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Abstract: The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections
in immunocompetent individuals. A healthy functional innate immune system plays a crucial role
in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main
research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by
the innate immune response, the adaptive immune response, and in particular T-helper responses,
also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets
have been described to play a role during aspergillosis, with the Th1 response being crucial for
fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to
detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit
fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response
has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental
immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play
a key role in controlling detrimental inflammatory responses during aspergillosis. The current
knowledge of the adaptive immune response against A. fumigatus is summarized in this review.
A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and
control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis
and for the development of novel host-directed therapies.
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1. Introduction

Infections with Aspergillus spp. have emerged as important opportunistic fungal pathogens in
patients with a severely compromised immune system such as those receiving solid organ transplant
(SOT) [1,2] and hematopoietic stem cell transplantation (HSCT) [3]. A fully functional innate
immune system is required to prevent the conidia, which are inhaled on a daily basis, from causing
life-threatening infections. In particular, the lack of innate effector cells, such as neutrophils, and
pleiotropic impairment of immune activation by immunosuppressive therapies such as corticosteroids,
are the most important factors predisposing patients to invasive aspergillosis [4–7]. Therefore, the
innate immune response has been a point of major interest in the study of the pathogenesis of
aspergillosis [8–14]. Nevertheless, recently it has become apparent that the adaptive immune response,
and in particular T-helper responses also play a crucial role in pulmonary host defense [15] and the
pathogenesis of aspergillosis [16]. The primary role of T-helper responses in pulmonary host defense is
to augment and organize the innate immune response to deal more efficiently with invading pathogens.
However, morbidity and mortality of aspergillosis can also be partly attributed to immunopathology
resulting from exaggerated adaptive immune activation.
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This review describes how T-helper responses are induced during host defense against Aspergillus
spp. and in particular the most common species A. fumigatus. Distinct T-helper subsets and their roles
in protective immunity against Aspergillus will be reviewed, followed by their role in allergic responses
and detrimental immunopathology. Finally, it is discussed how immune-based therapies can make
use of features of the adaptive immune system and/or its effector functions to improve the outcome
of aspergillosis.

2. Induction of T-Helper Responses by the Innate Immune System

The activation and expansion of T-helper subsets cannot be exclusively induced by the infection
alone and requires innate immune mechanisms. Following inhalation, Aspergillus conidia encounter a
wide variety of innate immune barriers in the lung.

The airway epithelial cells represent the most prominent barrier against infection; they play a
major role in recruitment, activation and skewing of T-cell subsets by influencing the inflammatory
cytokine environment [17–20]. Resident alveolar macrophages (AM) engulf conidia and release
different cytokines and chemokines, including TNFα, MIP1-α, IL-1β, IL-1α, IL-6, G-CSF and
GM-CSF [21], leading to further recruitment of innate effector cells including the dendritic cells
(DCs) [9]. Monocytes also contribute significantly to the induction of T-helper responses during
Aspergillus-infection, which is thought to be mediated through their differentiation into CD11b+

DCs [22].
Dendritic Cells (DCs) are the key players in bridging the innate and adaptive immune response

