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1  | INTRODUC TION

Glioma is the most prevalent primary brain tumour in adults. As well 
as being highly invasive, it is characterized by diffuse infiltration, 
fuzzy boundaries and aggressive proliferation.1 With the develop-
ment of molecular biological techniques, our understanding of the 
pathogenesis of glioma has greatly improved, and clinically, import-
ant genetic changes have been identified. In the revised classification 
of central nervous system (CNS) tumours proposed by the World 

Health Organization (WHO) in 2016, gliomas were classified based 
on a combination of histological findings and molecular findings, 
namely isocitrate dehydrogenase (IDH) mutations, 1p19q codeletion, 
H3 Lys27Met and RELA-fusion.2 However, although the diagnosis 
and treatment of gliomas have been greatly improved, the outcome 
of glioma patients is still unfavourable, with a mortality rate of nearly 
80% during the first year of diagnosis.3 For glioblastomas (GBMs), 
median survival is only approximately 15 months.4 Thus, there is an 
urgent need to improve the diagnosis and treatment of glioma.
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Abstract
Endoplasmic reticulum (ER) stress has considerable impact on cell growth, prolifera-
tion, metastasis, invasion, angiogenesis and chemoradiotherapy resistance in vari-
ous cancers. However, the effect of ER stress on the outcomes of glioma patients 
remains unclear. In this study, we established an ER stress risk model based on The 
Cancer Genome Atlas (TCGA) glioma data set to reflect immune characteristics and 
predict the prognosis of glioma patients. Survival analysis indicated that there were 
significant differences in the overall survival (OS) of glioma patients with different 
ER stress-related risk scores. Moreover, the ER stress-related risk signature, which 
was markedly associated with the clinicopathological properties of glioma patients, 
could serve as an independent prognostic indicator. Functional enrichment analysis 
revealed that the risk model correlated with immune and inflammation responses, 
as well as biosynthesis and degradation. In addition, the ER stress-related risk model 
indicated an immunosuppressive microenvironment. In conclusion, we present an ER 
stress risk model that is an independent prognostic factor and indicates the general 
immune characteristics in the glioma microenvironment.
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As the largest organelle in eukaryotic cells, ER is a membrane 
structure composed of branched tubules and flat sacs, and is a major 
site of protein synthesis, processing and transport.5 However, the 
protein-processing capacity of the ER is finite. When the protein 
folding capacity of the ER is exceeded, the cell is considered to be in 
a state of ER stress state.6 Many factors can reduce the efficiency 
of protein folding and lead to ER stress, including oxidative stress, 
nutrient deprivation, proteotoxicity, hypoxia and metabolic stress, 
as well as impaired calcium balance.7,8 It is generally believed that 
ER stress is triggered by three branches of transmembrane ER sen-
sors: IRE1α, PERK and ATF6. Misfolded proteins are continuously 
monitored by these three receptors, and when the concentration 
of misfolded proteins reach a certain level, the sensors trigger the 
ER stress response.9 Several studies have confirmed that chronic ER 
stress is a typical feature of many diseases, including tumours.10

In tumours, the high metabolism and proliferation of tumour 
cells lead to ischaemia and hypoxia within the tumour, causing tu-
mour cells to enter a state of continuous ER stress. Signal transduc-
tion and regulation induced by the ER stress state promote tumour 
growth, angiogenesis, immune escape and chemoradiotherapy re-
sistance.11,12 ER stress can stimulate tumour cells to secrete a heat-
resistant factor, which can act on leucocytes around tumour cells, 
thereby changing the local immune characteristics of the tumour 
and promoting the growth of tumour cells.13 In addition, macro-
phages secrete VEGF in response to treatment with the conditioned 
medium of tumour cells under ER stress, thus enhancing angiogene-
sis within the tumour microenvironment.14

In gliomas, ER stress can change the metabolic state of tu-
mour cells to promote tumorigenesis and therapy resistance.15,16 
Therefore, ER stress has become a new target for glioma therapy.17 
General ER stress activators18 and the selective ATF6,19 PERK20 or 
GRP7821 activators have been confirmed to regulate multiplication 
and to facilitate apoptosis of glioma cells. However, some small mol-
ecules that interfere with protein processing and folding can inhibit 
the growth of tumour cells.22 Therefore, aberrant expression of ER 
stress-related genes may have prognostic value for glioma patients 
and can be exploited as potential therapeutic targets.

In this study, we developed an ER stress-related risk model, which 
can not only accurately predict the outcomes of glioma patients, but 
also distinguish the immune characteristics of glioma. In addition, we 
established a nomogram that integrates the prognosis model with 
clinicopathological factors (age, gender, grade, IDH mutation status, 
1p19q codeletion status and MGMT promoter methylation status) 
and found its performance in estimating 1-, 3- and 5-year survival 
rates of glioma patients is excellent.

