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Cascading failures in coupled 
networks with both inner-
dependency and inter- 
dependency links
Run-Ran Liu1, Ming Li2,3, Chun-Xiao Jia1 & Bing-Hong Wang2

We study the percolation in coupled networks with both inner-dependency and inter-dependency links, 
where the inner- and inter-dependency links represent the dependencies between nodes in the same or 
different networks, respectively. We find that when most of dependency links are inner- or inter-ones, 
the coupled networks system is fragile and makes a discontinuous percolation transition. However, 
when the numbers of two types of dependency links are close to each other, the system is robust 
and makes a continuous percolation transition. This indicates that the high density of dependency 
links could not always lead to a discontinuous percolation transition as the previous studies. More 
interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two 
types of dependency links, there exists a critical average degree of the networks for coupled random 
networks, below which the crossover of the two types of percolation transitions disappears, and the 
system will always demonstrate a discontinuous percolation transition. We also develop an approach to 
analyze this model, which is agreement with the simulation results well.

In the past decade, the robustness of isolated networks has been extensively studied1–3. Recently, based on the 
motivation that many real-world complex systems, such as physical, social, biological, and infrastructure sys-
tems, are becoming significantly more dependent on each other, the robustness of coupled networks has been 
studied by means of percolation in interdependent networks4. In these works, the inter-dependency links have 
been proposed to represent the dependencies of nodes between different networks. Consequently, the failure of 
a node will result in the failure of the node connected to it by a dependency link. It has been recognized that the 
inter-dependency makes the coupled system more fragility than a single network4,5, especially for the system with 
multiple networks coupled together6–9, and demonstrates a discontinuous percolation transition.

Along this pioneering work, interdependent networks with different topological properties, coupling 
method and attack strategies have been studied extensively in the past few years, such as partially dependency10, 
inter-similarity11,12, multiple support-dependency relations13, targeted attack14 and localized attack15,16, assorta-
tivity17–19, clustering20,21, degree distribution22,23, and spatially embedded networks24–27. All these works further 
demonstrate that the fragility of the networks when they are dependent on each other.

On the other hand, to reflect the strongly dependency of units inside a system, percolation in networks with 
inner-dependency links has also attracted a great attention28,29. Similar with the interdependent networks, the 
iterative process of cascading failures caused by connectivity and dependency links will also lead to a discontin-
uous percolation transition, rather than the well-known continuous phase transition in isolated networks, which 
has a devastating effect on the network stability. Furthermore, with a view to that more than two nodes depend on 
each other, dependency group is often used to replace the dependency link in the study of percolation in isolated 
networks with dependency30–33.

However, the previous studies of the percolation in networks with dependency are all based on the assumption 
that the networks contain either inner-dependency links or inter-dependency links34. For a real network system, 
some nodes may depend on nodes outside the networks, and some inside. That is to say that the inner- and 
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inter-dependency links could exists in a coupled networks system simultaneously. For example, in a trading net-
work, some companies may depend on each other due to supply and demand balance. On the other hand, some 
companies could depend on some units in a financial network, which forms by banks, investors, and so on. 
Although the effects of the two types of dependencies on the network stability have been explored separately, 
there is still lack of unified understanding of various robustness properties of the coupled networks due to the 
coaction of the two types of links. In this paper, we will develop a model to study the robustness of such networks, 
i.e., networks with both inner- and inter-dependency links.

This paper is organized as follows. In the next section, we will give the model and general formalism using 
generating function techniques. After that, we will give study our model on coupled random networks system 
and coupled scale-free networks as examples. At the same time, the simulation results will be presented to test the 
analysis results. In the last section, we will summary our findings in this paper.

Results
Model and general formalism. We consider two coupled networks A and B with degree distributions pk

A 
and pk

B, respectively, and each node has exactly one dependency link (inner- or inter- dependency link), where the 
dependency link means that the two nodes connected by it depend on each other, one of which fails, the other will 
fail too. Assuming that the two networks have the same size N, there are N dependency links in the network sys-
tem. Specifically, a fraction β of the dependency links are set as the inter-dependency links, others are the 
inner-dependency links. For inter-dependency links, the two stubs (nodes) are chosen randomly in the two net-
works, respectively, and in the same networks for inner-dependency links. When β →  0, there is no dependency 
between the two networks and the model will reduce to the model of the single network with dependency link 
density q =  1 in ref. 28. When β →  1, our model will reduce to the original model of interdependent network 
proposed in ref. 4.