against A. fumigatus by specifically activating naïve CD4+ T-cells and triggering their differentiation into
disparate lineages of effector cells [23] (Figure 1). Pulmonary DCs of mice infected with A. fumigatus
undergo maturation upon migration, shown by increased expression of the T-cell stimulatory molecules
CD80 and CD86 [24]. In addition, upon engulfment of conidia, DCs induce the migration of T-helper
cells by releasing the chemokines CCL3, CCL4, CXCL10 and CCL20 [25]. Antigen presentation
and T-cell activation is initiated by binding of the T-cell receptor (TCR) to major histocompatibility
complex (MHC) class II, followed by interaction of co-stimulatory molecules present on the surface of
T-cells and antigen presenting cells (APCs). Interaction of CD28 on T-cell surface with its ligand
CD80 (B7-1) or CD86 (B7-2) on APCs and OX40 with OX40L has been shown to contribute to
the immunological process of allergic forms of aspergillosis [26]. After antigen presentation and
co-stimulation, autocrine production of IL-2 allows T-cells to proliferate and the cytokine milieu
determines their differentiation into distinct effector cells [24,27–30] (Figure 1). The cytokine milieu is
partly determined by the morphology and cell wall components of A. fumigatus that are recognized
by the DCs [29]. Human DCs, stimulated with A. fumigatus conidia, trigger significant production
of IL-12, which is the main cytokine inducing IFNγ-producing T-cells [27]. Different subsets of DCs
exhibit distinct responses to the fungus, where monocyte-derived DC (moDC) and myeloid DC (mDC)
show greatest similarities, producing pro-inflammatory cytokines IL-1β, TNFα, chemokines IL-8,
CXCL1, as well as anti-inflammatory cytokines IL-4 and IL-10 specifically upon stimulation with
hyphae [24,28]. TNFα release by DCs can determine whether Th17 or Th2 responses are induced
leading to either neutrophil or eosinophil-mediated inflammation [30]. Infection of human DCs with
Aspergillus hyphae but not dormant conidia results in abundant production of IL-23, subsequently
inducing a Th17 response [31]. Signaling induced by cytokines binding to their complementary
receptors lead to induction of lineage-specific transcription factors, that act as master regulators of
distinct effector functions, helping the T-helper lineages to each exert their unique function in host
defense against aspergillosis.
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Figure 1. T-helper responses to A. fumigatus. The epithelial cell (EC), dendritic cell (DC) and alveolar 
macrophage (AM) constitute the innate immune response against A. fumigatus. Engagement of 
surface pattern recognition receptors (PRRs) on these cells triggers downstream signaling pathway, 
leading to production of distinct lineage-polarizing cytokines. This, in combination with antigen 
presentation by via MHC-II and binding of co-stimulatory molecules, in turn lead to activation and 
differentiation of naïve CD4+ T-helper cells to distinct effector lineages: Th1, Th17, Th22, Th2, Th9, 
Treg and Tr1. These effector cells differentially contribute to either protection against fungal 
infection, detrimental immunopathology, or in the regulation of the adaptive immune response. EC = 
Epithelial cell; DC = Dendritic cells; AM = Alveolar macrophages; Th = T-helper cells; IL = 
Interleukin; IFN = Interferon; TGF = Transforming growth factor; TNF = Tumor necrosis factor; 
AMP= antimicrobial peptide; CTLA-4 = cytotoxic T-lymphocyte antigen 4; STAT = Signal Transducer 
and Activator of Transcription, RORγt = RAR-related orphan receptor gamma t; AHR = aryl 
hydrocarbon receptor; t-Bet = T-box transcription factor 21; GATA3 = Transcription factor GATA-3; 
PU.1 = Transcription factor PU.1; FOXP3 = Forkhead box P3. 

3. T-Helper Responses in Aspergillosis 

Recently, all three major T-helper lineages, Th1, Th2 and Th17, have been demonstrated to play 
important roles during aspergillosis. Aspergillus-antigen specific T-cells have been found in patients 
as well as healthy individuals [32–34], and in animal models of Aspergillus-infection [35,36]. 
Inoculation with a low dose of A. fumigatus conidia or culture filtrate can induce resistance and 
protection against subsequent infection in a murine model for invasive pulmonary aspergillosis; 
indicating the protective role of Aspergillus-specific T cells in antifungal defense [36]. T-cells specific 
to fungal catalase and Crf1 that express CD154 and IFNγ were identified in patients recovering from 
invasive aspergillosis, whereas these cells were absent in patients with progressive infection [33]. 
These cells with a Th1 phenotype in recovering patients highlight the importance of this subset in 
clearing the infection [33].  

In addition, murine models for aspergillosis have recently demonstrated that a dominant Th1 
response is required for resistance to aspergillosis and induction of an efficient antifungal response 
[36–38]. Its induction relies on the Th1 inducing cytokine IL-12, which is induced in high amounts in 

Figure 1. T-helper responses to A. fumigatus. The epithelial cell (EC), dendritic cell (DC) and alveolar
macrophage (AM) constitute the innate immune response against A. fumigatus. Engagement of surface
pattern recognition receptors (PRRs) on these cells triggers downstream signaling pathway, leading to
production of distinct lineage-polarizing cytokines. This, in combination with antigen presentation
by via MHC-II and binding of co-stimulatory molecules, in turn lead to activation and differentiation
of naïve CD4+ T-helper cells to distinct effector lineages: Th1, Th17, Th22, Th2, Th9, Treg and Tr1.
These effector cells differentially contribute to either protection against fungal infection, detrimental
immunopathology, or in the regulation of the adaptive immune response. EC = Epithelial cell;
DC = Dendritic cells; AM = Alveolar macrophages; Th = T-helper cells; IL = Interleukin; IFN = Interferon;
TGF = Transforming growth factor; TNF = Tumor necrosis factor; AMP= antimicrobial peptide;
CTLA-4 = cytotoxic T-lymphocyte antigen 4; STAT = Signal Transducer and Activator of Transcription,
RORγt = RAR-related orphan receptor gamma t; AHR = aryl hydrocarbon receptor; t-Bet = T-box
transcription factor 21; GATA3 = Transcription factor GATA-3; PU.1 = Transcription factor PU.1;
FOXP3 = Forkhead box P3.