2  | MATERIAL S AND METHODS

2.1 | Data sets and data collection

GeneCards (https://www.genec​ards.org/) is a searchable, integrative 
database that provides comprehensive, user-friendly information on 

all annotated and predicted human genes. ER stress-related genes 
were extracted from GeneCards, and genes with a relevance score 
≥7 were selected. TCGA RNA-seq transcriptome data and clinical in-
formation were obtained from TCGA database (http://cance​rgemo​
me.nih.gov/). The Chinese Glioma Genome Atlas (CGGA) mRNA ex-
pression data (mRNAseq_325 and mRNA-array) and corresponding 
clinicopathological features were collected from the CGGA database 
(http://www.cgga.org.cn). The GSE16011 data set was procured 
from the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/). Raw data were processed via the R package, 
affy, and robust multi-array analysis (RMA) was used for background 
correction and normalization. Biospecimens and clinical data from 
related research were used as supplements.23 Patient characteris-
tics, including detailed data for each research object, are shown in 
Table S1.

2.2 | Samples and quantitative real-time 
PCR analysis

From June 2018 to September 2019, we gathered 12 glioma tis-
sues (4 cases each of grade II, III and IV glioma) from patients 
at the First Hospital of China Medical University. The clinical 
characteristics of 12 patients were shown in Table S2. Total RNA 
extraction and quantitative real-time PCR (qRT-PCR) was per-
formed as previously described.24 After extraction using TRIzol 
reagent (Invitrogen/Thermo Fisher Scientific), total RNA was 
transcribed to first-strand cDNA and then underwent qRT-PCR 
(SYBR Green Master Mix). Each sample was assayed in triplicate. 
After being normalized to GAPDH expression levels, the expres-
sion values were log2 transformed. Primer sequences of target 
genes are shown in Table  S3. This research was approved by 
the Medical Ethics Committee of the First Affiliated Hospital of 
China Medical University. All participants provided written in-
formed consent.

2.3 | Western blot assay

Western blot assay was performed as previously described.24 
Briefly, the total protein of glioma tissues was extracted using a 
protein extraction kit (Beyotime). Equivalent amounts of protein 
(25-50  μg) were then electrophoresed and transferred to poly-
vinylidene fluoride membranes (0.45  μm; Millipore). After being 
blocked, membranes were incubated with antibodies against ATF6 
(24169-1-AP, Proteintech), EIF2α (sc-133132, Santa), p-EIF2α (# 
3398S, CST), p-IRE1α (sc-390960, Santa) and GAPDH (60004-1-Ig, 
Proteintech) at 4°C for 16 hours. The membranes were then incu-
bated with appropriate secondary antibodies (ProteinTech). Protein 
bands of interest were detected and quantified using a chemilumi-
nescence kit (Beyotime), the ChemiDoc™ Touch detection system 
(Bio-Rad Laboratories) and Image J software (National Institutes of 
Health).

https://www.genecards.org/
http://cancergemome.nih.gov/
http://cancergemome.nih.gov/
http://www.cgga.org.cn
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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2.4 | ER stress-related risk signature 
construction and validation

We first conducted univariate Cox regression and Kaplan-Meier 
(KM) analysis using the survival R package to identify ER stress-
related genes associated with patients’ overall survival (OS) time 
from TCGA, CGGA (CGGA refers to mRNAseq_325 data unless 
otherwise specified), CGGA (mRNA-array) and GSE16011 data sets. 
Only when the p values of both analysis methods were ≤0.05 were 
the genes included in the next step. The intersection genes related 
to OS from the above four data sets were analysed by least absolute 
shrinkage and selection operator (LASSO) regression, using the glm-
net R package in TCGA database, to narrow the range of prognosis-
related genes. Subsequently, the Akaike information criterion (AIC) 
method of multivariate Cox regression analysis was performed using 
the survival package to establish an optimal ER stress-related risk 
signature based on linear integration of the regression coefficient 
obtained from the multivariate Cox regression analysis and expres-
sion level of the selected ER related genes. The risk score was com-
puted as follows:

where Expi is the expression value of the ER stress-related genes and 
Coefi is the corresponding regression coefficient calculated by multi-
variate Cox regression analysis. TCGA data were used as the training 
cohort, and CGGA and GSE16011 data were used for the validation 
cohorts.

2.5 | Survival analysis

Kaplan-Meier survival analyses were performed using the survival 
and survminer packages in R to compare the OS between different 
groups of glioma patients. The R package survivalROC was used to 
establish time-dependent receiver operating characteristic (ROC) 
curves to check the accuracy of the risk signatures in predicting 
the outcomes of glioma patients. The larger the area under the 
ROC curve (AUC), the stronger the predictive ability of the risk 
model. A risk plot was drawn using Pheatmap R package to dis-
play the distribution of survival status of samples in different risk 
groups.