We want to study the robustness of such coupled system after an initial attack of a fraction, 1 −  p, of nodes in 
network A. The failure of a node in network A will lead to the failure of its dependency partner no matter it is in 
network A or network B, even though it still connects to the network by connectivity links. The failures of nodes 
in network B have the similar consequence. On the other hand, the failures of nodes or their connectivity links 
may also cause the other nodes to disconnect from the networks, which is also considered as failure. Therefore, 
after the initial attack in network A, the two cascading processes (dependency and connectivity) will occur alter-
nately in networks A and B until no further splitting and node removal can occur.

Here, we focus on the size of the giant component of the two networks, SA and SB, which are the probability 
that a randomly chosen node belongs to the giant component of the final network A or B, respectively. Note that 
SA is generally different from SB due to the initial node removal. To solve this model as the method used in refs 
35 and 36, we need two auxiliary parameters RA and RB, which give the probability that the node, arriving at by 
following a randomly chosen link in network A or B, belongs to the giant component of the final network A or B. 
Then, in the steady state, SA satisfies

β β= − + .S p f p f f(1 )( ) (1)A A A B2 2

Here, = − −f G R1 (1 )A A A
0  and = − −f G R1 (1 )B B B

0  with = ∑G x p x( )A
k k

A k
0  and = ∑G x p x( )B

k k
B k

0  denot-
ing the corresponding generating functions of the degree distributions of networks A and B, respectively. 
Obviously, fA (f B) means the probability that a randomly chosen node in network A (B) belongs to the giant com-
ponent of network A (B)37. Since the two stubs of a dependency link are chosen randomly, (fA)2 and fAf B express 
that a node in network A and its dependency partner in network A or B (with a fraction β or 1 −  β) belongs to the 
giant component, simultaneously. In addition, p2 expresses that the node and its dependency partner in network 
A are preserved after the initial removal.

Similarly, SB can be written as

β β= − + .S f p f f(1 )( ) (2)B B A B2

Since the initial attack only takes place in network A, the first term of the right side of eq. (2) is different with 
that of eq. (1).

To solve eqs (1) and (2), we need the equations for RA and RB, which can be obtained by considering the 
branch process in the two networks37,

β

β

= − − − − −

+ − − − −

R p G R G R

p G R G R

(1 )[1 (1 )][1 (1 )]

[1 (1 )][1 (1 )], (3)

A A A A A

A A B B

2
1 0

1 0

β β= − − − − − + − − − −R G R G R p G R G R(1 )[1 (1 )][1 (1 )] [1 (1 )][1 (1 )], (4)B B B B B B B A A
1 0 1 0

where = ∑ = ′ ′−G x p kx k G x G( ) / ( )/ (1)A
k k

A k A A A
1

1
0 0  is the corresponding generating function of the underlying 

branching processes of network A, and the brackets 〈 ···〉  denote an average over the degree distribution pk
A. 

Similarly, = ∑ = ′ ′−G x p kx k G x G( ) / ( )/ (1)B
k k

B k B B B
1

1
0 0 . Given arbitrary degree distributions pk

A, pk
B and the frac-

tion of initial removal 1 −  p, we can solve eqs (1)–(4) to obtain the order parameters SA and SB.

Random networks. Next, we will study two coupled random networks with the same Poisson degree distri-
bution =

−

pk
e k

k !

k k
 in details38, where 〈 k〉  is the average degree. In this case, the generating functions of the two 
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networks take a simple form = = = = − −G x G x G x G x e( ) ( ) ( ) ( )A A B B k x
0 1 0 1

(1 ). Therefore, we have RA =  SA and 
RB =  SB. This yields

β β= − − + − −− − −S p e p e e(1 )(1 ) (1 )(1 ), (5)A k S k S k S2 2A A B

β β= − − + − − .− − −S e p e e(1 )(1 ) (1 )(1 ) (6)B k S k S k S2B A B

For β =  0, one obtains = − −S p e(1 )A k S2 2A
 and = − −S e(1 )B k S 2B

. This covers the equations found in refs 
30 and 31. In this case, the percolation transition of network A is discontinuous, and network B has nothing to do 
with the fraction of initial preserved nodes p. For another case β  =   1, one can also find that 
= = − −S S p e(1 )A B k S 2A

, which coincides with the result of the interdependent networks4.
Next, we discuss the solution of eqs (5) and (6) to obtain the percolation properties of this system. In general, 

eqs (5) and (6) have a trivial solution at (SA =  0, SB =  0), which means that the two networks A and B are com-
pletely fragmented. In addition, there is another trivial solution (SA =  0, SB >  0) for eqs (5) and (6) as the initial 
node removal is only for network A. Let SA =  0 in eq. (6), we can get the trivial solution of SB,

