plants in low-dimensional spaces.
PCA—score plots, %—percent of variance. MDS—metabolite profiles in the space were revealed
using multidimensional scaling (MDS) with 1-r as a measure of distance between observations,
where r is Pearson’s correlation coefficient. Ellipses—90% CI. Figure S7. Comparative analysis of the
metabolom dynamics in the mycorrhized (+AM) and not mycorrhizied (-AM) plants. SUS-plot of
the loadings from OPLS models (with time as response) for −AM and +AM. Figure S8. Enrichment
analysis based on OPLS-DA loadings p. Up arrows refer to positive NES that means generally,
upregulations under mycorrhization or at later point, pathways clustered by a number of common
metabolites in profile as proximity measure. Figure S9. Comparing metabolomic shifts between
different phases. SUS-plot of loadings from OPLS-DA for corresponding pairs of phases: 1st leaf
(1L)—3rd leaf initiation (3LI), 3rd leaf initiation (3LI)—stooling initaitation (SI), stooling initaitation
(SI)—stem branching initiation (SBI), stooling branching initiation (SBI)—flowering inititiation (FI).
Positive loadings correspond to higher level at later stage. Figure S10. Comparison of mycorrhization
effects at different phases: stooling initiation (SI)/1st leaf (1L) (A); SI/flowering initiation (FI) (B).
SUS-plot of loadings from OPLS-DA for +AM and −AM. Positive loadings correspond to higher
level at +AM. Figure S11. Comparative analysis of metabolomic shifts between common phases:
1st leaf (1L)—stooling initiation (SI) (A), SI—flowering initiation (FI) of −AM (control) and +AM
plants (B). SUS-plot of loadings from OPLS-DA for corresponding phase pairs (see SUS titles).
Positive loadings correspond to higher level at a later stage. Figure S12. Comparative analysis
of AM effect and developmental metabolic alterations. SUS-plot of the loadings from OPLS-DA
models for comparison of −AM and +AM plants at SI (absciss) and for comparison of control
plants at 3LI and SI. Figure S13. Number strong (|r| > 0.7) correlations for each metabolite under
+AM and −AM development. Metabolites with high rates of difference are marked. Figure S14.
Steps of fungal inoculum preparation. Table S1. Metabolite content normilized per saple median.
Table S2. List of metabolic pathways and compounds identified up to class. Table S3. Agrochemical
soil characteristics.
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