2.6 | Functional enrichment analysis

The GSVA package in R was applied to estimate the Gene Ontology 
(GO) biological processes and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways that correlated with the risk signature. 
The GSVA package scored the GO biological processes and KEGG 
pathways in each sample, and then by comparing the score differ-
ences in different risk groups, we identified the different biologi-
cal processes enriched in the high- and low-risk groups. The limma 

package in R was adopted to identify differentially expressed genes 
and gene sets in different groups. To further verify the GO processes 
and KEGG pathways related to the signature, GO and KEGG analy-
ses were performed for the differentially expressed genes using 
the clusterProfiler package in R. All heat maps were drawn using the 
Pheatmap package in R.

2.7 | Evaluation of immune cell fractions and 
immune subtypes

Myeloid-derived suppressor cells (MDSCs),25 regulatory T cells 
(Tregs),26 natural killer (NK) cells27 and neutrophils28 in the glioma 
microenvironment are considered to be involved in immunosup-
pression. The ssGSEA method of the GSVA package was used to 
identify the immune cell composition mentioned above to evaluate 
the level of immune cell enrichment in the tumour microenviron-
ment through the gene expression level in a single tumour sam-
ple.29 Vésteinn Thorsson and his colleagues categorized tumours 
into six immune subtypes, C1 (Wound Healing) has high angiogenic 
gene expression, high proliferation rate, and Th2 cells trending to 
the adaptive immune infiltrate; C2 (IFN-γ Dominant) has the high-
est M1/M2 macrophage polarization level, a strong CD8 signal, 
and together with C6, the greatest T cell receptor diversity; C3 
(Inflammatory) is determined by increased expression of Th17 and 
Th1 genes, low to moderate tumour cell proliferation, and, along 
with C5, lower aneuploidy levels and overall somatic copy number 
alterations compared with the other subtypes; C4 (Lymphocyte 
Depleted) displays a more prominent macrophage signature, with 
Th1 suppressed and a high M2 response; C5 (Immunologically 
Quiet) exhibits the lowest lymphocyte count, and highest mac-
rophage responses, dominated by M2 macrophages; C6 (TGF-β 
Dominant) displays the highest TGF-β signature and a high lym-
phocytic infiltrate with an even distribution of Type I and Type II 
T cells. Subtype C4 is enriched in adrenocortical carcinoma (ACC), 
pheochromocytoma and paraganglioma (PCPG), hepatocellular 
carcinoma (LIHC) and gliomas, while low-grade gliomas (LGG) con-
sist mostly of subtype C5.30 The glioma samples were classified 
into different immune subtypes using the ImmuneSubtypeClassifier 
package in R.30

2.8 | Independent prognostic role of the 
risk signature

To identify whether the ER stress-related risk signature depended 
on other clinicopathological factors (including age, gender, tumour 
grade, IDH mutation status, 1p19q codeletion status and MGMT 
promoter methylation status) in predicting patients’ OS, univariate 
and multivariate Cox regression analyses were performed using the 
survival R package. The results of independent prognostic factor 
analysis were displayed in the form of forest plots using the forest-
plot R package.

Riskscore =
∑

N
i= 1

(

Coefi × Expi
)
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2.9 | Development and 
assessment of the nomogram

The nomogram shows the probability of clinical events through sim-
ple graphs of statistical prediction models to form a personalized 
prediction model. Age, gender, tumour grade, IDH mutation status, 
1p19q codeletion status, MGMT promoter methylation status and 

ER stress-related risk scores were combined to develop a nomogram 
using the R packages survival and rms. Calibration curves and deci-
sion curve analysis (DCA) were adopted to evaluate the accuracy of 
the nomogram in predicting one-, three- and five-year survival rates 
of glioma patients.31,32 For the calibration curve, the higher was the 
degree of agreement between the predicted curve and the actual 
curve, the stronger was the predictive ability of the nomogram. For 

F I G U R E  1   Identifying prognostic genes for developing a risk model. (A) Intersecting genes associated with glioma OS in the TCGA, 
CGGA, CGGA (mRNA-array) and GSE160011 databases. (B) LASSO coefficient profiles of the 190 genes in the TCGA data set. (C) Selection 
of the optimal parameter (lambda) in the LASSO model. (D) Sixteen genes were chosen for establishing a prognosis signature. CGGA, 
Chinese Glioma Genome Atlas; LASSO, least absolute shrinkage and selection operator; OS, overall survival; TCGA, The Cancer Genome 
Atlas
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DCA, the decision curve of the nomogram was compared with that 
of other independent prognostic factors.

2.10 | Statistical analyses

R software (version 3.6.3) and GraphPad Prism v7.00 (GraphPad 
Software Inc.) were used as statistical analysis tools in this 

study. Quantitative data are presented as the mean  ±  stand-
ard error of the mean (SEM) or standard deviation (SD). The 
Wilcoxon test was applied to compare the statistical differ-
ences between the two groups, and the Kruskal-Wallis H test 
was employed to compare multiple groups. Statistical signifi-
cance was defined as P < .05. Venn diagrams were drawn using 
jvenn.33 The other plots were constructed using R software or 
GraphPad Prism.