β= − − .−S e(1 )(1 ) (7)B k S
0

2B
0

Here, we use S B
0  instead of SB to avoid confusion. As the numerical solution of eq. (7) shown in Fig. 1, above a 

critical point β ′ ≈ − . k1 2 4554/c , the minimum values =S 0B
0 , which is equivalent to the trivial solution 

(SA =  0, SB =  0), and means network B is completely fragmented with the fragmented of network A. And below 
the critical point β ′c , >S 0B

0 , which means that network B is still functioning, although network A is completely 
fragmented.

In order to discuss the nontrivial solutions, we construct two functions based on eqs (5) and (6),

β β= − − − − − −− − −W S S S p e p e e( , ) (1 )(1 ) (1 )(1 ), (8)A B A k S k S k S
1

2 2A A B

β β= − − − − − − .− − −W S S S e p e e( , ) (1 )(1 ) (1 )(1 ) (9)A B B k S k S k S
2

2B A B

The nontrivial solution of SA and SB can be presented by the crossing points of the cures W1(SA, SB) =  0 and 
W2(SA, SB) =  0 in the SA −  SB plane for any given values of p, 〈 k〉  and β as shown in Fig. 2.

When β β> ′c , we find that cures W1 =  0 and W2 =  0 have a tangent point with >S 0c
A  and > =S S 0c

B B
0  (see 

panels (a)–(c) of Fig. 2). This indicates that the system undergoes a discontinuous percolation transition when 
β β> ′c . For β β< ′c , >S 0B

0 , there exists two cases shown in panels (d)–(f) and (g)–(i) of Fig. 2, respectively. For 
panels (g)–(i), the tangent point of cures W1 =  0 and W2 =  0 appears with >S 0c

A  and > >S S 0c
B B

0 , which indicates 
the system also undergoes a discontinuous percolation transition for β =  0.2. However, for β =  0.4 ((d)–(f) of 
Fig. 2), the nontrivial cross point of cures W1 =  0 and W2 =  0 appears at =S 0c

A  and = >S S 0c
B B

0 . This means that 
the system undergoes a continuous percolation transition, when β is larger than a certain value β β< ′( )c c .

In the following, we try to obtain the two tricritical points of the system as indicated in Fig. 2. In general, we 
can keep SB constant in function W1, and check the behaviours of the order parameter SA. In this way, it is easy 
to know that the critical point pc must satisfy the derivative of equation W1(SA, SB) =  0 with respect to SA, that is

Figure 1. The minimum values of SB, labeled as S B
0 , as a function of the parameter β for different average 

degrees. The value of S B
0  jumps from ≈ .S k1 2564/B

0  to zero abruptly at the critical point β ′ ≈ − . k1 2 4554/c . 
The lines denote the numerical solutions and the symbols denote the simulation results from 20 time 
realizations on networks with 105 nodes.
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β β− 〈 〉 − + 〈 〉 − = .− − − −k p e e k p e e2(1 ) (1 ) (1 ) 1 (10)c
k S k S

c
k S k S2 c

A
c
A

c
A

c
B

It is obvious that this equation will hold for the value S S( , )c
A

c
B . For the discontinuous percolation transition, 

we don’t know the simple form of S S( , )c
A

c
B , which can be obtained numerically as shown in Fig. 2. So, we put our 

attention to the continuous percolation transition, for which =S 0c
A  and =S Sc

B B
0 . A simple calculation will tell 

us that =S 0B
0  does not make eq. (10) true. Conclusion can be drawn that the continuous percolation transition 

can only be found when β β< ′c , i.e., β ′c  is one of the tricritical points.
As discussed earlier, when β β< ′c , the system does not always take a continuous percolation transition. This 

phenomenon is similar with the findings in refs 10, 29 and 32. As shown in these papers, this type of tricritical 
point also satisfies d2W1(SA, SB)/d(SA)2 =  0. Note that at the tricritical point, the conditions of continuous and 
discontinuous percolation transitions are satisfied simultaneously. Hence, we have

β β〈 〉 − + − = .−k e(1 ) 2 2 0 (11)k S
c c

2 2B
0

That is

β =
+ 〈 〉 − −

〈 〉 −

−

−

k e

k e

1 2 (1 ) 1

(1 )
,

(12)
c

k S

k S

2

2

B

B

0

0

where S B
0  can be obtained by eq. (7). Above all, the system demonstrates a continuous percolation transition for 

