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Abstract: Atopic dermatitis (AD) is characterized clinically by severe dry skin and functionally by
both a cutaneous barrier disruption and an impaired water-holding capacity in the stratum corneum
(SC) even in the nonlesional skin. The combination of the disrupted barrier and water-holding
functions in nonlesional skin is closely linked to the disease severity of AD, which suggests that the
barrier abnormality as well as the water deficiency are elicited as a result of the induced dermatitis
and subsequently trigger the recurrence of dermatitis. These functional abnormalities of the SC are
mainly attributable to significantly decreased levels of total ceramides and the altered ceramide
profile in the SC. Clinical studies using a synthetic pseudo-ceramide (pCer) that can function as
a natural ceramide have indicated the superior clinical efficacy of pCer and, more importantly,
have shown that the ceramide deficiency rather than changes in the ceramide profile in the SC of AD
patients plays a central role in the pathogenesis of AD. Clinical studies of infants with AD have shown
that the barrier disruption due to the ceramide deficiency is not inherent and is essentially dependent
on postinflammatory events in those infants. Consistently, the recovery of trans-epidermal water loss
after tape-stripping occurs at a significantly slower rate only at 1 day post-tape-stripping in AD skin
compared with healthy control (HC) skin. This resembles the recovery pattern observed in Niemann–
Pick disease, which is caused by an acid sphingomyelinase (aSMase) deficiency. Further, comparison
of ceramide levels in the SC between before and after tape-stripping revealed that whereas ceramide
levels in HC skin are significantly upregulated at 4 days post-tape-stripping, their ceramide levels
remain substantially unchanged at 4 days post-tape-stripping. Taken together, the sum of these
findings strongly suggests that an impaired homeostasis of a ceramide-generating process may be
associated with these abnormalities. We have discovered a novel enzyme, sphingomyelin (SM)
deacylase, which cleaves the N-acyl linkage of SM and glucosylceramide (GCer). The activity of SM
deacylase is significantly increased in AD lesional epidermis as well as in the involved and uninvolved
SC of AD skin, but not in the skin of patients with contact dermatitis or chronic eczema, compared
with HC skin. SM deacylase competes with aSMase and β-glucocerebrosidase (BGCase) to hydrolyze
their common substrates, SM and GCer, to yield their lysoforms sphingosylphosphorylcholine
(SPC) and glucosylsphingosine (GSP), respectively, instead of ceramide. Consistently, those reaction
products (SPC and GSP) accumulate to a greater extent in the involved and uninvolved SC of
AD skin compared with chronic eczema or contact dermatitis skin as well as HC skin. Successive
chromatographies were used to purify SM deacylase to homogeneity with a single band of ≈43 kDa
and with an enrichment of >14,000-fold. Analysis of a protein spot with SM deacylase activity
separated by 2D-SDS-PAGE using MALDI-TOF MS/MS allowed its amino acid sequence to be
determined and to identify it as the β-subunit of acid ceramidase (aCDase), an enzyme consisting
of α- and β-subunits linked by amino-bonds and a single S-S bond. Western blotting of samples
treated with 2-mercaptoethanol revealed that whereas recombinant human aCDase was recognized
by antibodies to the α-subunit at ≈56 and ≈13 kDa and the β-subunit at ≈43 kDa, the purified
SM deacylase was detectable only by the antibody to the β-subunit at ≈43 kDa. Breaking the S-S
bond of recombinant human aCDase with dithiothreitol elicited the activity of SM deacylase with an
apparent size of ≈40 kDa upon gel chromatography in contrast to aCDase activity with an apparent
size of ≈50 kDa in untreated recombinant human aCDase. These results provide new insights into
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the essential role of SM deacylase as the β-subunit aCDase that causes the ceramide deficiency in
AD skin.

Keywords: atopic dermatitis; pathogenesis; sphingomyelin deacylase; barrier function; ceramides

1. Skin Characteristics and Barrier/Water Reservoir Functions in the Stratum Corneum
of Patients with Atopic Dermatitis

Atopic dermatitis (AD) is a recurrent dermatitis with a high susceptibility to irritants
and allergens, which is characterized clinically by severe dry skin even in nonlesional
skin [1,2]. The nonlesional AD dry skin is thought to be a prerequisite factor for the
easily provoked itching that results in accelerating the cutaneous permeability of many
foreign substances due to the subsequent scratching, as has been called ‘scratch dermatitis’.
The AD dry skin is also distinctly accompanied by both the cutaneous barrier disruption
and an impaired water-holding capacity in the stratum corneum (SC) [3–10], features that
contrast with xerosis [11] and contact dermatitis where there is no barrier abnormality
in nonlesional skin, providing clinical insights into the pathogenesis of AD. The close
relationship between the AD skin symptoms and SC functions has been well established in
several clinical studies with AD patients including our group [3–10,12]. Thus, in one of
our clinical studies with AD patients [4], comparison of SC functions with dry skin scores
on the nonlesional AD skin demonstrated that while the capacitance values were highly
correlated with dryness scores (r = −0.752, p < 0.0001, n = 106) and with scaling scores
(r = −0.697, p < 0.0001, n = 106), the transepidermal water loss (TEWL) was also paralleled
by dryness (r = 0.788, p < 0.0001, n = 106) with a higher correlation coefficient compared
with capacitance values and scaling scores (r = 0.697, p < 0.0001, n = 106).