3. T-Helper Responses in Aspergillosis

Recently, all three major T-helper lineages, Th1, Th2 and Th17, have been demonstrated to play
important roles during aspergillosis. Aspergillus-antigen specific T-cells have been found in patients as
well as healthy individuals [32–34], and in animal models of Aspergillus-infection [35,36]. Inoculation
with a low dose of A. fumigatus conidia or culture filtrate can induce resistance and protection against
subsequent infection in a murine model for invasive pulmonary aspergillosis; indicating the protective
role of Aspergillus-specific T cells in antifungal defense [36]. T-cells specific to fungal catalase and
Crf1 that express CD154 and IFNγ were identified in patients recovering from invasive aspergillosis,
whereas these cells were absent in patients with progressive infection [33]. These cells with a Th1
phenotype in recovering patients highlight the importance of this subset in clearing the infection [33].

In addition, murine models for aspergillosis have recently demonstrated that a dominant
Th1 response is required for resistance to aspergillosis and induction of an efficient antifungal
response [36–38]. Its induction relies on the Th1 inducing cytokine IL-12, which is induced in high
amounts in mice that are resistant to aspergillosis [27,36,39]. IL-18, a member of the IL-1 family of
cytokines is also a key player in activation of Th1 and induction of IFNγ, but only a few studies have
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investigated IL-18 in anti-Aspergillus host defense. Immunocompetent mice infected with A. fumigatus
show elevated IL-18 in bronchoalveolar lavages and lung tissues [40], which could suggest a role
for IL-18 in host defense against Aspergillus. However, further studies are required to elaborate the
role of this cytokine in aspergillosis. The protection mediated by the Th1 subset correlates with the
production of the cytokine IFNγ [36], which potentiates the fungicidal activity of innate immune
cells [41–44]. Collectively, these studies emphasize the crucial role of the Th1 response in protection
against Aspergillus, but not all T-helper responses promote clearance of the fungus from the lungs.

The Th2 response that is characterized by production of IL-4, IL-5, IL-13 and IL-10, mediates
anti-inflammatory responses, allergy, and fungal persistence in the lungs [45]. The fact that a shift
towards Th1 rather than Th2 is required for protection is especially highlighted in IFNγ deficient
mice with an impaired protective antifungal immunity, and excessive Th2 responses [46]. A robust
Th2 response is associated with a poor outcome of aspergillosis in murine models [35,46], and these
responses neutralize protective Th1 responses mediated through the cytokine IL-4 [46]. In addition,
IL-10 released by Th2 cells also negatively impacts protective Th1 responses in aspergillosis models,
by suppressing pro-inflammatory cytokines and chemokines, inhibiting T-cell activation and IFNγ

production, and promoting a Th2 response [47]. Bronchial epithelial cell stimulation with A. fumigatus
activates protease receptor (PAR-2) and PTPN11 (SHP2), a phosphatase that inhibits IFN signaling,
hence skewing the T-cell response preferably to Th2 [48]. IL-33, another IL-1 family member and a
Th2-inducing cytokine, is highly expressed in mice stimulated with viable A. fumigatus conidia and
is known to mediate immunopathology in response to chronic allergen airway exposure [49]. An
elevated IL-33 level is associated with SAFS [50].

The mechanisms of protection against aspergillosis seemed to be very well explained by a balanced
Th1 and Th2. However, with the description of the Th17 subset in 2005 [51], the understanding of how
T-helper responses mediate protection against aspergillosis had to be revisited.

4. The Two Faces of the Th17 Response

The innate cytokines IL-1 (IL-1β and IL-1α), IL-23 and IL-6 induce Th17 differentiation by
activation of the signature transcription factor of Th17 cells, retinoic acid receptor-related orphan
receptor RORγT [52]. In addition, novel IL-1 cytokines IL-36α,β,γ and IL-36Ra can also regulate the
induction of Th17 responses by Aspergillus [53]. The hallmark of Th17 cells is the production of IL-17A
and IL-17F, which trigger the recruitment and activation of neutrophils to the site of infection, as
well as inducing pro-inflammatory cytokines IL-6, IL-1β, G-CSF and TNFα; and chemokines CXCL8,
MIP-1 and MCP1. Potentiation of neutrophils by IL-17A enhances production of ROS, proteolytic
enzymes and antimicrobial peptides, altogether aiming at fungal elimination [54–56]. Upon activation,
Th17 cells also release IL-22, which triggers epithelial cells to produce antimicrobial peptides such as
β-defensin 2 and lipocalin-2 [57].

