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Abstract

Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies
based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours
leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells,
while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including
clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to character-
ize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influ-
ence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now
reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for
characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-
cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the
field.
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Introduction

The clinical importance of comprehensive molecular phenotyp-
ing of cancer tumours is increasing with the advent of precision
medicine [1], which aims to provide tailored treatment to indi-
vidual patients based on their molecular phenotype. DNA
sequencing and RNA sequencing (RNA-seq), together with
many other molecular profiling technologies, enable compre-
hensive molecular phenotyping of tumours and have been
applied to characterize many cancer types in projects like the
cancer genome atlas [2, 3]. Sequence-based molecular pheno-
typing reveals quantitative information on a multitude of
molecular levels, including data on somatic and germ-line
single-nucleotide variation, copy number variation (CNV), gene
fusions, DNA methylation and gene expression variability.
Conventional molecular profiling is based on an average mo-
lecular phenotype from a large population of cells (often
described as a ‘bulk’ sample within the context of single-cell
studies), which has proven useful in many applications.
However, substantial loss of information occurs through

averaging over the molecular phenotype of individual cells.
Single-cell molecular phenotyping has the capability to gener-
ate high-resolution molecular phenotype information and pro-
vide means for quantitative analysis of several key properties of
tumours, including intra-tumour heterogeneity, cellular com-
position (cell types), cellular hierarchies and cell states. It is
likely that single-cell molecular phenotyping will replace bulk
average molecular profiling in many cancer research and clin-
ical applications in the future.

Cancer is a disease with inherent heterogeneity [4–6] caused
by multiple factors, including intra-tumour evolution, cellular
plasticity [6] and multiple sources of stochastic variability
(Figure 1). Chromosomal instability, which leads to intra-
tumour heterogeneity, is associated with poor patient outcomes
[7], and cancer patients with larger proportion of subclonal mu-
tations have also been observed to have a higher chance of re-
lapse [8]. A key challenge in cancer treatment is detection of
rare subpopulations of cells that have the potential to develop
resistance to therapy. Such subpopulations of cells can be either
subclones or subpopulations of cells that through stochastic

Mattias Rantalainen is an assistant professor at Karolinska Institutet in Sweden. His research is focused on development and application of statistical and
bioinformatic methodologies to address problems in cancer genomics and personalized medicine.

VC The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

273

Briefings in Functional Genomics, 17(4), 2018, 273–282

doi: 10.1093/bfgp/elx036
Advance Access Publication Date: 2 November 2017
Review paper

Deleted Text: -
Deleted Text: -
Deleted Text: characterise 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: single 
https://academic.oup.com/


processes or cellular plasticity can adapt to changing selective
pressure from treatment or other environmental factors.

Single-cell sequencing of tumour cells are improving our
ability to characterize intra-tumour heterogeneity, and it is
likely that intra-tumour heterogeneity will prove to be clinically
relevant in the context of precision medicine [4, 5]. Tumour het-
erogeneity can arise on multiple levels, through clonal evolu-
tion and through heterogeneity in cell states that are the effect
of dynamic molecular phenotypes, including epigenetic and
transcriptomic effects, or a combination of multiple molecular
levels. Quantitative characterization of tumour heterogeneity in
particular, including detection of rare subclones of cells with
possible drug resistance potential, has the potential to be trans-
lated to the clinic in the future. There are multiple clinically
relevant applications where single-cell sequencing and infor-
mation on tumour heterogeneity is likely to be of importance,
including prediction of treatment response, prognosis, monitor-
ing of disease progression, prediction of treatment effect and
detection of emerging drug resistance (Figure 1). Single-cell
sequencing can also be applied for molecular phenotyping of
circulating tumour cells (CTCs) [9], i.e. cancer cells disseminated
into the bloodstream, with samples collected through minim-
ally invasive liquid biopsies.

There are many reviews covering different aspects of single-
cell technologies and applications, including reviews focused
on single-cell genomics [10–14], cancer genomics [10, 11, 15–17],
CTCs [18, 19], tumour heterogeneity [6] and single-cell analysis
[10, 20, 21]. In this review, we focus on providing an overview of
studies, where single-cell sequencing has been applied for
characterizing primary human cancer cells, and we discuss
some of the current challenges for single-cell molecular pheno-
typing of patient-derived cancer cells.