F I G U R E  2   Assessment of the prognostic prediction ability of the ER stress-related risk signature. (A-C) ROC curves of the 16-gene 
signature in the (A) TCGA, (B) CGGA and (C) GSE16011 cohorts. (D-F) KM curve of the prognosis signature in the (D) TCGA, (E) CGGA and 
(F) GSE16011 cohorts (log-rank test). (G, H) Risk score distribution in the (G) TCGA and (H) CGGA cohorts. CGGA, Chinese Glioma Genome 
Atlas; ER, Endoplasmic reticulum; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; TCGA, 
The Cancer Genome Atlas
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3  | RESULTS

3.1 | Sixteen ER stress-related genes were identified 
to develop risk model

A total of 787 ER stress-related genes with a relevance score of ≥7 
were extracted from the GeneCards database to generate prog-
nostic gene signatures (Table  S4). These genes were subjected to 
univariate Cox regression and KM analyses. In the TCGA, CGGA, 
CGGA (mRNA-array) and GSE16011 data sets, 593, 504, 422 and 
330 genes, respectively, were significantly related to OS of glioma 
patients (Figure 1A, Tables S5-8). The overlapping genes (190 genes, 
Table S9) were included in the LASSO regression analysis to avoid 
overfitting problems in the risk signature (Figure 1B,C, Table S10). 
The AIC method of multivariate Cox regression analysis was ap-
plied to the genes returned from the LASSO regression analysis 
(28 genes) to construct the optimal model, which included sixteen 

genes (CYP2E1, SLN, BRCA1, CISD2, LRRK2, BMP2, MYH7, HSPB1, 
DNM1L, SHISA5, RNF185, RCN1, SPP1, RPN2, PDIA3 and ATP2A2) 
(Figure  1D). Among these genes, CYP2E1, SLN, BMP2, MYH7, 
RNF185 and PDIA3 were protective factors for glioma survival, with 
hazard ratios (HRs) <1, and BRCA1, CISD2, LRRK2, HSPB1, DNM1L, 
SHISA5, RCN1, SPP1, RPN2 and ATP2A2 were risk factors with 
HRs > 1.

Furthermore, we analysed the correlation of these 16 genes 
in the TCGA, CGGA and GSE16011 data sets and found that few 
genes were highly correlated with each other in the three data 
sets (Figure S1A-C). We retrieved BRCA1, PDIA3, DNM1L, RCN1, 
HSPB1, RPN2, LRRK2 and SPP1 protein expression levels in glio-
mas using the Human Protein Atlas (HPA) (https://www.prote​inatl​
as.org/). Expression levels of risk factors BRCA1, DNM1L, RCN1, 
HSPB1, RPN2, LRRK2 and SPP1 in high-grade gliomas were greater 
than those in lower-grade gliomas, while the protein expression lev-
els of protective factor PDIA3 were exactly the opposite (Figure S2). 

F I G U R E  3   The ER stress risk score can 
distinguish different clinicopathological 
features of gliomas. (A-C) The prognosis 
values of the ER stress risk model in 
LGG in the (A) TCGA, (B) CGGA and (C) 
GSE16011 data sets (log-rank test). (D-F) 
The prognosis values of the ER stress risk 
signature in GBM from the (D) TCGA, 
(E) CGGA and (F) GSE16011 data sets 
(log-rank test). (G-I) Distribution of the 
risk scores in LGG and GBM in the (G) 
TCGA, (H) CGGA and (I) GSE16011 data 
sets (Wilcoxon test). (J-N) The risk score 
was grouped by IDH mutation status (J-L) 
and 1p19q codeletion status (M and N) 
(Wilcoxon test). CGGA, Chinese Glioma 
Genome Atlas; ER, Endoplasmic reticulum; 
IDH, isocitrate dehydrogenase; LGG, low-
grade gliomas; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome 
Atlas

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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F I G U R E  4   Functional enrichment analysis of the risk signature. (A-C) Differential expression of ER stress markers in the (A) TCGA, (B) 
CGGA, and (C) GSE16011 between different groups (Wilcoxon test). (D) The top 20 KEGG pathways and (E) the top 30 biological processes 
enriched in the high-risk group in the TCGA cohort. CGGA, Chinese Glioma Genome Atlas; ER, Endoplasmic reticulum; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas
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We further examined the genetic alterations of these OS-associated 
genes in glioma. A data set (http://www.cbiop​ortal.org) comprising a 
merged cohort of low-grade glioma (LGG) and GBM containing 794 
patients/samples harbouring both mutations and CAN data was que-
ried. Genetic alterations were found in 108 (13.60%) of the queried 
patients/samples (Figure S1D). CYP2E1 had the highest frequency 
of genetic alterations.