Particularly, engagement of dectin-1 on antigen-presenting cell signals through Syk/CARD9,
leading to cytokine profiles that polarize naïve CD4+ T-cells into Th17 cells [58]. Dectin-1 mediated
induction of IL-22 is crucial for releasing antimicrobial peptides that play an important role in
fungal clearance [59]. Deficiency in dectin-1 is associated with a defective Th17 response, and
therefore impaired neutrophil recruitment and excessive fungal growth [56,58]. On the one hand,
the Th17 response is activated by stimulation of dectin-1 with β-glucans, whereas on the other
hand, galactosaminogalactan (GAG) can inhibit Th17 responses in vitro and in vivo, via induction of
IL-1Ra [60]. By diminishing the Th17 response, GAG was able to decrease neutrophil recruitment,
thereby increasing susceptibility of WT mice to invasive aspergillosis [60,61]. Additional evidence for
the importance of the Th17 response in host defense against Aspergillus-infection is provided by the
observation that patients with Aspergillus skull base osteomyelitis have defects in Th17 responses [62].
PBMC from patients with chronic granulomatous disease exhibited a lower IL-17A production upon
stimulation with Aspergillus and Candida compared to healthy donors, and this might contribute to
ineffective fungal clearance in these patients [63].
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Despite the important role of Th17 for fungal clearance, uncontrolled or prolonged Th17 activation
is detrimental to the host, by causing pulmonary damage and persistent inflammation [64,65].
Increased Th17 responses are attributed to severe immunopathology characterized by massive
neutrophil infiltrates in the lung parenchyma and impairment of fungal clearance [66]. The importance
of IL-23 in maintaining the Th17 response is highlighted by the lack of IL-17 producing cells in
IL-23p19 −/− mice; whereas in mice with pulmonary aspergillosis, the absence of IL-12 leads to
enhanced IL-23 production and increased susceptibility to A. fumigatus. Neutralization of IL-23 and
IL-17 can enhance antifungal resistance and decrease fungal burden in models of aspergillosis with
detrimental immunopathology [66]. Furthermore, impairment of the IFNγ response is associated with
increased interleukin-17a expression and attributes to mortality in mice with invasive aspergillosis [67].
The Th17 response is also partially dependent on Toll IL-R8 (TIR8)/single Ig IL-1-related receptor,
a member of the IL-1R family which negatively regulates IL-1R signaling. Tir8−/− mice were more
susceptible to infection and exhibited a higher inflammatory pathology; this finding highlighted
the possible role of TIR8 in orchestrating protective response or immunopathology against fungal
infection [68]. In vitro stimulation of circulating T-cells demonstrates a preference towards an induction
of a Th1 profile [43,69], however, lung derived T-cells isolated from COPD patients were found to have
a preference to a Th17 phenotype [69]. Interestingly, the capacity to induce pulmonary Th17 responses
to Aspergillus has also been associated with bacteria colonizing the gut microbiota. The presence of
segmented filamentous bacteria can influence the pulmonary adaptive immune response partly by
increasing Th17 cells population in the lungs [70]. In contrast to the Th17 response that has beneficial
effects, the Th2 response not only suppresses protective immunity but also is the key player in allergic
disease associated with Aspergillus.

5. Th2 Response Drives Allergic Hypersensitivity Reactions to Aspergillus

The Th2 response is not beneficial for fungal clearance in invasive disease, moreover, a Th2
response mounted towards Aspergillus can lead to allergic disease in relatively healthy individuals
and in individuals with underlying pulmonary disease such as asthma and cystic fibrosis. It is
increasingly recognized that in a significant group of patients, their severe asthma is associated with
fungal exposure [71]. There are estimates that fungal molecules represent approximately 16% of the
known allergens [72,73]. To date, over 150 fungal allergens have been identified [74], with the most
numerous found in A. fumigatus [73,75]. The response to these allergens includes a strong Th2 response
that leads to the development of Aspergillus-specific IgE, which remains to be a diagnostic marker for
severe asthma with fungal sensitization (SAFS) [76,77]. A more severe form of allergic response to
Aspergillus is allergic bronchopulmonary aspergillosis (ABPA), which is associated with prolonged
fungal exposure and typically occurs in individuals with a hypersensitive immune response, where
airway inflammation, eosinophilia, and abundant production of Aspergillus-specific IgE are usually
present [78]. This allergic form of aspergillosis occurs in 1–2% of asthmatic patients and up to 10% of
patients with cystic fibrosis (CF), in the latter it is a major cause of deteriorating lung function and
mortality. Bronchoalveolar lavage (BAL) of ABPA patients showed the presence of infiltrates rich in
eosinophils, neutrophils, lymphocytes and often fungal hyphae [78,79].