Single-cell sequencing of primary cancer cells

Development of technologies for single-cell isolation, whole-
transcriptome or whole-genome amplification (WGA) together

with next-generation sequencing provides the foundation
that has enabled the emergence of single-cell sequencing.
Generation of single-cell sequencing data from primary human
cancer cells can be described through a set of fundamental pro-
cess steps (Figure 2): (1) sample acquisition from patient; (2) cre-
ation of single-cell suspension; (3) temporary storage; (4)
isolation of single cells and library preparation; (5) sequencing;
and (6) bioinformatic and statistical analyses. Owing to logis-
tical challenges when working with clinical samples, there are
typically delays in sample processing (Step 3). This logistic delay
can often be avoided when working with model systems (ani-
mals or cell lines), while it remains a reality in many studies
based on patient material (e.g. biopsy) that is collected at a
clinic.

Sample handling

In studies based on clinical samples, e.g. biopsies or surgically
removed tumours, it is essential to ensure that the molecular
integrity of the samples is preserved until molecular phenotyp-
ing. To accomplish this, samples either have to be processed
immediately at time of collection or a method that allows pres-
ervation of the molecular integrity has to be applied. Immediate
single-cell sequencing of fresh samples is often challenging to
implement because of separation in physical location between
specialized laboratories and clinic (Figure 2, Step 3). If samples
are collected for later molecular phenotyping, a single-cell sus-
pension is generated followed by application of a preservation
method compatible with downstream molecular profiling.
Evaluation of a few methods for temporary storage of samples
for single-cell sequencing applications, including cryopreserva-
tion [22] (DNA- or RNA-seq), methanol fixation [23] (DNA- or
RNA-seq) and CellSave [24] (DNA sequencing), has recently been
reported. Single-cell sequencing of cryopreserved cells [22], as
well as methanol fixed cells [23], revealed high transcriptomic
concordance with fresh cells. Recently, a method for preserva-
tion of cells for single-cell RNA-seq without chemical crosslink-
ing or freezing [using CellCover (AL Anacyte Laboratories UG),
DNA RNA preservation] was also applied in a single-cell
RNA-seq study [25]. Clinical samples are routinely prepared as
formalin-fixed, paraffin-embedded (FFPE), which limits the
opportunity for single-cell sequencing, especially in respect to
RNA sequencing. Martelotto et al. [26] evaluated a method
for single-cell whole-genome copy number profiling in FFPE
material based on isolation of intact nuclei using fluorescence-
activated cell sorting (FACS) sorting. Results of this study sug-
gested that CNV profiles from FFPE material can be comparable
with single-cell fresh-frozen material [26]. For CTC analysis
either positive or negative selection, or a combination thereof,
has to be applied to isolate the CTCs from blood. Liquid biopsies
(e.g. blood samples) have to be kept in a state where RNA and
DNA are not degraded before molecular phenotyping. In a study
evaluating three different available preservatives [K3EDTA,
Cell-Free DNA BCT (BCT) and CellSave (Cellsearch)], BCT and
CellSave provided the best preservation of CTCs, while BCT
provided the better preservation of RNA in comparison with
K3EDTA [24]. Further development and evaluation of protocols
for sample preservation methods compatible with single-cell
DNA- and RNA-seq are necessary to enable wider application of
single-cell sequencing to characterize clinical samples. Large
collaborative efforts, for example ‘the human cell atlas’ [27], will
most likely contribute to the development and systematic
evaluation of improved sample handling protocols, which is es-
sential to enable large-scale application of single-cell profiling.

Figure 1. The role of single-cell molecular phenotyping in characterization of

tumour heterogeneity and in clinical applications. Multiple molecular mechan-

isms and environmental factors lead to intra-tumour heterogeneity. Single-cell

molecular phenotyping enables characterization of many aspects of intra-

tumour heterogeneity and has the potential to be applied to generate clinically

relevant information.
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Single-cell isolation