3.2 | Establishing and evaluating the ER stress-
related risk signature

The Cancer Genome Atlas glioma data were used to construct 
the risk signature. The risk score was calculated as follows: risk 
score  =  (−0.1318  ×  CYP2E1 expression)  +  (−0.1122  ×  SLN ex-
pression)  +  (0.4543  ×  BRCA1 expression)  +  (0.3481  ×  CISD2 ex-
pression)  +  (0.1811  ×  LRRK2 expression)  +  (−0.1236  ×  BMP2 
expression)  +  (−0.1183  ×  MYH7 expression)  +  (0.4296  ×  HSPB1 
expression)  +  (0.3839  ×  DNM1L expression)  +  (0.5514  ×  SHISA5 
expression)  +  (−0.5315  ×  RNF185 expression)  +  (0.2889  ×  RCN1 
expression)  +  (0.1260  ×  SPP1 expression)  +  (0.5187  ×  RPN2 ex-
pression)  +  (−0.7779  ×  PDIA3 expression)  +  (0.2649  ×  ATP2A2 
expression). Time-dependent ROC curves were used to assess the 
efficiencies of the prognostic prediction of the ER stress-related 
risk signature. As presented in Figure 2A, the AUCs for 1-, 3- and 5-
year OS in the TCGA data set were 0.890, 0.929 and 0.900, respec-
tively. The AUCs for predicting 1-, 3- and 5-year OS in the CGGA 
data set were 0.719, 0.795 and 0.804, respectively, and those in 
the GSE16011 data set were 0.758, 0.814 and 0.808, respectively 
(Figure 2B,C).

Samples in the TCGA, CGGA and GSE16011 cohorts were 
then divided into low- and high-risk groups based on the median 
risk score in each cohort. KM analysis showed that patients in the 
low-risk group had a more favourable outcome than patients in the 
high-risk group (Figure 2D-F). The three-year OS rates were 26.56% 
(95% confidence interval (CI): 21.20-33.28) vs 92.43% (95% CI: 
88.72-96.32) for the high- and low-risk groups in the TCGA data set, 
22.38% (95% CI: 16.56-30.25) vs 69.4% (95% CI: 62.40-77.21) for 
the high- and low-risk groups in the CGGA cohort, and 10.81% (95% 
CI: 6.60-17.72) vs 47.88% (95% CI: 39.97-57.37) for the high- and 
low- risk groups in the GSE16011 data set, respectively. Figure 2G-H 
and Figure S3A show the OS-related prediction model distribution 
of patients in the TCGA, CGGA and GSE16011 data sets. These re-
sults indicate the accuracy of the ER stress-related risk signature in 
predicting the outcomes of glioma patients. The expression patterns 
of the 16 genes in the TCGA, CGGA and GSE16011 data sets are 
shown in Figure S3B-D.

3.3 | The ER stress-related signature is associated 
with clinicopathological features

We investigated whether the ER stress-related risk signature was 
correlated with the clinicopathological features of glioma patients. 
First, we examined the prognostic effect of the signature in LGG 
and GBM patients using KM analysis. As displayed in Figure 3A-F, 
the high-risk group showed reduced OS in terms of both LGG and 
GBM in the TCGA, CGGA and GSE16011 data sets. Additionally, the 
risk scores were notably different among stratified patients, with 
high-risk scores in high-grade glioma, wild-type IDH, 1p19q non-
codeletion, mesenchymal subtype and MGMT promoter unmethyl-
ated patients (Figure  3G-N, Figure  S4A-D). These results suggest 
that the ER stress-related risk signature can accurately distinguish 
different clinicopathologic features of glioma patients.

3.4 | Functional annotation of the risk signature

Many studies on ER stress have used the intracellular expres-
sion levels of related proteins, such as ATF6, HSPA5, XBP1 and 
ATF4, as indicators to examine the intensity of ER stress in cells or 
tissues.34-36 To explore ER stress status in different glioma groups, 
we measured the expression levels of these markers in the TCGA, 
CGGA and GSE16011 data sets. Most of them had higher expres-
sion levels in the high-risk group, demonstrating that the ER stress 
in this group was markedly more intense than that in the low-risk 
group (Figure  4A-C). To further verify the relationship between 
the risk score and the ER stress intensity of gliomas, we used qRT-
PCR to measure the expression levels of the 16 risk genes in the 
12 glioma samples. The samples were scored based on the expres-
sion levels of these genes and grouped according to the score. 
We then used Western blotting to measure the expression lev-
els of ATF6, EIF2α, p-EIF2α and p-IRE1α in the samples from the 
high- and low-score groups. The Western blotting results were 
consistent with those of the above databases analysis (Table S11, 
Figure  S5). These results further confirmed the correlation be-
tween the signature and ER stress activation. Next, we used the 
GSVA package to explore the KEGG pathways and GO biological 
processes associated with risk signature in the TCGA and CGGA 
data sets. At P < .05, the top 20 KEGG pathways and the top 30 
GO biological processes were identified based on the logFC value 
in the TCGA and CGGA data sets. Most of the KEGG pathways 
and GO biological processes enriched in the high-risk group were 
associated with the immune and inflammatory responses as well 
as cell biosynthesis and degradation (Figure 4D,E, Figure S6A,B). 
To confirm these results, differentially expressed genes between 