The pathogenesis of these allergic forms of aspergillosis is thought to be mediated predominantly
by a hyperactive Th2 response (Figure 2), leading to airway hypersensitivity, IgE production and
persistent airway inflammation [45]. The hyper-reactive Th2 response can be observed in the response
of Peripheral Blood Mononuclear Cells (PBMCs) of ABPA patients, who demonstrate a disturbed
Th2/Th1 ratio upon stimulation with A. fumigatus conidia [80]. This disturbed ration is characterized
by elevated IL-5 and IL-13, and a low IFNγ response in comparison to non-allergic controls [80].
Similarly, in mouse models, repeated exposure to low doses of conidia primes the development
of strong Th2 and Th17 responses, resulting in chronic inflammation resembling ABPA [81]. The
repetitive exposure to A. fumigatus increases eosinophil accumulation in the lungs and peripheral
blood, airway remodeling, and elevated IgE in different murine ABPA models, which can be attributed
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to increased IL-4 and IL-5 and diminished IL-10 production [82–84]. In addition to the high Th2
response, Th17 responses also significantly contribute to the detrimental inflammatory response
observed in Aspergillus related allergy, by stimulating excessive neutrophil recruitment [81,85,86].
Especially under pre-existing conditions where the immune response is skewed to a Th2 response
such as in allergy, infection with A. fumigatus results in increased Th17 response, which could lead to
persistent inflammation and defective fungal clearance [87]. It was recently discovered that the Th17
cytokine IL-17F is also involved in allergic airway inflammation, and this effect is mainly dependent on
signaling through IL-17RC [86]. In mouse models with Th2/Th17 eosinophilic and neutrophilic allergic
airway inflammation induced by A. fumigatus hyphal extract, administration of mesenchymal stromal
cells (MSC) was shown to significantly decrease airway hyper-responsiveness, through reduction of
Th17-mediated inflammation [88].

J. Fungi 2017, 3, 55 6 of 16 

 

the lungs and peripheral blood, airway remodeling, and elevated IgE in different murine ABPA 
models, which can be attributed to increased IL-4 and IL-5 and diminished IL-10 production [82–84]. 
In addition to the high Th2 response, Th17 responses also significantly contribute to the detrimental 
inflammatory response observed in Aspergillus related allergy, by stimulating excessive neutrophil 
recruitment [81,85,86]. Especially under pre-existing conditions where the immune response is 
skewed to a Th2 response such as in allergy, infection with A. fumigatus results in increased Th17 
response, which could lead to persistent inflammation and defective fungal clearance [87]. It was 
recently discovered that the Th17 cytokine IL-17F is also involved in allergic airway inflammation, 
and this effect is mainly dependent on signaling through IL-17RC [86]. In mouse models with 
Th2/Th17 eosinophilic and neutrophilic allergic airway inflammation induced by A. fumigatus 
hyphal extract, administration of mesenchymal stromal cells (MSC) was shown to significantly 
decrease airway hyper-responsiveness, through reduction of Th17-mediated inflammation [88].  

The Th9 subset has only recently been described [89], and is closely associated to the Th2 
response. Th9 cells are known to mediate inflammation, infection and allergy, and this lineage is 
differentiated in the presence of Th2-polarizing cytokine IL-4, in combination with IL-2 and TGFβ 
[90]. Fully differentiated Th2 cells cultured with TGFβ results in increased production of IL-9, which 
is a signature cytokine of Th9 [90]. In healthy volunteers, the fungal pathogen C. albicans induced 
IL-9 production, mostly by IL-9+IL-17+-co-expressing CD4+ T cells than IL-9 single positive cells. 
However in patients with hyper IgE syndrome (HIES) caused by STAT3 mutation, this IL-9 response 
was significantly lower in the presence of IL-4, which could be due to the deficiency of Th17 cell 
subset in these patients [91]. The Th9 subset plays a role in the allergic response to A. fumigatus in 
cystic fibrosis, and blockade of the Th9 response in this setting could represent a novel therapeutic 
strategy to reduce infection associated inflammation [92]. 

 
Figure 2. Immune pathways in SAFS and ABPA. Antigen presentation by DCs activates naïve CD4+ 
T-cells into distinct Th-cell lineages. A predominant non-protective Th2 response is a hallmark in 