2. Abnormality in Percutaneous Permeability Barrier Function

Although TEWL is frequently used to measure the barrier function of skin, it is not nec-
essarily a precise reflection of percutaneous permeability barrier, and thus we determined
whether the chemical penetration rate is really increased or not in the nonlesional skin
of AD patients compared with healthy control (HC) skin [3]. To detect in vivo cutaneous
permeability, we used photoacoustic spectrometry (PAS) by which chemical concentra-
tions present in SC layers up to 15 µm thick can be measured based on the intensity of
photoacoustic signals derived from the chopped expansion of air due to chemical heat
released during the relaxation process from chemical molecules excited by the chopper
light. As penetrators, we utilized rhodamine B stearate (Red 215) and tartrazine (Yellow 4)
as lipophilic and hydrophilic dyes, respectively, and determined the in vivo penetration
rate of those lipophilic and hydrophilic dyes through the SC by photoacoustic signals that
reflect chemical concentrations within the 15 µm thick SC layer. It turned out that both
dyes penetrated faster in the nonlesional skin of AD patients compared with HC skin
during the topical application period of 2 h, indicating that that there is a disruption in the
in vivo cutaneous permeability barrier function against both the lipophilic and hydrophilic
chemicals. To reduce the long time (such as 2 h) required to measure the disappearance
rate of chemicals through the SC layers, we used patch chambers applied on the skin
for 2 or 5 min and measured the concentrations of chemicals that penetrated into the SC
layers, which are comparable with the penetration rates of chemicals. PAS analysis after
application of the two dyes for 2 or 5 min under the closed patch conditions revealed that
there was a significant increase (p < 0.001, n = 103 for AD and n = 10 for HC) in the pho-
toacoustic signals equivalent to dye concentrations through the SC for both the lipophilic
and hydrophilic dyes in the nonlesional AD skin compared with HC skin [3]. This result
indicates that the nonlesional skin of AD patients has accelerated penetration rates for both
types of dyes compared with HC skin. In this connection, recent systematic search for
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studies evaluating skin absorption of various penetrants indicated that patients with AD
have almost twofold increased skin absorption compared with healthy controls [13].

3. Is Barrier Disruption a Cause or a Result of Dermatitis?

To determine if the barrier disruption is a cause or a result of dermatitis in AD
nonlesional skin, we next compared the PAS signals of lipophilic and hydrophilic dyes
with the severity of AD [2]. The difference between the PAS signals of the HC group
(n = 10) and the mild AD group (n = 6) for the lipophilic dye (rhodamine B stearate) was
significant (p < 0.05), which contrasts with an insignificant difference with the hydrophilic
dye (tartrazine). On the other hand, the intensities of the PAS signals obtained with the
hydrophilic dye (tartrazine) differed significantly among the three groups of AD patients
in relation to the severity. The sum of these findings indicates that the intensity of the
impaired percutaneous permeability barrier in the nonlesional AD skin is closely paralleled
by the clinical severity of AD patients, which strongly suggests that the disruption of
percutaneous permeability barrier homeostasis is generated as a result of the induced
dermatitis and subsequently triggers a predisposition to evoke the recurrence of dermatitis.

Further, to elucidate whether the disrupted barrier function in nonlesional AD skin is
associated with preinflammatory or postinflammatory events, which are relevant to the
severity of AD, we evaluated the barrier function as measured by TEWL and the water
content (conductance) as measured by an impedance meter of nonlesional AD skin and
compared those SC functions with the severity of AD [4]. The TEWL was significantly
increased in proportion to the severity of AD with a markedly high correlation coefficient
(r = 0.834, p <0.0001, n = 106), while the capacitance decreased in proportion to the severity
of AD with a relatively lower correlation coefficient (r = −0.720, p < 0.0001, n = 106).
Taken together, the sum of our findings indicates that the barrier disruption and water
deficiency in nonlesional AD skin are well suited to reflect the severity of AD and that
nonlesional AD skin had already been inflamed and has never been purely normal skin
since birth. Comparison between the TEWL and capacitance values in association with the
AD severity indicated that those two parameters are well distributed depending on the
severity of AD and that the elevated TEWL more adequately reflects the difference between
HC skin and mild AD skin compared with the diminished capacitance (Figure 1) [4].
Therefore, our results indicate that the barrier disruption as well as the water deficiency in
nonlesional AD skin reflect the disease severity of AD, which again suggests that the barrier
abnormality as well as the water deficiency are elicited as a result of the evoked dermatitis
in the past and subsequently trigger the recurrence of dermatitis. This combination also
provides a useful insight into understanding the diagnosis and clinical improvement
during therapy.
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4. A Ceramide Deficiency Is Responsible for the Disrupted SC Function

Many studies have shown that the barrier disrupted dry skin of AD patients is mainly
attributable to significantly decreased levels of total ceramides and altered ceramide profile
in the SC [14–23]. The essential role of ceramides in expressing and maintaining these SC
functions is strengthened by the findings of our group and other groups that ceramides
can function as a water reservoir by holding bound water molecules that can never freeze
and evaporate [24,25] and as a permeability barrier due to the formation of multilayered
lamellar structures [26–30]. Further, the integrity of lipid lamellae in the SC of AD skin with
the water deficiency and disrupted barrier homeostasis is distinctly lacking as a result of
alterations in the ceramide profile, including the total ceramide level, its composite species
and its alkyl chain properties [18,31].

5. Significance of Ceramides in SC Functions

The significant role of ceramides in SC water-holding and barrier functions is sup-
ported by direct clinical evidence that the disrupted barrier function and water deficiency
that occurs in both the nonlesional and the lesional skin of AD patients [32] and in es-
sential fatty acid-deficient mice or is elicited by surfactant or solvent treatment of HC
skin can be distinctly restored to a healthy state by the topical application of natural ce-
ramides or pseudo-ceramide (pCer) [33–35]. To provide deeper insights into the impaired
barrier/water mechanisms that are associated with either ceramide or filaggrin-derived
water soluble materials (mainly amino acids), a synthetic pCer that can function as natural
ceramides and can be mass produced was designed and screened. This selection was based
on its in vitro ability to form multilamellar structures and to retain bound-water molecules
as well as its in vivo water-holding capacity and ameliorating effects on acetone-ether or
surfactant-induced roughened skin [36–38]. We used pCer to elucidate if compensating
ceramides or water-soluble materials could restore the perturbed barrier/water reservoir
function in clinically normal, nonlesional AD skin. Thus, we conducted a clinical com-
parison study on nonlesional AD skin treated for 4 weeks with a 8% synthetic pCER
cream or with a 0.3% mucopolysaccharide (HIRU) cream (used as a water-soluble mate-
rial) [32], the latter of which is medical moisturizing cream approved for treating AD in
Japan. Comparison of those two creams for clinical improvement revealed that whereas
the HIRU cream elicited a slight improvement in 80% of subjects (n = 24) and a moderate
improvement in 20% of subjects, the pCER cream resulted in a marked improvement in
50% of subjects, a moderate improvement in 36% of subjects and a slight improvement in
15% of subjects, which is significantly more efficient compared with the HIRU cream [32].
The pCER cream elicited a significant reduction in TEWL values (p < 0.0001) with significant
and sharp decreases appearing at weeks 2 and 4. In contrast, the HIRU cream exhibited
a significant but lesser reduction in TEWL values at weeks 2 and 4 compared with the
pCER cream [32]. A comparison of the reduced TEWL values revealed that treatment with
the pCER cream elicited a significantly greater reduction in TEWL (p < 0.0001) at week
4 compared with the HIRU cream. The pCER cream also induced a significant increase
of 175% in capacitance values at weeks 2 and 4. In contrast, the HIRU cream elicited a
significant but lesser increase of 140% in capacitance values only at week 2 compared
with the pCER cream. A comparison of the increased capacitance values demonstrated
that at weeks 2 and 4, treatment with the pCER cream elicited a significantly greater in-
crease in capacitance values (p < 0.001) compared with the HIRU cream. As shown in
Figure 1, when TEWL and capacitance values in association with disease severity were
compared, rectangular areas representing each area consisting of means ± SD in TEWL
and capacitance values were well distributed in association with severe, moderate and
mild AD patients and HCs [11]. As shown in Figure 2, comparison between TEWL and
capacitance values at 4 weeks of treatment in association with disease severity revealed that
whereas those two parameters of pCER cream-treated skin were generally distributed into
the rectangular areas corresponding to HC skin, those values for the HIRU cream-treated
skin remain within rectangular areas corresponding to the mild or moderate AD skin [32].
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Thus, this clinical study indicated a superior clinical efficacy of pCer and more importantly
that the ceramide deficiency in the SC of AD skin plays a central role in the pathogenesis of
AD although it remains unclear how much the altered ceramide profile in the decreased
levels of total ceramides contributes to the disrupted SC function in AD skin.
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6. Significance of the Ceramide Profile in SC Functions