Single-cell sequencing typically requires a suspension of indi-
vidual cells as starting material. In situations where single cells
from solid tissues are to be profiled, dissociation of the tissue
into a cell suspension has to be accomplished as a first step, fol-
lowed by isolation of the individual cells. Techniques for single-
cell isolation from cells in suspension have been reviewed ex-
tensively before and include FACS (DNA- or RNA-seq), micro-
fluidics (DNA- or RNA-seq), droplet-based capture (RNAseq),
Laser Capture Microdissection (DNA- or RNA-seq) and manual
selection (DNA- or RNA-seq) [14, 17, 28, 29]. More recently, a
novel microwell-based approach [25] (RNAseq) and methods
based on combinatorial indexing [30, 31] (DNA- or RNA-seq)
have also been proposed, offering cost-effective high-capacity
methods for single-cell isolation and library preparation. The
different methodologies differ in respect to fundamental phys-
ical principles and the maximum number of cells that can be
captured. The choice of method for single-cell isolation depends
on the context and objective of the study. Single-cell analysis of
CTCs provides an attractive surrogate biopsy of primary or
metastatic tumours, as liquid biopsies can be collected in a min-
imally invasive procedure through a conventional blood sample
[32]. CTCs are present in exceptionally low frequency in the
blood (�1 of 109 blood cells), making efficient enrichment and
capture methods important. Many methods and strategies have
been reported for CTC isolation and reviewed elsewhere [19, 33–
35]. Cellsearch (Veridex) is one of the most widely applied plat-
forms for CTC enumeration and capture of CTCs [36]. Cellsearch
is based on positive selection using antibodies against EpCAM
and cytokeratins (positive markers) and against leukocyte
antigen CD45 (negative marker) together with a nuclear dye
(4’,6-diamidino-2-phenylindole). Cellsearch enrichment together
with single-cell isolation using DEPArray (Silicon Biosystems) has
been applied in multiple studies [37, 38]. Additional CTC enrich-
ment and capture methods include Magsweeper [39], flow cytom-
etry [40], microfluidic devices [41, 42], HD-CTC [43], MINDEC [44],
Rosettesep (STEMCELL Technologies Inc.), EPIC CTC platform [45]
and CTC ichip [46].

Single-cell sequencing

There are now multiple methods available for DNA and RNA
sequencing in single cells. Single-cell sequencing protocols all
require amplification of the genomic DNA or complementary
DNA, in the case of RNA-seq, before preparation of sequencing
libraries. Single-cell DNA sequencing has proven to be more
challenging compared with RNA-seq, as each cell contains
many RNA molecules, but only two copies of DNA. Currently,
single-cell RNA-seq is more established than single-cell DNA

sequencing, with a more diverse set of methods available for
single-cell RNA-seq. Studies applying single-cell RNA-seq typic-
ally include larger numbers of cells (hundreds or even several
thousand cells in recent studies) compared with those that
focus on single-cell DNA sequencing.

WGA of the single genome copy is currently necessary for
single-cell DNA sequencing, and ideally, the amplification pro-
cedure should have minimal biases and sequence errors. There
are multiple methods for WGA with different limitations and
performance in respect to genome coverage and uniformity.
The most commonly applied methods are polymerase chain re-
action (PCR)-based (DOP-PCR) [47, 48], isothermal amplification
(MDA) [49], hybrid methods (MALBAC) [50], together with propri-
etary methods including GenomePlex WGA4 (Sigma-Aldrich)
based on PCR amplification of randomly fragmented genomic
DNA. The relative performance of these methods has been eval-
uated [51–53], and commercial kits, including AMPLI1, MALBAC,
Repli-G and PicoPlex, for single-cell exome sequencing were
evaluated in [54]. WGA methods were also previously reviewed
from a comparative perspective [14]. Furthermore, Baslan et al.
[55] proposed a modified DOP-PCR method with improved per-
formance and cost-effectiveness for single-cell CNV profiling.
Zahn et al. [56] described a direct library preparation method for
single-cell genome sequencing for CNV analysis, which display
higher degree of uniformity compared with WGA-based
methods.