F I G U R E  5   Immune features between different groups of glioma patients. (A-C) Expression of the cancer-immunity cycle negative 
regulators in low- and high-risk groups in the (A) TCGA, (B) CGGA and (C) GSE16011 data sets (Wilcoxon test). (D-F) VEGFA, (G-I) TGFB1, 
(J-L) CD95L and (M-O) CD70 expression in the low- and high-risk groups (Wilcoxon test). (P-R) Immunosuppressive cell scores in different 
groups (Wilcoxon test). (S) Distribution of immune subtypes. CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas

http://www.cbioportal.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
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the two groups were selected and underwent GO and KEGG anal-
yses using the R package, clusterProfiler, in the TCGA, CGGA and 
GSE16011 data sets (Figure S7A-F). The results were similar to the 
results of the GSVA analysis.

The typical characteristic of ER stress is cellular protein synthesis 
in excess of the ER folding ability. This may be why biosynthesis- 
and degradation-related pathways were enriched in the high-risk 
groups. In addition, studies have confirmed that ER stress inhibits 

F I G U R E  6   Relationship between the ER stress risk signature and immune checkpoints. (A-C) Heat map of immune checkpoints in the 
low- and high-risk groups in the (A) TCGA, (B) CGGA and (C) GSE16011 databases (Wilcoxon test). (D, E) Correlation between the ER stress 
risk score and the expression of (D) PD1 and (E) PD-L1 in the TCGA cohort (Pearson correlation analysis). (F, G) Correlation between the 
ER stress risk score and the expression of (F) PD1 and (G) PD-L1 in the CGGA cohort (Pearson correlation analysis). (H and J) PD1 and (I 
and K) PD-L1 expression in different groups in the TCGA and CGGA data sets (Wilcoxon test). CGGA, Chinese Glioma Genome Atlas; ER, 
Endoplasmic reticulum; TCGA, The Cancer Genome Atlas
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anti-tumour immunity and promotes tumour cell escape from immu-
nosurveillance.13,37,38 Here, the enrichment in immune and inflam-
matory response-related pathways and processes in the high-risk 
group further demonstrates that the immune environment of the 
high-risk group is complex.

3.5 | High ER stress-related risk score demonstrates 
an immunosuppressive feature

The process of tumour eradication by the immune system involves 
the cancer-immunity cycle.39 We explored the expression charac-
teristics of genes that inhibited this cycle in the TCGA, CGGA and 
GSE16011 data sets. These genes were acquired from the Tracking 
Tumor Immunophenotype website (http://biocc.hrbmu.edu.cn/
TIP/index.jsp).40 In the three cohorts, most genes were highly 
expressed in the high-risk group (Figure  5A-C). TGFB1, VEGFA, 
ARG1, FGL2 and IL10 are secreted immunosuppressive factors 
in glioma,41-46 while CD95L and CD70 are glioma cell-surface 
immunosuppressive factors.47,48 As shown in Figure  5D-O and 
Figure  S8A-I, they were all obviously overexpressed in the high-
risk groups. Furthermore, some immune cells, such as MDSCs, 
Tregs, NK cells, and neutrophils, infiltrate into the tumour microen-
vironment and exhibit immunosuppressive effects to promote tu-
mour occurrence, progression, and therapy resistance.25-28 These 
immunosuppressive cells were also found to be enriched in the ER 
stress-related high-risk groups (Figure  5P-R). To further explore 
the characteristics of the immune microenvironment in glioma of 
the high- and low-risk groups, the ImmuneSubtypeClassifier pack-
age was used to divide the samples into different immune subtypes 
in the three cohorts. We found that in both the high- and the low-
risk groups, the main subtypes were C4 and C5, but the high-risk 
group had considerably more C4 subtypes than the low-risk group 
(Figure 5S). The prognosis of the C4 immune subtype in tumours is 
worse than that of the C5 immune subtype,30 which was consistent 
with the prognosis of high- and low-risk glioma patients. This fur-
ther confirmed the accuracy of the ER stress-related risk signature 
in predicting immune subtypes and prognosis in gliomas.