As for the mechanistic contribution of altered ceramide profiles to the downregulation
of SC water-holding and barrier functions, it remained to be clarified whether the changes
in ceramide profile observed in AD skin [18,39,40] were atopic diathesis specific or were a
mere facet that reflects inflammatory dermatitis such as chronic eczema or contact dermati-
tis because these related studies have no comparison with general non-AD as a disease
control. Thus, Koyano et al. [41] reported that ceramide profiles in lesional but not in nonle-
sional SC of psoriasis patients resembles those of AD patients. Kim et al. [23] also recently
demonstrated that the SC of nonlesional skin in patients with allergic contact dermatitis
has abnormalities in barrier function and ceramide profiles that occur in a pattern similar
to those in nonlesional AD skin. Thus, it seems reasonable to assume that the disrupted
keratinization process that occurs subsequently due to cutaneous inflammation is mainly
attributable to the ceramide profile changes, thereby exacerbating the pathological changes.
This fact was also corroborated by our recent study which demonstrated that repetitive
topical applications of pCer to AD skin significantly improved inflammation and atopic
dry skin as well as the SC barrier/water reservoir function, accompanied by switching the
ceramide profile to a healthy skin phenotype (Figure 3) [12]. Interestingly, these clinical
and functional improvements in the SC can be achieved without any restoration of the
decreased levels of total endogenous ceramides to a healthy state but with applied and
compensated pCer accumulating at a similar level to existing endogenous ceramides in
the SC. The remaining levels (µg/ng SC protein) of pCer applied to the SC of AD skin
were significantly correlated (n = 39, r = 0.447, p = 0.005) with the increased water content
measured by conductance whereas none of the ceramide species at the level of µg/ng SC
protein were associated with the increased water content (Table 1). This suggests that total
ceramide levels, including penetrated pCer in the SC, are more essential to restoring and
maintaining the barrier and water reservoir functions than are the differential ceramide
profiles and play an essential role in improving clinical skin symptoms. Thus, almost all
topical application studies [5–10,12,32] of pCer on nonlesional AD skin demonstrated that
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compensating ceramide levels in AD nonlesional SC is significantly effective in improving
atopic dry skin, accompanied by the amelioration of disrupted barrier and water holding
functions as well as by switching the endogenous ceramide profile to a healthy skin pheno-
type [12]. These findings strongly suggest that the ceramide deficiency rather than altered
ceramide profiles in the SC of AD skin plays an essential role in the pathogenesis of AD.
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Table 1. Correlation coefficients between ceramide classes (ng/µg protein)/penetrated levels of pCer
(ng/µg protein) and scheme 13. N = 39. ** p < 0.01.

Endogenous Ceramide
Species & pCer

Skin Conductance (µS) Trans-Epidermal Water Loss
(g/m2/h)

Correlation
Coefficient p-Value Correlation

Coefficient p-Value

pCer 0.436 0.0056 ** 0.1015 0.5386
Total Ceramides −0.2372 0.1459 -0.0769 0.6417

Cer [NDS] 0.2357 0.1478 -0.1312 0.4259
Cer [NS] −0.2141 0.1905 0.1739 0.2898
Cer [NH] −0.2049 0.2108 0.0157 0.9242
Cer [NP] −0.1506 0.36 −0.1586 0.335

Cer [ADS] −0.2069 0.2604 −0.2302 0.1585
Cer [AS] −0.2399 0.1413 0.0867 0.5992
Cer [AH] −0.2054 0.2097 0.0017 0.9917
Cer [AP] −0.2609 0.1087 −0.2694 0.0972

Cer [EOS] −0.1978 0.2275 0.1239 0.42
Cer [EOH] −0.2045 0.2117 0.0301 0.8559
Cer [EOP] −0.197 0.2292 −0.1329 0.4119
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7. Is the Barrier Disruption and Its Associated Ceramide Deficiency Inherent or Not?