β β β< < ′c c , and discontinuous percolation transition for β <  βc or β β> ′c .
In addition, we can also get the continuous percolation transition point from eq. (10) by letting =S 0c

A  and 
=S Sc

B B
0 ,

Figure 2. Graphical solutions for eqs (5) and (6) with 〈k〉 = 8. (a–c), β β= . > ′0 8 c , pc ≈  0.2513 with nonzero 
Sc

A and Sc
B. (d–f), β β= . < ′0 4 c , pc ≈  0.3136 with =S 0c

A  and nonzero Sc
B. (g–i), β β= . < ′0 2 c . pc ≈  0.4539 with 

nonzero Sc
A and Sc

B.
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β
=
〈 〉 −

.
−

p
k e

1

(1 ) (13)
c
II

k S B
0

For discontinuous percolation transition, the critical point pc
I can be obtained numerically as shown in Fig. 2.

Since S B
0  decreases with the increase of β as shown in Fig. 1, there is a typical β* that minimizes the critical 

point pc
II (see eq.(13)), which corresponds to the optimal robustness of the system. The optimal solution β* can 

also be obtained numerically by eqs (7) and (13), some simulation results will be shown later.
Furthermore, we can find that with the decreasing of average degree, βc increases and β ′c  decreases. As a result, 

the two tricritical points can merge together when the average degree is less than a typical value k , i.e., the con-
tinuous percolation transition disappears when 〈 k〉  less than k . This typical value k  can be easily found by let-
ting β β= ′c c . Substituting βc ≈  1 −  2.4554/〈 k〉  and ≈ .S k1 2564/B

0  into eq. (13), we can get the typical average 
degree ≈ .k 5 5533.

Scale-free networks. For scale-free networks, the degree distribution is P(k)~k−λ(kmin ≤  k ≤  kmax), where 
kmin and kmax are the lower and upper bounds of the degree, respectively, and λ is the power law exponent. The 
sizes of the giant components SA and SB can be solved numerically by using the theoretical framework developed 
in eqs (1) and (2). Since the sizes of giant components SA and SB depend on the auxiliary parameters RA and RB 
directly, we can discuss the phase transition of the system by using the parameters RA and RB. In order to locate 
the tricritical points βc and β ′c  for two coupled scale-free networks, we use the similar methods as the coupled 
random networks. We keep RB constant in eq. (4), and check the behaviours of the order parameter RA. At the 
critical point pc, we have

β

β

− ′ − − − + − − ′ −

+ ′ − − − = .

p G R G R G R G R

p G R G R

(1 ){ (1 )[1 (1 )] [1 (1 )] (1 )}

(1 )[1 (1 )] 1 (14)
c

A
c
A A

c
A A

c
A A

c
A

c
A

c
A B

c
B

2
1 0 1 0

1 0

For the continuous percolation transition, =R 0c
A  and =R Rc

B B
0  with ≠R 0B

0 . When =R 0B
0 , eq. (14) cannot 

hold any more, and we can conclude that β ′c , at which R B
0  jumps to zero, is also one of the tricritical points. At this 

time, we can get the continuous percolation transition point from eq. (14)

β
=

− −
.

−
p

G R

1

[1 (1 )] (15)
c
II

k k
k

B B( 1)
0 0

Similar to the coupled random networks, β ′c  and R B
0  can be solved numerically by letting =R 0c

A  in eq. (4), 
therefore, we have

β= − − − − − .R G R G R(1 )[1 (1 )][1 (1 )] (16)B B B B B
0 1 0 0 0

At the other tricritical point βc, the conditions of continuous and discontinuous percolation transitions are 
satisfied simultaneously, i.e., βc makes the first and the second order derivative of eq. (4) with respective SA hold 
at the percolation transition point pc. Hence we have

β β− −
− −

+ − = .G R
k k k

k
[1 (1 )]

( 1)( 2)
2 2 0

(17)
B

c
B

c c0
2

2
2

The critical point βc is

β =
+ − − −

− −
.

− −

− −

G R

G R

1 2[1 (1 )] 1

[1 (1 )] (18)
c

B
c
B k k k

k

B
c
B k k k

k

0
2 ( 1)( 2)

0
2 ( 1)( 2)

2

2

By plugging the degree distribution for scale-free networks into the generating functions, we can get the the-
oretical values for the tricritical point βc, the second order percolation points pc

II, as well as the numerical solution 
for β ′c . Similar to random networks, we cannot get the analytical expressions for the first order percolation transi-
tion points, but they can be solved numerically by eq. (4).