Application of single-cell RNA-seq requires amplification of
the RNA transcripts before sequencing. Methods for single-cell
RNA-seq can be categorized in methods that perform full-
length transcript amplification (Smart-seq, Smart-seq2) [57, 58]
and those with a 50 [59] or 30 [60] bias; see [61, 62] for an overview
of single-cell RNA-seq methods. In addition to DNA and RNA
sequencing, novel methods for single-cell sequencing of add-
itional molecular levels are emerging, including accessible DNA
regions (ATAC-seq [63, 64]), chromatin conformation [65], epi-
genetic modification [66, 67], simultaneous DNA and methyla-
tion [68] and simultaneous sequencing of DNA and RNA [69].
Methodologies for single-cell DNA and RNA sequencing have
been reviewed previously in [12–14, 17, 70, 71].

Single-cell analysis

Common objectives in bioinformatic and statistical analyses in
single-cell cancer studies are analyses of intra-tumour hetero-
geneity, molecular subtyping at the single-cell level, detection
of rare cell types, mutation detection, CNV profiling and lineage
inference. To gain the most out of the single-cell sequencing
studies, specific models and methods should be used in some
applications instead of methods developed for analysis of con-
ventional bulk average profiles. Single-cell RNA-seq data in

Figure 2. Overview of the process of applying single-cell sequencing to patient-derived tumour samples.
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particular have distinctly different distributional properties
compared with conventional bulk average RNA-seq data,
including substantially zero-inflated expression distribution
and latent variability because of, e.g., cell cycle effects [72]
(RNA). WGA typically leads to data with limited genome cover-
age, and allelic dropout leads to loss of one or both alleles at
some locations during amplification. An increasing number of
specialized methods for analysis and modelling of single-cell
data are available, including methods for rare cell detection [73–
75] (RNA), differential expression [76–78] (RNA), pathway ana-
lysis [79] (RNA), imputation [80–82] (RNA), heterogeneity [78, 79]
(RNA), lineage inference [83, 84] (DNA), pseudo-time-ordering
[85–87] (RNA), clustering [80, 88] (RNA), dimensionality reduc-
tion [89–91] (RNA), modelling of latent factors [72] (RNA)
and quality control [92] (RNA). Reviews of bioinformatic
and statistical methods for single-cell analysis are also available
[10, 20, 21].

Applications of single-cell sequencing for
molecular phenotyping of human cancer cells

Here, we provide an overview of studies that apply single-cell
sequencing to characterize primary human cancer cells, while
studies based on cell lines, xenograft models and primary cul-
tures are not included in the current survey. Most of these stud-
ies are of small size, particularly in respect to the number of
patients. The number of single-cells from each patient is also
limited in many of the studies, although the more recent stud-
ies include larger number of cells [93–95], reflecting the ongoing
technology development in the field. It is evident that single-
cell sequencing has been applied across a range of different can-
cer disease using both DNA- or RNA-seq, and addressing a range
of general and specific research questions, some of which are
outlined in the introduction. Studies are summarized in two
tables, Table 1 including single-cell sequencing of primary can-
cer cells, and Table 2 including studies focused on single-cell
sequencing of CTCs. We comment on some of the key studies
below.

Single-cell sequencing of primary cancer cells

CNV profiles of primary single cells from two breast cancer pa-
tients were reported in an early landmark study demonstrating
feasibility of the method and revealing distinct clonal subpopu-
lations of cells as well as concordant CNV profiles between
primary tumour and metastasis [96]. In another study, CNV pro-
files were generated from breast cancer tumours and dissemi-
nated tumour cells (DTCs) from bone marrow [97], and CNV
profiles were compared between primary tumour or lymph
node metastases and DTCs, revealing concordance of CNV pro-
files in 53% of identified DTCs and allowing for phylogenetic
analysis and ability to determine the origin of DTCs [97]. Gawad
et al. [98] applied targeted single-cell DNA sequencing to study
childhood acute lymphoblastic leukaemia (ALL) in 1479 cells
from 6 patients, which allowed them to gain insights into clonal
evolution, development of ALL and determine co-occurring mu-
tations. Single-cell RNA-seq was applied in a study of metastatic
melanoma based on 4645 cells from 19 patients using fresh ma-
terial and single-cell isolation by FACS [95]. The cells profiled in
this study included cancer cells as well as stromal, immune and
endothelial cells, thus allowing for characterization of the tu-
mour microenvironment in addition to analysing inter- and
intra-tumour heterogeneity. Interestingly, subpopulations of
cells with expression of genes indicative of resistance to

targeted therapies were identified. Interactions between cancer
cells and tumour microenvironment were also investigated [95].
In another study focused on glioblastoma patients, the RNA of
single cells was sequenced, revealing intra-tumour heterogen-
eity in respect to established molecular subtypes suggesting
possible effects on prognosis [99]. Tirosh et al. [94] used single-
cell RNA-seq to characterize fresh single-cells from human
oligodendroglioma patients. They characterized intra-tumour
heterogeneity and found that cancer cells mainly belonged to
two subgroups defined by their expression profiles, together
with a smaller third subgroup of undifferentiated cells with
stem cell-like expression profiles, which also had a high prolif-
erative potential [94].