It is important to understand whether the impairment of skin barrier function and its
associated ceramide deficiency in AD skin is inherent or not. In this respect, a prospective
study of newborns revealed that the impairment of skin barrier function is not inherent with
AD patients [42]. In adult AD skin, there is a ceramide deficiency even in the nonlesional
SC, which is highly associated with the abnormal barrier function, and predisposes the skin
to inflammatory processes evoked by irritants and allergens. Although it is possible that
adult nonlesional AD skin may be postinflammation, it remains unclear whether the barrier
disruption and ceramide deficiency in nonlesional AD skin results from postinflammation
or from an inherited ceramide synthesis abnormality. To test this possibility, we studied
infants with AD to examine SC functions and to compare SC ceramide levels and β-
glucocerebrosidase (BGCase) activity in their skin [43]. TEWL in the forearm skin of infants
with AD (n = 24~26) was significantly upregulated in the lesional skin but not in the
nonlesional skin compared with HC skin (n = 18~20). When the relationship between
TEWL and SCORAD index in the lesional and nonlesional skin of AD infants was assessed,
there was a significant correlation (n = 17, r = 0.62, p = 0.013) between the two parameters in
the lesional skin but not (n = 17, r = −0.08, p = 0.761) in the nonlesional skin, which suggests
that the barrier disruption is not inherent but results from a subsequently elicited dermatitis.
In contrast, the water content, as assessed by capacitance, was slightly but not significantly
decreased only in the lesional skin. It is of great interest to note that ceramide levels,
expressed as Mg ceramide/mg SC protein, were significantly decreased in the SC of
lesional AD skin (n = 22) but not in the nonlesional AD skin (n = 28), which is consistent
with the increased TEWL only in the lesional AD skin. When BGCase activity in the
SC was evaluated, there was no significant difference between HC skin (n = 18~20) and
lesional and nonlesional AD skin. In the non-lesional buttock skin of infants with AD
(n = 26), there was no significant increase or decrease in TEWL values and water content,
respectively, compared with HC skin (n = 18). The ceramide levels, expressed as Mg
ceramide/mg SC protein, revealed that there is no significant decrease in SC ceramide
in the nonlesional AD buttock skin which is consistent with the lack of an increase in
TEWL values in the nonlesional AD buttock skin. BGCase activity in the SC of the non-
lesional buttock skin demonstrated that there is no significant difference between the
skin of HC and AD infants. In summary, as shown in Figure 4, in infant nonlesional AD
skin, TEWL values and water content were not altered compared with HC infant skin.
A comparison of ceramide levels demonstrates that SC ceramides are significantly reduced
only in the lesional AD infant skin but not in the nonlesional AD infant skin compared
with HC infant skin. On the other hand, there was no significant difference in BGCase
activity in the SC of infant AD and infant HC skin as well as between adult AD and adult
HC skin. These findings suggest that the barrier disruption due to the ceramide deficiency
is not inherent and is essentially dependent on postinflammatory events in infants with
AD. Although prevalent and rare loss-of-function mutations have been identified as the
cause of the genodermatosis ichthyosis vulgaris and were additionally reported to be an
important predisposing factor for the development of AD [44–47], our results on AD infant
skin reflect the atopic diathesis as a genotypic predisposition but are not consistent with
loss-of-function mutations in the gene encoding filaggrin in AD which may represent only
one facet of the atopic abnormalities.
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8. Clinical Evidence for the Impaired Homeostasis of the Ceramide-Generating Process

Thus, the evidence for the involvement of inflammation in the predisposition to
a ceramide deficiency which results in impaired barrier and water reservoir functions
prompted us to elucidate the effects of evoked inflammation on barrier/water function
and ceramide biosynthesis in the SC of AD patients. We used tape-stripping to induce
cutaneous acute inflammation and compared changes in the levels of barrier disruption and
water content as well as of ceramides and sphingolipid enzyme activities between AD and
HC skin during the barrier recovery process [21]. A similar approach with tape-stripping
has been challenged in Nieman–Pick patients who have acid sphingomyelinase (aSMase)
deficiency, which showed that the delayed barrier recovery is mainly ascribed to the
inherently downregulated levels of aSMase activity due to mutation of the aSMase gene [48].
Based on this evidence, if the alteration of some ceramide-metabolic enzymes or related
enzymes are involved as causative factors in the continued barrier disruption of AD skin,
this challenge would provide a deep insight into phenotypic changes of barrier function
and ceramide content in the SC of AD patients in response to cutaneous inflammation
as well as into unknown factors that may be provoked following acute inflammation.
Our results showed that basal levels of capacitance values prior to the tape-stripping
are significantly lower in AD skin than in HC skin. During the tape-stripping process,
the water content (capacitance value) increased with increased numbers of tape-strippings
to a lower extent in AD skin than in HC skin. During the recovery process, at 4 days
post-stripping, capacitance values in AD skin returned to almost the same values as before
the tape-stripping. In contrast, capacitance values in HC skin returned to less than the pre-
tape-stripping level. The skin capacitance values then returned to similar levels between
AD and HC skin at 4 days post-stripping. On the other hand, basal levels of TEWL values
prior to tape-stripping were significantly higher in AD skin than in HC skin. During the
tape-stripping process, TEWL values increased with increasing numbers of tape-strippings
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to a similar extent in AD skin and in HC skin. During the recovery process, at 4 days
post-stripping, TEWL values both in AD skin and in HC skin returned to higher levels than
before the tape-stripping, the level of which was significantly higher in AD skin than in HC
skin. The recovery of TEWL values after tape-stripping occurred at a significantly slower
rate at 1 day post-tape-stripping in AD skin than in HC skin, but proceeded at a similar
rate at 2, 3 and 4 days post-tape-stripping (Figure 5). Since a similar recovery rate was
observed in Niemann–Pick disease caused by aSMase deficiency with a delay of barrier
recovery only at 1 day post-tape-stripping [48], these tape-stripping studies on AD skin
strongly suggest that the impaired homeostasis of a ceramide-generating process occurs in
AD skin.
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In a parallel study, thin layer chromatographic analysis demonstrated that basal levels
of ceramides in the SC of AD skin significantly differ from HC skin with significantly
lower levels in AD skin than in HC skin (Figure 6). Comparison of ceramide levels in the
SC between before and after tape-stripping revealed that whereas ceramide levels in HC
skin are significantly upregulated at 4 days post-tape-stripping, the ceramide levels in AD
skin remain substantially unchanged at 4 days post-tape-stripping (Figure 6). Analysis of
ceramide species indicated that basal levels of ceramides [NP], [AS], [NH], [AP], and [AH]
are significantly lower in AD skin than in HC skin [21]. Comparison of ceramide species be-
fore and after tape-stripping revealed that levels of ceramides [EOS], [NP], [AP], and [AH]
are significantly increased at 4 days post-tape-stripping in HC skin whereas levels of all
ceramide species are unchanged in AD skin [21]. When BGCase activity was assessed,
basal levels of the enzyme activity in the SC occurred at a similar level between AD skin and
HC skin [21]. Comparison of the BGCase activity in the SC before and after tape-stripping
demonstrated that whereas BGCase activities at 4 days post-tape-stripping are significantly
upregulated in HC skin compared with before tape-stripping, those activities in AD skin
remain substantially unchanged [21]. While BGCase activity showed more than a 144%
increase in HC skin at 4 days post-tape-stripping, BGCase activity was not upregulated
(<a 97% increase) in AD skin with a significant difference in % increase between the two.
As there is no significant difference in the basal levels of BGCase activity between HC skin
and nonlesional and lesional AD skin, this strongly suggests that the failure to stimulate
BGCase activity is mainly attributable to the tape-stripping triggering unknown abnormal
biological events. Thus, this may occur via possible abnormal pathways through which
levels of ceramide precursors, sphingomyelin (SM) as well as glucosylceramide (GCer),
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are also not converted at a sufficient and healthy level by the corresponding hydrolytic
enzymes acid sphingomyelinase (aSMase) and BGCase, respectively, to their hydrolytic
end-product ceramide.
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Ceramide levels in the SC are modulated by the balance of three enzymes involved
in sphingolipid hydrolysis, BGCase, aSMase and acid ceramidase (aCDase), secreted in
lamellar granules (LGs) in the interface between the stratum granulosum and the SC.
Therefore, as for the biological mechanisms involved in the ceramide deficiency in AD
skin, it is important to elucidate the activities of those three sphingolipid hydrolysis
enzymes in the SC or the epidermis of AD skin compared with HC skin. Two of those
three sphingolipid hydrolysis enzymes, aSMase and BGCase, were not attenuated at
the enzymatic activity level [17,49,50] or at the protein level [51,52] in the nonlesional
epidermis or the nonlesional SC of AD skin. Although one study did report a decreased
activity of aSMase [53], the deficiency of aSMase activity only cannot reasonably account
for the ceramide deficiency in AD skin because of the diminished levels of all ceramide
species including acylceramide, a ceramide species that is not synthesized by aSMase.
Further, other sphingolipid metabolic enzymes that function upstream of the hydrolysis of
GCer and SM in the epidermis, such as serine-palmitoyl transferase (SPT), stearoyl CoA
desaturase (SCD), ceramide synthases (CERS) 1–5, GCer synthase (GCERS), alkyl chain
elongation enzymes and SM synthase (SMS), have never been reported to be implicated in
the ceramide deficiency in uninflamed nonlesional AD skin [52]. Since a barrier recovery
pattern with a significant delay only at 1 day after tape-stripping in AD skin compared to
HC skin was almost identical to that as seen in aSMase-deficient Niemann–Pick disease,
we thought it likely that the impaired homeostasis of a ceramide-generating process other
than the known sphingolipid metabolic enzymes may be associated with the continued
abnormality of barrier and water reservoir functions due to the ceramide deficiency in
nonlesional AD skin. Thus, it is intriguing to know what biological factors would trigger
the epidermis to downregulate the synthesis of SC ceramides in AD skin.
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9. Discovery of Sphingomyelin Deacylase