Simulation Results and Discussion
We firstly show how the giant component sizes SA and SB vary in dependence on the fraction of initial preserved 
nodes p for both coupled random networks and coupled scale-free networks by simulation and theory in Fig. 3. 
One can find that the analytical results are in agreement with the simulation results well. For the results of coupled 
random networks, one can find that the giant component size SA of network A emergences abruptly when p 
exceeds a threshold pc

I for β =  0.2, β =  0.8 and β =  1. However, for β =  0.4 and β =  0.6, the giant component size 
SA of network A increases continuously as p exceeds a threshold pc

II. The phenomena of network B are similar, but 
a nonzero SB below the critical point for β β< ′c . For two coupled scale-free networks, the results are similar to the 
random networks, but different critical points and tricritical points. As the scale-free networks we used in Fig. 3, 
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〈 k(k −  1)〉  is divergence for a network with infinite size. Hence, according to eq.15, the second order critical point 
pc

II →  0.
From Fig. 3, we can also find that the threshold pc first decreases and then increases along with the increas-

ing of β for both coupled random networks and coupled scale-free networks, which can be further validated in 
Fig. 4. Since the impact of initial removal is different for networks A and B, the significance of the phenomenon 
is also slight different. For network A suffered attack, its robustness can be optimized by arranging the ratio of 
inter-dependency links and inner-dependency links properly. For network B, the impacts of the initial node 
removal can be reduced by decreasing the fraction of inter-dependency links, however, more inner-dependency 
links will also reduce the stability of network B itself.

The phase diagrams of the systems, including coupled random networks and coupled scale-free networks, are 
shown in Fig. 4 by both simulation and analysis. We use the simulation method developed by Parshani et al. to 
estimate the discontinuous percolation transition points28. That is the number of iterative failures (NOI) sharply 
increases with approaching the critical point pc

I. For the continuous transition, we calculate the point of maxi-
mum fluctuation for the size of the giant component to estimate the critical transition point17. From Fig. 4, one 
can find that the simulation and theoretical results are consistent well, and there is an optimal β* to maximize the 
system robustness for both coupled random networks and scale-free networks. This shows that a suitable arrange-
ment of the dependency links will suppress the prorogation of failure within and among networks, simultane-
ously. Furthermore, this finding also indicates that the high density of dependency links could not always lead to 
a discontinuous percolation transition as the previous studies10,28. In addition, for coupled random networks, one 
can also find that the crossover of the two types of percolation transitions disappears as our theory prediction, 
when the average degree is below ≈ .k 5 5533. For coupled scale-free networks, the crossover of the two types of 
percolation transitions can also disappear, the condition for which depends on the degree distributions of the 
coupled networks. Furthermore, critical exponents of a percolation system depend on its dimension39. For ran-
dom graphs and scale-free networks, they can be regarded as infinite dimensional systems, and their critical 
exponents are mean field and belong to the same universality class.

Conclusions
In this paper we have studied the cascading failures in coupled networks with each node has a inner-dependency 
or inter-dependency link. Through simulation and theoretical study, we found that there exists an optimal value 

Figure 3. The sizes of the giant components SA and SB vs. p. Panels (a,b) show the results for network A and 
network B in coupled random networks with 〈 k〉  =  8, respectively. Panels (c,d) show the results for network A 
and network B in coupled scale-free networks with kmin =  4, kmax =  316 and λ =  2.7, respectively. The solid lines 
show the theoretical predictions, and the symbols represent simulation results from 20 time realizations on 
networks with 105 nodes.
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of β* leading to the most robust coupled networks for both random networks and scale-free networks, where β is 
the fraction of the nodes have inter-dependency links.

More interestingly, we found that the high density of dependency links does not always lead to a discontinuous 
percolation transition as the previous studies. For random coupled networks, as long as the average degree of the 
network exceeds a typical ≈ .k 5 5533, the system will demonstrate a continuous percolation transition for 
β β β< < ′c c , where the two tricritical points βc and β ′c  can be obtained exactly by our theoretical method. These 
results reveal that the number of dependency links is not the only factor that affects the robustness of the coupled 
networks, and a suitable arrangement of the dependency links will suppress the prorogation of failure within and 
among networks, simultaneously. We think that this nontrivial combined effect of the two types dependency links 
shown in this work will facilitate the design of resilient infrastructures.
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