Figure 2. Immune pathways in SAFS and ABPA. Antigen presentation by DCs activates naïve CD4+
T-cells into distinct Th-cell lineages. A predominant non-protective Th2 response is a hallmark in
allergic forms of aspergillosis, such as SAFS and ABPA. A distinct characteristic is that the high Th2
response creates an imbalance resulting in low protective Th1 responses. Th2 cells release different
cytokines, among them IL-4 and IL-13, which trigger antibody class switching to IgE, a distinct hallmark
of SAFS. In addition, these cytokines mediate increased mucus production by respiratory goblet cells,
and IL-5, which triggers the recruitment of eosinophils. Abundant mucus production in the airway
allows biofilm formation, thus facilitating fungal growth. Furthermore, the absence of fungal clearance
leads to continuous airway sensitization with fungal components, activating mast cells and the Th2 axis.
Mast cell degranulation releases abundant inflammatory mediators such as histamine and leukotriene,
which also contribute to the inflammatory phenotypes of patients. Activation of Th17 cells facilitates
recruitment of neutrophils, partly contributing to the persistent immunopathology of these diseases.
During ABPA the pulmonary epithelial barrier can become compromised, allowing A. fumigatus to
germinate and invade the tissues. SAFS = Severe asthma with fungal sensitization; ABPA = Allergic
bronchopulmonary aspergillosis; CF = Cystic fibrosis.
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The Th9 subset has only recently been described [89], and is closely associated to the Th2 response.
Th9 cells are known to mediate inflammation, infection and allergy, and this lineage is differentiated
in the presence of Th2-polarizing cytokine IL-4, in combination with IL-2 and TGFβ [90]. Fully
differentiated Th2 cells cultured with TGFβ results in increased production of IL-9, which is a signature
cytokine of Th9 [90]. In healthy volunteers, the fungal pathogen C. albicans induced IL-9 production,
mostly by IL-9+IL-17+-co-expressing CD4+ T cells than IL-9 single positive cells. However in patients
with hyper IgE syndrome (HIES) caused by STAT3 mutation, this IL-9 response was significantly lower
in the presence of IL-4, which could be due to the deficiency of Th17 cell subset in these patients [91].
The Th9 subset plays a role in the allergic response to A. fumigatus in cystic fibrosis, and blockade of the
Th9 response in this setting could represent a novel therapeutic strategy to reduce infection associated
inflammation [92].

6. Regulatory T-Cells

Regulation of a balanced T-helper response is crucial for resolution of the inflammatory response
when infection has been resolved, but also for prevention of detrimental immunopathology during
infection or hypersensitivity (Figure 3). Regulatory T-cells are endogenous regulators of inflammatory
response, they control inflammation by a variety of mechanisms, for example by contact dependent
inhibition of other leukocytes via the surface receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) or
through release of anti-inflammatory cytokines IL-10 and TGF-β [93]. Two types of regulatory T-cells
(Treg) are known to play a role in the antifungal response against A. fumigatus. Natural Treg (nTreg)
originate in the thymus and are present in the periphery, providing tolerance in early infection and
limiting neutrophil activity, and induced Treg (iTreg) that are primed from naïve CD4+ Th cells, and
these cells limit inflammation in later stages of infection, preventing fungal allergy by producing IL-10
and TGFβ [94]. Repeated exposure to aerosolized antigen in mice induces CD4+ T-cells expressing
both surface and soluble TGFβ, and adoptive transfer of these cells to naïve recipient mice abrogates
the allergic phenotype [95].

Similar to the pro-inflammatory T-cell lineages, the Treg [32,34] and Type (1) regulatory T-cells
(Tr1) [34,94] cells found during aspergillosis in both humans as well as murine models show
Aspergillus-specificity. Type (1) regulatory T-cells (Tr1) are distinct from Treg in their mode of induction,
cytokine production and phenotype. Aspergillus-specific Tr1 are present in peripheral blood of human
and mice. Vaccination with Crf1/p41, a cell wall component of the fungus, generated IL-10-producing
Tr1 cells and suppressed antigen-specific T-cell proliferation [34]. Whereas in individuals with allergy
to A. fumigatus, despite the presence of Tr1 cells, specific Th2 cells were expanded, indicating the
capacity of the fungus to modulate distinct regulatory responses to prevent allergic reactions [32].

In individuals colonized with A. fumigatus that induce a strong Treg response, a high concentration
of vitamin D3 in the serum was observed, whereas patients with ABPA that exhibited a predominant
Th2 response had a lower vitamin D3 serum concentration [96]. In line with this, vitamin D3
supplementation was found to decrease A. fumigatus-specific Th2 responses in cystic fibrosis
patients [97].