While there is no abnormality in the activity or the expression of ceramide-generating
enzymes, including aSMase and BGCase, in AD skin [17,21,49,50], we analyzed SM hydrol-
ysis in detail using radio-thin layer chromatography (RTLC) with [choline-methyl-14C]SM.
RTLC analysis for the first time revealed that radiolabeled SPC was enzymatically released
following incubation with the SC lysate from AD skin but not from contact dermatitis skin
or HC skin (Figure 7) [54]. There are three possible ways by which radiolabeled materi-
als could be released enzymatically from [choline-methyl-14C]SM, as shown in Figure 8:
(1) the formation of [14C]PC by SMase; (2) the formation of [14C]sphingosylphosphorylcholine
(SPC) by a deacylase-like enzyme; (3) the formation of [14C]choline by a phospholipase
D-like enzyme.
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The observed release of radiolabeled SPC from [choline-methyl-14C]SM strongly
suggested that the presence of a deacylase-like enzyme (SM deacylase) in the SC of AD
skin. Therefore, as depicted in Figure 9, we thought it likely that the high expression
level of SM deacylase competes with the ceramide-generating enzyme aSMase for the
same substrate SM, which results in the decreased levels of ceramides seen in the SC of
AD patients. Another study using RTLC analysis (Figure 10) demonstrated that similarly
radiolabeled SPC is released from [choline-methyl-14C]SM following incubation with a
SM deacylase-rich fraction (measured using [fatty acid-14C]SM as a substrate), which was
partially purified from lysates of the SC of AD skin by analytical isoelectric focusing
(IEF) chromatography (Figure 11) [55]. As the SM deacylase-rich fraction isolated by
preparative IEF chromatography did not have any activities of aCDase, aSMase or BGCase
(Figure 11) [55], these findings strongly indicated that SM deacylase enzymes exist in the
SC of AD skin that are distinct from aCDase or other enzymes.
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In a further study [55] to characterize the properties of SM deacylase, its activity
showed a pH dependency with a peak at pH 5.0. As shown in Figure 10, analytical IEF
chromatography demonstrated that the pI values of SM deacylase, aSMase, BGCase, and aC-
Dase are 4.2, 7.0, 7.4, and 5.7, respectively. Enzymatic assays with N-[palmitoyl-1-14C]SM
as a substrate following gel chromatography revealed that the activity of gel-fractionated
SM deacylase, detectable by the release of 14C-free fatty acid, migrates with a molecular
weight of ≈40,000, while aSMase, detectable by the release of 14C-ceramide, migrates at
a molecular weight of ≈100,000 (Figure 12) [55]. Figure 12 shows preparative SDS-PAGE
of epidermal extracts from AD patients. The gel was sliced into 20 pieces, homogenized
and subjected to measurements for SM hydrolysis. In the assay for SM hydrolysis with
N-[palmitoyl-1-14C]SM (Figure 13A) or [choline-methyl-14C]SM (Figure 13B) there were
two separated peaks of radioactivity distributed in the lipophilic or aqueous phases, respec-
tively, each corresponding in electrophoretic mobility to the molecular weights estimated
for SM deacylase and aSMase. Furthermore, RTLC analysis of reaction products gener-
ated by fraction peak II demonstrated that the enzyme possesses activity that can release
radiolabeled SPC (Figure 12B).
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Taken together, it is likely that the enzymatic characteristics of SM deacylase account
for the deficiencies in some species of ceramides seen in the SC of AD skin [12], which pro-
vides an etiological basis for the dry and barrier-disrupted skin of AD patients.