Single-cell sequencing of CTCs

Liquid biopsies provide means for minimally invasive collection
of biopsies from cancer patients that allow for single-cell
sequencing of CTCs. Single-cell sequencing of CTCs has been
applied across a range of cancer disease (Table 2), but most of
the sequencing-based CTC studies are too small to be able to
draw conclusions regarding clinical outcomes. In a study of
CTCs from lung cancer, it was found that the CNV profile was
concordant with metastases in the same patients, while single-
nucleotide variation was found to be heterogeneous from cell to
cell [109]. Analysis of CNV profiles and genomic instability in
CTCs from metastatic castrate-resistant prostate cancer dem-
onstrated ability to detect key alterations with clinical rele-
vance, including loss of PTEN and amplification of androgen
receptor (AR) [117]. Single-cell RNA-seq was also used to profile
prostate cancer CTCs, which revealed significant within-patient
heterogeneity, including expression of AR splice variants (AR-
v7) associated with resistance against anti-androgen treatment
[113]. Results from a study based on cultured CTCs from breast
cancer patients have indicated heterogeneity in respect to HER2
status, including spontaneous and dynamic interconversion
(i.e. cell-state plasticity [6]) between HER2þ and HER2� status in
cell populations, which may contribute to development of drug
resistance [118]. CTCs have been demonstrated to be predictive of
treatment response in both breast and prostate cancers [119–121].

Discussion

Single-cell sequencing is revolutionizing cancer research by
providing a significant step forward in respect to the resolution
at which the molecular phenotype of tumours can be
characterized. Intra-tumour heterogeneity is common in many
cancer diseases and related to treatment response, progression
and survival outcomes. Intra-tumour heterogeneity can only be
fully characterized at the single-cell level. Methods for single-
cell isolation and DNA and RNA sequencing are now well estab-
lished and further improvements and novel methodologies are
continuously being developed. Single-cell methods for collec-
tion of additional molecular levels beyond DNA and RNA are
also being developed and so are single-cell multi-omics meth-
ods where multiple molecular levels are profiled in the same
cell, providing unique opportunity to generate comprehensive
molecular phenotypes of tumours with single-cell resolution.

Study design is of key importance in single-cell cancer stud-
ies. However, there are few studies to date that cover aspects of
study design in single-cell studies. The cost is approximately
proportional to the (number of patients) * (number of cells per
patients) * (number of sequencing reads per cell), but depending
on application, these factors should be carefully considered.
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Recent developments in single-cell sequencing have increased
the number of cells that can be isolated and sequenced [122].
However, in studies with larger number of cells, fewer sequenc-
ing reads from each individual cell are typically collected, thus
limiting the sensitivity of molecular phenotype data acquired
from the cells. To evaluate association with molecular data and
patient outcomes, larger number of patients will have to be
included in studies. Detection of rare cell types, or rare cell
states, requires profiling of larger number of cell from each pa-
tient. The amount of sequencing reads collected from each cell
is related to the sensitivity in detecting and quantifying the mo-
lecular phenotype, and although different cell types can be cor-
rectly classified with relatively limited RNA-seq data from each
cell (<50 000 s reads/cell), more sequencing reads (up to several
million reads/cell) will be required to determine more subtle dif-
ferences that reflect cell states in the transcriptomic profile,
which is expected to be relevant in molecular phenotyping of
cancers. At the time of writing no systematic evaluation of
these different study design factors have been reported, while
we expect the trade-off between these factors to be central for
the success of future studies. To determine a reasonable study
design, it is advisable to apply power calculations, especially
when patient outcome analyses (e.g. time-to-event analyses)
are a primary objective. Deciding the number of single cells to
profile in each patient will be directly related to the degree of het-
erogeneity and the desired power to detect and profile rare cells
or cell states. However, such information might not be readily
available, and in such situation, a pilot study can provide the ne-
cessary information to determine a suitable study design.