Regulation of Treg function versus immunopathology during aspergillosis was found to be closely
associated with tryptophan metabolism. The enzyme Indoleamine 2, 3-dioxygenase (IDO) catalyzes the
breakdown of tryptophan to kynurenine and is known to activate Treg responses, whereas the presence
of IL-23 and Th17 negatively regulates it [66]. Imbalance of the Th17/Treg axis in certain conditions
contributes to the pathogenesis of aspergillosis [98]. In mice with chronic granulomatous disease,
lack of reactive oxygen species (ROS) disrupted the metabolism of tryptophan along the kynurenine
pathway, leading to excessive production of IL-17, defective Treg function, and hyperinflammation.
Supplementation with natural kynurenines were able to reverse this hyperinflammatory response [99].
Early in aspergillosis, CD4+CD25+ Treg recruitment is able to control inflammation by neutrophil
suppression, mediated by the actions of IL-10 and CTLA-4 on IDO. Furthermore, IFNγ levels in this
early phase of infection partially condition the subsequent adaptive immune response by inducing
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IDO-dependent tolerogenic DCs, which subsequently activate tolerogenic Treg that produce IL-10
and TGFβ, inhibit Th2 cells, and prevent fungal allergy [94]. IDO activation could also be activated in
a TLR3/TRIF dependent manner in epithelial cells, resulting in protection against Aspergillus. Mice
defective in this pathway exhibited a stronger Th17 response manifested by infiltration of neutrophils
in the lungs, decreased Th1/Treg response, and higher fungal burden and immunopathology [20].
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compromised, allowing A. fumigatus to germinate and invade the tissues. SAFS = Severe asthma with 
fungal sensitization; ABPA = Allergic bronchopulmonary aspergillosis; CF = Cystic fibrosis. 
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Regulation of a balanced T-helper response is crucial for resolution of the inflammatory 
response when infection has been resolved, but also for prevention of detrimental 
immunopathology during infection or hypersensitivity (Figure 3). Regulatory T-cells are 
endogenous regulators of inflammatory response, they control inflammation by a variety of 
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antifungal response against A. fumigatus. Natural Treg (nTreg) originate in the thymus and are 
present in the periphery, providing tolerance in early infection and limiting neutrophil activity, and 
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TGFβ, and adoptive transfer of these cells to naïve recipient mice abrogates the allergic phenotype 
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Figure 3. The role of regulatory T-cells in aspergillosis. Regulatory T-cells (Treg) orchestrate the 
balance of the Th1, Th2 and Th17 response; and this fine-tuning is necessary for effective fungal 
clearance in the host. In healthy individuals, the protective Th1 response effectively aids the 
clearance of A. fumigatus, whereas potential damaging excessive Th17 activation is dampened by 

Figure 3. The role of regulatory T-cells in aspergillosis. Regulatory T-cells (Treg) orchestrate the balance
of the Th1, Th2 and Th17 response; and this fine-tuning is necessary for effective fungal clearance in the
host. In healthy individuals, the protective Th1 response effectively aids the clearance of A. fumigatus,
whereas potential damaging excessive Th17 activation is dampened by Treg. A predominant Th2
response in allergic forms of aspergillosis such as SAFS and ABPA, leads to persistent inflammation and
fungal colonization. In immunocompromised individuals, failure of innate immune cells to eliminate
fungi may cause invasive aspergillosis (IA). When the Th17 response is too potently induced this might
lead to excessive neutrophil influx and collateral damage. Fine-tuning of the strong pro-inflammatory
responses during aspergillosis is facilitated by Treg, which in turn suppress the Th17/Th2 activity and
prevent damage to the host.

7. Immunotherapy: Optimizing the Potential of T-Helper Responses

Despite the development of strict antifungal treatment regimens, the mortality and morbidity
due to aspergillosis remained relatively unchanged within the past few years [7,100]. Antifungal
resistance and a persistent dysregulated immune response in patients with aspergillosis limits
the efficacy of antifungal medication [101]. The immunological state of the host remains an
important determinant in the outcome of infection, with the absence of efficient innate immune
responses predisposing for invasive infection and the induction of hyper-inflammatory responses
contributing to immunopathology. Therefore, restoration of dysregulated immune responses, by using
immune-based therapies, is believed to be a promising strategy to improve the clinical outcome of
fungal infections [102]. Numerous immunomodulatory therapies in pre-clinical experimental phase
are aimed at distinct processes of the host-pathogen interactions [103–108]. It should be noted that
most immunomodulatory strategies are aimed at boosting the adaptive immune response or at making
use of the protective mechanisms provided by the adaptive immune response.

As previously discussed, a robust Th1 response is crucial for efficient clearance of
A. fumigatus [36,40,43]. To simulate a robust Th1 response, patients can be administered IFNγ, the
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signature Th1 cytokine. Administration of IFNγ was shown to have the potential to augment the
host response to control infection against A. fumigatus in immunocompromised individuals and CGD
patients, improving outcome and reducing mortality [106,107,109]. Adjunctive therapy of GM-CSF and
IFNγ alongside antifungal treatment was also able to improve disease outcome in both neutropenic
and non-neutropenic patients [105,110,111].

In contrast to strategies aiming at augmenting the host response, cytokine-based immunotherapies
can also be employed to prevent detrimental immunopathology. The Th2/Th1 imbalance observed in
ABPA patients could be restored in vitro using IFNγ [81], suggesting that IFNγ therapy could be a
promising strategy to skew the immune responses in ABPA and fungal allergy. Interference of the IL-1
pathway has been an interesting subject in recent years. Inflammasome-dependent IL-1β production
is the driving force for Th17 induction, and in certain condition such as cystic fibrosis and CGD this
Th17 response can lead to exaggerated tissue damage in the host. Administration of recombinant
IL-1 receptor antagonist (IL-1Ra) decreases immunopathology and contribute to a better outcome in
Th17-mediated inflammation as a result of Aspergillus-infection in a murine cystic fibrosis model [112]
and in a murine CGD model [113]. In corticosteroid immunosuppressed mice, detrimental damage
leading to pulmonary tissue hypoxia could be reduced by IL-1Ra [114].