In addition to the cancer-immunity cycle inhibitors mentioned 
above, immune checkpoints can also suppress the immune system's 
ability to clear tumours.49 In recent years, immune checkpoints 
have become potential therapeutic targets for many malignant 
tumours and play an important role in tumour immunotherapy.50 
Comparison of the expression of immune checkpoints in the 
high- and low-risk groups showed that most immune checkpoints 
were up-regulated in the high-risk groups in the TCGA, CGGA and 
GSE16011 cohorts (Figure  6A-C). Considering the critical roles 
played by PD1 and PD-L1 in tumour immunosuppression and im-
munotherapy, we separately investigated the relationship between 
their expression levels and the ER stress-related risk score. We 
found that the expression levels of PD1 and PD-L1 were obviously 
positively correlated with the risk score (Figure  6D-G), and their 
expression levels in the high-risk group were markedly higher than 

those in the low-risk group (Figure 6H-K). These data suggest that 
the ER stress-related risk signature can accurately predict the im-
mune characteristics of glioma.

3.6 | Construction and validation of the nomogram

In addition to the ER stress risk score, there are numerous known 
prognostic factors for glioma, such as age, gender, WHO grade, 
IDH mutation status, 1p19q codeletion status and MGMT promoter 
methylation status. Therefore, it was necessary to examine whether 
the ER stress risk signature could independently predict progno-
sis. In the TCGA training cohort, univariate Cox analysis revealed 
that ER stress-related risk score was negatively correlated with the 
OS of glioma patients. Moreover, age, grade, IDH mutation status, 
1p19q codeletion status and MGMT promoter status were also sig-
nificantly related to OS (Figure 7A). Subsequent multivariate Cox re-
gression analysis indicated that the ER stress-related risk signature, 
grade and IDH mutation status were significantly correlated with 
OS (Figure 7B). These results were further confirmed in the CGGA 
and GSE16011 data sets (Figure S9A-D). These findings indicate that 
the ER stress-related risk signature constructed using the TCGA 
data set was an independent prognostic factor for glioma patients.

We established a nomogram to predict 1-, 3- and 5-year OS in 
the TCGA data set, by integrating ER stress risk signature, age, gen-
der, WHO grade, IDH mutation status, 1p19q codeletion status and 
MGMT promoter methylation status. In the nomogram, each sig-
nature was assigned points according to its risk contribution to OS 
(Figure 7C). The calibration curves illustrated a remarkable consen-
sus between the predicted and actual survival time in terms of the 1-, 
3- and 5-year OS rates in the TCGA and CGGA cohorts (Figure 7D,E). 
The DCAs constructed using the TCGA (Figure  7F-H) and CGGA 
(Figure 7I-K) cohorts for this nomogram demonstrated that the no-
mogram performed well in predicting the 1-, 3- and 5-year OS rates 
in glioma patients.

4  | DISCUSSION

Substantial data suggest that a specific intensity of ER stress 
promotes multiple mechanisms of cancer progression, including 
cancer cell survival and metastasis, therapeutic resistance, and 
angiogenesis.11,12 ER stress can help cancer cells evade immunity 
and facilitate metastases.38 Moreover, ER stress in tumour cells 
can also affect tumour immunity. Cancer cells under ER stress 
release unknown factors to induce ER stress in macrophages in 
the microenvironment, inducing them to release pro-inflammatory 
factors. Simultaneously, these unknown factors also promote 
bone marrow-derived dendritic cells to release immunosuppres-
sive factors, such as Arginase, to inhibit the antigen presentation 
ability of CD8+ T cells.13,37 In breast cancer, ER-stressed tumour 
cells can up-regulate miR-27a-3p content in exosomes and pro-
mote PD-L1 expression in macrophages.51 Although ER stress in 

http://biocc.hrbmu.edu.cn/TIP/index.jsp)
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tumour cells has the afore-mentioned effects on immune cells in 
the tumour microenvironment, the specific mechanism has not yet 
been fully elucidated. One possible explanation is that ER-stressed 
tumour cells can induce ER stress in immune cells in the tumour 
microenvironment. Due to ER stress signalling, such as IRE1α, and 
PERK, the function of ER-stressed immune cells is inhibited.13,52,53 
Collectively, these findings indicate that a complete understand-
ing of the specific mechanisms of ER stress in the regulation of 
anti-tumour immunity may greatly improve the efficiency of tu-
mour immunotherapy.

In gliomas, ER stress has an important influence on tumori-
genesis, progression and therapy response.54 However, the role 
of ER stress in the anti-tumour immunity of glioma remains un-
clear. Based on the content presented above, we speculated that 
ER stress might affect immune characteristics within the glioma 
microenvironment.

In this study, we retrieved and downloaded 787 ER stress-related 
genes from the GeneCards website. Among them, 190 survival-
related genes were shared among the TCGA, CGGA, CGGA (mRNA-
array) and GSE16011 data sets. Further LASSO regression analysis 
and AIC of multivariate Cox regression analyses were performed to 
identify16 OS-related genes (CYP2E1, SLN, BRCA1, CISD2, LRRK2, 
BMP2, MYH7, HSPB1, DNM1L, SHISA5, RNF185, RCN1, SPP1, 
RPN2, PDIA3 and ATP2A2) and construct an OS-related prediction 
model. CYP2E1, SLN, BMP2, MYH7, RNF185 and PDIA3 expression 
levels were positively correlated with favourable outcomes, whereas 
BRCA1, CISD2, LRRK2, HSPB1, DNM1L, SHISA5, RCN1, SPP1, 
RPN2 and ATP2A2 expression levels were negatively correlated 
with favourable outcomes.