Single-cell methods will undoubtedly become an increas-
ingly important tool for basic cancer research using model
systems (e.g. cell lines, animal models, xenograft models).
However, applications in human cancers research and precision
medicine are now emerging and provide opportunity to under-
stand how heterogeneity and tumour evolution contribute to
clinically relevant outcomes, including probability of treatment
response, progression and survival outcomes. At the moment,
liquid biopsies, including single-cell sequencing of CTCs, repre-
sent a technology that probably has the highest chance of rapid
translation to the clinic. Single-cell sequencing has so far gener-
ated promising results in relatively small studies of patient
derived cancer cells, and the next step will be to initiate larger
studies with more patients to evaluate to what extent molecu-
lar phenotype data with single-cell resolution provide advance-
ment in prognostication, prediction of treatment response or
other relevant outcomes.

Many challenges remain to be addressed before single-cell
sequencing will be routine in clinical cancer research and trans-
lated to the clinic. Sample handling and requirement of fresh
cells are major obstacles in studies based on patient-derived tu-
mour cells that have to be overcome. Development of methods
and protocols that enable preservation of cells for later single-
cell sequencing is essential to scale up studies based on clinical
samples. Although currently available methodologies have
enabled successful application of single-cell sequencing to a
wide range of problems in human cancer genomics, further de-
velopment of methodologies and technologies in multiple areas
is required to advance single-cell profiling in cancer research.
Efficient isolation of single-cells is still dependent on substan-
tial infrastructure that is rarely available to individual laborato-
ries. Development of efficient yet affordable methods for
single-cell isolation would enable wider uptake of single-cell
methods, and there are already some advances in this direction
[25]. Isolation of CTCs also remains a challenge, and methodsT
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with improved capture efficiency would broaden the potential
applications of non-invasive liquid biopsies of cancer patients
and CTC sequencing. Development of new methodologies for
single-cell multi-omics profiling, enabling measurements of
multiple molecular levels in the same cell, has the potential to
substantially improve our capability to characterize molecular
mechanisms of cancer. In respect to analyses of single-cell
RNA-seq data, there are few methods and models available that
account for technical noise and zero-inflated distributions for
cancer-specific analyses, including detection and classification
of cell states or subtypes at the single-cell level. There is also an
emerging need for novel methodologies and models that allow
for analysis of multi-omics single-cell data, as these methods
are starting to become available. Currently, the cost of large-
scale application of single-cell sequencing can be prohibitive;
however, we anticipate that the with the currently ongoing
rapid development of both single-cell and sequencing method-
ologies costs will inevitably come down over time and open up
many new application areas.

Conclusions

The field of single-cell sequencing is rapidly developing and has
over the past few years reached a maturity level, where clinic-
ally relevant information (including intra-tumour heterogen-
eity, development of treatment resistance and tumour
evolution) can be collected through profiling of single-cells from
cancer patients. Many of the fundamental objectives of cancer
precision medicine (prediction of treatment response, prognos-
tication, detection of treatment resistance) are possible to ad-
dress at a higher resolution with single-cell methods compared
with conventional bulk average molecular phenotyping.
Therefore, it is highly likely that single-cell molecular pheno-
typing will supersede bulk average profiling in the future in
many application areas. We are now just starting to see the be-
ginning of this trend. The next step in application of single-cell
methods in the study of human cancers is to initiate studies
that include larger patient cohorts; larger numbers of single-
cells and that also consider clinical outcomes.

Key Points

• Intra-tumour heterogeneity is an inherent property of
many cancers and may play a central role in respect
to clinical outcomes

• Single-cell sequencing technologies provide means for
high-resolution molecular phenotyping of large num-
bers of individual cancer cells and enable character-
ization of intra-tumour heterogeneity

• Most single-cell studies of human cancers to date in-
clude few patients, which limit the opportunity to in-
vestigate effects on clinical outcomes.

• Larger studies that include more patients are now
needed to establish potential associations between
the unique information captured by single-cell
sequencing and clinically relevant outcomes
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