10. SM Deacylase Activity in AD Skin

For the characterization of possible mechanisms involved in the ceramide deficiency
of AD skin, a new quantitative assay for SM was established. As shown in Figure 14,
our quantitative measurements [50] clearly demonstrated that SM deacylase activity is
enhanced more than 5-fold in lesional SC and more than 3-fold in nonlesional SC of
AD skin, compared with the SC of HC skin. In contrast, the SC from patients with
contact dermatitis showed no increase in SM deacylase activity compared with HCs,
which suggests that changes in SM deacylase activity are unlikely to be involved in the
general etiology of cutaneous inflammation. Our earlier study on the epidermal localization
of aCDase and BGCase, the latter being a hydrolytic enzyme localized in intercellular spaces
between the SC and the granular layer, suggested that the activities of ceramide metabolism-
related enzymes within the SC approximately represent the epidermal activities of the
same enzymes [56–58]. Consistent with that relationship, a similar higher level of SM
deacylase activity was detected in the epidermis from AD skin (Figure 15), whereas there
was no significant difference in levels of aSMase between AD skin and HC skin [50],
which suggests that epidermal cells from AD patients show abnormal production of the
hitherto undiscovered epidermal enzyme termed SM deacylase.
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11. GCer Deacylase Activity in AD Skin

The specific expression of SM deacylase in AD skin provides a strong basis to explain
the ceramide deficiency. However, since acylceramides are not generated through SM
metabolism but are markedly decreased in the SC of AD skin, that explanation of altered
SM metabolism leading to the ceramide deficiency is not the complete story. Acylceramide
is a unique species of the ceramide family that has been shown to be an essential component
involved in the barrier homeostasis since it is involved in forming the multilamellar mem-
branous architecture in intercellular spaces between the SC layers [59]. The importance
of acylceramide in maintaining the barrier function was also supported by our previous
studies [60]. Thus, topical application of pCer containing ester-linked linoleic acid on
the skin of essential fatty acid-deficient rats was found to restore the disturbed barrier
function revealed by increased TEWL and epidermal hyperplasia. In AD skin, the acyl-
ceramide deficiency was found to exist to the highest degree among several ceramide
species, being predominantly attributable to the constitutive barrier disruption seen even
in nonlesional AD skin [14]. Topical application of pCer-containing ester-linked linoleic
acid on the skin of AD patients completely restored the skin barrier disruption and re-
covered TEWL values to HC levels [61]. Therefore, it is of considerable importance to
determine the biochemical mechanism(s) involved in the downregulation of acylceramide
production in order to elucidate the pathogenesis of AD and its predisposition toward
recurrent dermatitis.

Our related study [62] using specific inhibitors of glucosyltransferase and BGCase,
suggested that acylceramides are eventually generated through the deglycosylation of
acylGCer by BGCase. In our biochemical study using [14C-palmitic acid]GCer, we found
that the pI 4.2 IEF fraction, which contains partially purified SM deacylase, with no
contaminating aCDase, BGCase or aSMase, can hydrolyze [palmitic acid-14C]GCer, but not
N-[palmitoyl-1-14C]Cer at its acyl site to yield 14C-free fatty acid (Figures 16 and 17) [55].
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Figure 17. Substrate specificity of GCer SM deacylase [55].

This finding strongly suggests that, as shown in Figure 18, SM deacylase can compete
with BGCase for the same substrates, GCer or acyl-GCer. This would yield glucosylsphin-
gosine (GSP) rather than ceramide, which would in turn lead to a deficiency of ceramides,
including acylceramides, since they are generated through the deglucosylation of acyl-GCer
by BGCase.
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Figure 18. Enzymatic scheme of GCer deacylase [17].

Using [palmitic acid-14C]GCer as a substrate, we measured the activity of GCer
deacylase in the SC and in the epidermis of AD skin by the potential to directly hydrolyze
GCer at the N-acyl site to release 14C-labeled free fatty acid and compared that with levels
found in HC skin As shown in Figure 19, comparison of the activity of GCer deacylase
revealed that there are significant increases in its activity in the lesional (5.4-fold increase)
and in the nonlesional (2.5-fold increase) SC from AD skin or in the lesional (3-fold increase)
epidermis of AD skin compared with HC skin [17]. Collectively, our observations suggested
that the acylceramide deficiency in AD is mainly attributable to the accentuated activity of
GCer deacylase. Thus, the abnormally expressed GCer deacylase hydrolyzes (acyl) GCer
at the N-acyl site to yield its lysoform, GSP, instead of the formation of (acyl)ceramides
by BGCase. The enhanced activity of this novel enzyme is proportional to the diminished
level of (acyl)ceramide because of the enzymatic competition toward the same substrate,
GCer, between GCer deacylase and BGCase.
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12. Accumulation of SPC as Evidence for Functional SM Deacylase

To clarify whether SM deacylase is functioning in situ in the epidermis of patients with
AD to yield SPC instead of ceramide, it is important to determine whether its enzymatic
reaction product, SPC, is released into the interface between the granular and the SC layers
and accumulates in the SC.

Quantitative analysis of SPC in the SC of AD skin revealed that there was a significant
increase in the content of ng SPC/mg SC in nonlesional and in lesional SC compared with
age-matched HCs (Figure 20) [20]. In contrast, there was no increase in SPC content in the
lesional SC of patients with chronic eczema, which suggests that the upregulation of SPC
in AD skin does not result from ordinary inflammation, but is associated with the altered
lipid metabolism characteristic of AD.
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Figure 20. The level of SPC in the SC from the lesional or nonlesional AD skin and from chronic eczema [20].

Comparison between the ceramide and SPC levels in the same individuals demon-
strated that there is a weak inverse relationship between levels of ceramides and SPC
that accumulate in the SC (Figure 21) [20]. In contrast, comparison with sphingosine (SS),
which is a degradative product from ceramide produced by aCDase, demonstrated that
there is no correlation (n = 32, r = −0.182, p = 0.319) between levels of SPC and SS in the
overall group as well as in the individual groups [20]. In the groups used for correlation
analysis there were significant decreases in the amounts of SS in the nonlesional and
lesional SC from patients with AD compared to HC skin.
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Figure 21. Correlation between total ceramides and SPC in the SC of AD skin [20].