Of the 16 OS-related genes, CYP2E1,55 PDIA3,56 RNF185,57 
CISD258 and DNM1L59 are up-regulated and promote cancer pro-
gression. Additionally, CYP2E1 regulates the level of ER stress and 
reactive oxygen species,60 PDIA3 is closely related to the anti-tumour 
immunity of glioma,61 and DNM1L plays a regulatory role in the im-
mune response of NKT cells to tumours.62 The role of SHISA5 and 
SLN in cancers has not been previously studied. BRCA1 mutations 
are closely related to the tumorigenesis and progression of female 
breast and ovarian tumours.63 In hepatocellular carcinoma, BRCA1 
expression level is positively correlated with the infiltration levels of 
immune cells including B cells, CD8+ T cells, macrophages and den-
dritic cells.64 HSPB1 can negatively regulate the ferroptotic death of 
tumour cells.65 Silencing HSPB1 in breast cancer cells can enhance 
the cytotoxicity of CD8+ T cells and their transformation into mem-
ory cells.66 BMP2 is down-regulated in colorectal cancer tissues 
while also being able to suppress colorectal cancer progression.67 In 
osteogenesis, BMP2 is a potential chemokine for macrophages and 

significantly reduces M1 phenotypic markers, including IL-1β and IL-
6, in macrophages.68 Thus, it is not unexpected that most of the 16 
genes identified directly or indirectly affect the function of immune 
cells. This also suggests that ER stress may regulate the anti-glioma 
immune response.

Risk score is a commonly employed method for the development 
of a meaningful signature. The model we built using ER stress-related 
risk scores not only accurately predicted the prognosis of glioma pa-
tients, but also distinguished different glioma molecular subtypes. 
ROC analysis demonstrated that the 16-gene signature performed 
well in predicting short-term (1-year and 3-year) and long-term (5-
year) survival for glioma patients in the TCGA, CGGA and GSE16011 
data sets. KM analysis confirmed that the model accurately pre-
dicted the survival of glioma patients.

Considering the powerful role of this risk signature in gliomas, we 
further evaluated the mechanisms of these effects. Functional anal-
ysis suggested that the biological processes of immune and inflam-
matory responses, as well as biosynthesis and degradation, were 
enriched in the high-risk group, suggesting an interaction between 
ER stress and the glioma immune response. Compared with the low-
risk group, the high expression of cancer-immunity cycle inhibitors 
and immune checkpoints along with the enrichment of tumour-
immunosuppressive cells in the high-risk group indicated that the 
model successfully differentiated the immune types of glioma. This 
indicates that ER stress can regulate the immune microenvironment 
of glioma to affect the prognosis of glioma patients. It also confirms 
that our assumption regarding the relationship between ER stress 
and the anti-glioma immune response is correct.

To fully utilize the potential of the risk model, we developed a no-
mogram combining the ER stress signature, age, gender, WHO grade, 
IDH mutation status, 1p19q codeletion status and MGMT promoter 
methylation status. Calibration plots and DCA based on the TCGA 
and CGGA databases demonstrated the excellent predictive perfor-
mance of the nomogram. Thus, our 16-gene ER stress-related risk 
signature can predict the OS of glioma patients and facilitate the se-
lection of optimal treatment approaches.

However, our study also had some limitations. The expression 
and prognostic predictive effect of the 16 genes at the protein 
level require additional assessment. In addition, further research 
is needed to confirm the specific functional mechanisms of the ER 
stress-related risk signature in glioma. Although it showed outstand-
ing performance in distinguishing glioma survival differences and 
immune characteristics, the accuracy of the risk model in discrimi-
nating between normal brain tissue and glioma tissue remains to be 
investigated. In summary, our research provides important resources 
for elucidation of the specific role of ER stress in glioma.

F I G U R E  7   Establishment and assessment of the nomogram. (A, B) Forest plot of the (A) univariate and (B) multivariate Cox regression 
analyses in the TCGA cohort. (C) The nomogram plot was constructed based on WHO grade, age, gender, IDH mutation status, 1p19q 
codeletion status, MGMT promoter methylation status and ER stress risk score. (D, E) Calibration plot of the nomogram based on (D) TCGA 
and (E) CGGA data. (F-H) DCA of the nomogram for 1-, 3- and 5-year OS in the TCGA cohort. (I-K) DCA of the nomogram for 1-, 2- and 
5-year OS in the CGGA cohort. CGGA, Chinese Glioma Genome Atlas; DCA, decision curve analysis; ER, Endoplasmic reticulum; IDH, 
isocitrate dehydrogenase; OS, overall survival; TCGA, The Cancer Genome Atlas
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