In immunocompromised individuals, such as those undergoing transplantation, cellular immunity
is abrogated. Innate immune cell counts subsequently recover, however, lymphocyte numbers remain
low for several months, which renders these patients susceptible to infections [115]. Adoptive
transfer of in vitro-generated CD4+ T-cells in patients receiving allogeneic HSCT has been shown to
improve clearance of Aspergillus infection and confer protection against invasive aspergillosis [104,116].
Clinical-scale generation of anti-Aspergillus T-cells can be achieved by stimulating T-cells with a single
antigenic epitope, however, whole fungal extract generates T-cells with more efficient anti-fungal
properties [116,117]. In addition to expanding normal T-cells, T-cells can also be engineered to
have an improved antifungal capacity. Genetic modification of T-cells to express a chimeric antigen
receptor (CAR) leads to a redirected signaling after recognition of antigens. By generating a T-cell that
expresses dectin-1 that activates CD28 and CD3ζ (referred as D-CAR), a T-cell can directly recognize
the fungus and induce its anti-fungal effect [118]. Adaptation of other types of receptors specific for
A. fumigatus and further validation both in vitro and in vivo is necessary to improve the optimization
and application of this promising treatment.

Although there are a growing number of experimental strategies to augment the antifungal
host response by targeting T-helper responses, it should be considered that treating disease in
immunocompromised patients is more challenging than experimental models, since these individuals
have more complex clinical settings. Therefore, the added value of various immunotherapeutic
approaches needs to be evaluated on a patient-to-patient basis. The host defense in different patients
can be altered in different ways, and different underlying diseases can potentially complicate treatment.
Therefore, immunotherapy requires a tailored and personalized approach, taking into account the
complexity of different cases and underlying diseases. Well-targeted clinical trials with the right
patients and controls aiming at applying these therapies in clinical settings are required to realize
immunotherapy for Aspergillus-related diseases in the near future.

8. Future Perspectives

Most of the knowledge on T-helper responses in aspergillosis is derived from murine models.
Although experimental infection models provide invaluable information on pathogenesis of
aspergillosis and the role of T-helper responses, such models cannot always be inferred to humans
due to differences in human and murine physiology and host defense. In addition, murine models
may not always be representative for patients with aspergillosis, who present with a complex clinical
background, can have various underlying diseases and host defense can be altered in multiple and
interacting ways. We therefore believe that an important future direction of research should include
the evaluation of T-helper responses to Aspergillus in humans in general and preferably in patients with
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aspergillosis specifically. In this way, findings from murine models can be validated and translated to
patient settings, and a detailed overview of the human T-helper responses against A. fumigatus can
be elaborated.

Although T-helper responses are usually described as specific cell subsets, recent studies have
demonstrated that in fact there is overlap between the different T-cell subsets [113–122]. Th17 cells
co-expressing IFNγ or IL-10 have been found in response to the fungal pathogen Candida albicans [121].
However limited numbers of IL-17/IFNγ co-expressing cells were observed to be induced by
Aspergillus in human PBMCs [122]. IL-22, however, was found to be produced not only by Th17 cells,
but also in a T-cell subset co-expressing IFNγ and in T-cells exclusively expressing IL-22 [122]. Another
discovery that complicates our understanding of the T-helper responses is that regulatory T-cells can
co-express IL-17 and potentially contribute to detrimental immunopathology [119]. Recent studies
have demonstrated that A. fumigatus also induces regulatory T-cells with a Th17-like phenotype [120],
however, it remains to be determined to what extent these cells contribute to the detrimental
immunopathology seen during aspergillosis. The observation that the expression of lineage-defining
cytokines showed a great plasticity among Aspergillus-activated T-cells complicates our understanding
of the mechanisms going on in vivo during infection. Increased knowledge and understanding of this
plasticity of the T-cell response might in the future lead to strategies that are aimed at utilizing this
plasticity to shape T-cell responses in a way for optimal fungal clearance and limited immunopathology.
The administration of recombinant cytokines and adoptive transfer of pathogen-specific T cells are
several examples of potential successful approaches that have been developed in the past few years.
Fundamental studies regarding the therapeutic potential of T-cell plasticity in aspergillosis and clinical
trials aiming at applying these therapies in clinical settings are required to realize immunotherapy for
Aspergillus-related diseases in the near future.
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