As depicted in Figure 22, which shows the relationships between enzyme defects and
the accumulation of enzymic reaction products, a similar accumulation of SPC has been
observed in Niemann–Pick disease [63]. Niemann–Pick disease is associated with defects in
aSMase, which results in the lipidosis for SM [48], although no data has suggested that this
accumulation of SPC is linked to the expression of an SM deacylase-like enzyme. Since SPC
accumulation has been speculated to result from a defect of aSMase (because SPC is a
substrate for aSMase) [48], it would be intriguing to determine whether there is a similar
upregulated expression of SM deacylase in Niemann–Pick disease that could provide a
mechanism for the production of SPC in that disease as it does for AD [50,55].
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13. Accumulation of GSP as Evidence for Functional GCer Deacylase

To characterize the physiological and functional relevance of GCer deacylase to the
acylceramide deficiency in the epidermis of patients with AD, it is important to determine
whether its enzymatic reaction product, GSP, is released into the epidermis and accumulates
in the SC. Quantitative analysis of GSP using the radiolabeling technique in the upper
SC of patients with AD revealed that there is a significant increase in the content of ng
GSP/mg SC in both the uninvolved and the involved SC of AD patients compared with
age-matched HC skin (Figure 23) [17].
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Figure 23. The level of GSP in the SC from the lesional or nonlesional skin with AD and chronic eczema [17].

Comparison of the amounts of total ceramides and ceramide-1 with GSP in the same
individuals demonstrated that there is a weak inverse relationship (n = 36, r = −0.416,
p < 0.05 for total ceramides and n = 52, r = −0.5243, p < 0.001 for Cer[EOS]) between levels
of ceramides and GSP that accumulate in the SC (Figure 24) [17]. In comparison with SPC,
there was a significant positive correlation between levels of GSP and SPC (Figure 25).
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As depicted in Figure 22 to explain the relationship between enzyme defects and the
accumulation of enzymatic reaction products, a similar accumulation of reaction products
by corresponding N-deacylase enzymes has been found in Gaucher disease, in which there
is an accumulation of GSP due to a defect of BGCase activity [64]. Thus, the accumulation
of GSP has also been speculated to result from a defect of BGCase since GSP can serve
as a substrate for that enzyme [65]. However, GSP has already been established as a key
biomarker of Gaucher disease [66]. Similarly, the possible existence and expression of GCer
deacylase in Gaucher disease would provide a reasonable mechanism for the upregulation
of GSP. Another similar relevance of N-deacylase for the generation of psychosine has been
reported in globoid cell leukodystrophy (GLD) or Krabbe’s disease [67]. The primary defect
of GLD is a deficiency in galactosylceramidase activity, which leads to the accumulation
of galactosylceramide and its metabolic intermediate galactosylsphingosine. This was
speculated to be produced by the deacylation of galactosylceramide [67], although there
is no evidence for the expression of galactosylceramide deacylase in GLD. Such altered
lipid metabolisms associated with genetic defects, which lead to the accumulation of
lipid substrates and deacylated metabolic intermediates, strongly suggest the principle
that defects of metabolic enzymes might induce corresponding alternative pathways in
which those substrates are converted to corresponding lysoforms by deacylation. Such a
possible induction of an alternative pathway following the loss of metabolic enzymes has
been reported in a Gaucher-like mouse model induced by a glucosylceramidase inhibitor
which causes the accumulation of GSP in tissues [64]. A similar relationship between the
inhibition of BGCase and the accumulation of GSP has been reported in fibroblasts using
conduritol β-epoxide (CBE) [65]. Thus, when CBE was added to the culture medium,
the intracellular β-glucosidase activity decreased, and both GCer and GSP accumulated
in the cells. Based on this evidence, it has been suggested that the synthetic pathway for
GSP is considered to not only be through the glucosylation of SS, but also through the
deacylation of GCer [65].

In conclusion, as depicted in Figure 26, we elucidated the functional relevance of
SM GCer deacylase to the ceramide deficiency that is an essential etiologic factor for the
dry and barrier-disrupted skin of patients with AD. Interestingly, the enzymatic reaction
products, SPC and GSP, which are essential surrogates to determine whether SM GCer
deacylase is functioning in situ in the epidermis, is significantly increased in the nonlesional
and lesional SC of patients with AD compared with HCs, and is reciprocally related to the
decreased levels of ceramides in a similar group of patients with AD.



Int. J. Mol. Sci. 2021, 22, 1613 24 of 33Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 25 of 35 
 

 

 
Figure 26. Possible biological mechanisms involved in ceramide deficiency [17,50,54,55]. 

14. Altered Sphingolipid Metabolism May Contribute to Atopic Skin Phenotypes  
(Inflammation, Roughened Skin and Hyperpigmentation) 

Regarding the biochemical connection and clinical loop among the ceramide defi-
ciency, barrier disruption, altered sphingolipid metabolism and atopic skin phenotypes, 
it was of considerable interest to determine how the biologic functions of human epider-
mal cells such as keratinocytes and melanocytes are affected by SPC with respect to the 
excess formation of SPC in the epidermis of AD patients and their high susceptibility to 
inflammation. Therefore, we characterized the roles of SPC in human epidermis by eluci-
dating its biologic effects on the expression of intercellular adhesion molecule-1 (ICAM-
1) and a keratinization enzyme transglutaminase (TGase) by human keratinocytes as well 
as on the expression of melanogenic factors by human melanocytes in comparison with 
other sphingolipids. As depicted in Figure 27, it turned out that SPC metabolites due to 
the enzymatic action of SM deacylase, induce the expression of ICAM-1 [68] and activate 
TGase in human keratinocytes [69] and accelerate melanin synthesis in human melano-
cytes [70]. These findings strongly indicate that the phenotypes of AD skin, such as in-
flammation, roughened skin and hyperpigmentation are at least in part associated with 
altered sphingolipid metabolism. 

Figure 26. Possible biological mechanisms involved in ceramide deficiency [17,50,54,55].

14. Altered Sphingolipid Metabolism May Contribute to Atopic Skin Phenotypes
(Inflammation, Roughened Skin and Hyperpigmentation)

Regarding the biochemical connection and clinical loop among the ceramide defi-
ciency, barrier disruption, altered sphingolipid metabolism and atopic skin phenotypes,
it was of considerable interest to determine how the biologic functions of human epi-
dermal cells such as keratinocytes and melanocytes are affected by SPC with respect to
the excess formation of SPC in the epidermis of AD patients and their high susceptibil-
ity to inflammation. Therefore, we characterized the roles of SPC in human epidermis
by elucidating its biologic effects on the expression of intercellular adhesion molecule-1
(ICAM-1) and a keratinization enzyme transglutaminase (TGase) by human keratinocytes
as well as on the expression of melanogenic factors by human melanocytes in comparison
with other sphingolipids. As depicted in Figure 27, it turned out that SPC metabolites
due to the enzymatic action of SM deacylase, induce the expression of ICAM-1 [68] and
activate TGase in human keratinocytes [69] and accelerate melanin synthesis in human
melanocytes [70]. These findings strongly indicate that the phenotypes of AD skin, such as
inflammation, roughened skin and hyperpigmentation are at least in part associated with
altered sphingolipid metabolism.
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15. Identification of SM Deacylase at the Gene and Protein Levels

The sum of the above findings indicates that the specific expression of SM deacylase
activity in AD skin provides a reasonable hypothesis to explain why the level of ceramide
in the SC continues to be significantly downregulated and is not upregulated even by
frequently induced inflammation in the SC of nonlesional AD skin in concert with the lack
of any substantial attenuation of the three major ceramide-related hydrolytic enzymes,
the abnormalities of which markedly contrast with HC skin. Therefore, it was intriguing to
purify the SM deacylase to homogeneity and to identify the detailed characteristics of this
novel enzyme at the gene and protein levels.

16. Purification of SM Deacylase

To precisely measure SM deacylase activity, we developed a highly sensitive LC-
MS/MS method which has the capacity to accurately measure the reaction product, SPC,
over five orders of magnitude [71]. Since there was a distinct activity of SM deacylase in ex-
tracts after the centrifugation of homogenates of normal rat skin, we purified SM deacylase
to homogeneity (a single spot by 2D-SDS-PAGE) (Figure 28) after a five-step purification
procedure consisting of hydrophobic chromatography, IEF chromatography, ion-exchange
chromatography, gel filtration chromatography, and immune-affinity chromatography.
The purified SM deacylase had an apparent molecular mass of 43 kDa, an enrichment of
>14,000-fold, and maximal pH and pI values of 5.0 and around 7.0, respectively [71].
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matography of a homogenate of the SC of AD skin, which detected pI values of SM deac-
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Figure 28. Purification and characterization of SM deacylase. (A) After purification by chromatog-
raphy, SM deacylase was subjected to IEF, after which the IEF strips were subjected to assays for
SM deacylase activity. (B) 2D electrophoresis was then performed by mounting an IEF separated
strip gel on top of an SDS-PAGE gel. After electrophoresis, the gel was stained by Cypro-Ruby and
detected using a fluorescence image scanner. The protein spot indicated by the arrow was subjected
to MS/MS analysis [71].

17. Enzymatic Properties of Purified SM Deacylase

The purified SM deacylase followed normal Michaelis–Menten kinetics with Vmax
and Km of 14.1 nmol/mg/h and 110.5 µM, respectively [71]. These enzymatic properties
of pH dependency and molecular weight are consistent with those properties (pH = 4.7,
MW = 40 kDa) obtained in our previous study of AD skin [55]. However, the pI value
of the purified SM deacylase was different from our previous report using analytical IEF
chromatography of a homogenate of the SC of AD skin, which detected pI values of SM
deacylase, BGCase, aSMase, and aCDase of 4.2, 7.4, 7.0, and 5.7, respectively [55]. Thus,
the pI value of SM deacylase was markedly shifted from 5.0 in the skin homogenate
to 7.0 in the purified enzyme with an enhancement of activity by ≈200-fold after IEF
chromatography. That result suggested a conjugation of SM deacylase enzyme with a
natural inhibitory subunit with acidic pI molecules.

18. Identification of SM Deacylase at the Protein Level

Analysis by MALDI-TOF MS/MS revealed that the single protein spot with SM
deacylase activity separated by 2D-SDS-PAGE was the β-subunit of aCDase, an enzyme
consisting of α- and β-subunits linked by amino-bonds (Cys-143 /Met-142 in rat; /Ile-142
in human) and a single S-S bond(C31/C340) (Figure 29).
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Figure 29. aCDase β-subunit hits by MASCOT database [71].

In Western blotting analysis using our novel β-subunit specific antibodies under re-
duced or nonreduced conditions, the SM deacylase purified from rat skin had a distinct
band of ≈40 kDa (Lane 1) which was consistent with the band detected for recombinant
human aCDase (Lane 2) under reduced conditions (ME+) (Figure 30). These results con-
firmed that the single protein spot with SM deacylase activity separated by 2D-SDS-PAGE
is identical to the β-subunit of aCDase. This identification was also corroborated by a gel
chromatographic analysis demonstrating that breaking the disulfide bond (C31/C340) of
recombinant human aCDase with the reducing agent dithiothreitol (DTT) provokes the
activity of SM deacylase with ≈40 kDa upon gel chromatography (Figure 31) [71].
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Figure 30. Subunit composition of purified SM deacylase recombinant human aCDase and separated recombinant β-subunit
of human aCDase. The samples were separated by SDS-PAGE followed by immunoblot analysis using antibodies to the
β-subunit (human) of aCDase. Before electrophoresis, samples were reduced with 5% 2-mercaptoethanol (ME) indicated by
ME+ but were not treated with ME indicated by ME-. Lane 1, purified rat SM deacylase (ME+); Lane 2, recombinant human
aCDase (ME+); Lane 3, recombinant human aCDase (ME-). Lane 4, mock transfected (ME-); Lane 5, separated recombinant
β-subunit of human aCDase (ME-) [71].
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Figure 31. Treatment with DTT separates SM deacylase from recombinant human aCDase. Recombi-
nant human aCDase was incubated in a buffer for 60 min with (solid circles) or without (open circles)
DTT at 200 mM and was then subjected to gel filtration chromatography using a Superdex 200 column.
Proteins were eluted and fractions were collected then analyzed for activities of SM deacylase [71].

aCDase is a lysosomal enzyme that is present especially in the epidermis including
the SC [15,55] and catalyzes the hydrolysis of ceramides into fatty acids and SS. In the
skin, SS production is associated with SSP-related signaling in keratinocytes [72] as well
as in the ceramide-degrading process in the SC [15]. The aCDase protein had been puri-
fied to apparent homogeneity from urine [73] and placenta [74] and its full-length cDNA
sequence was determined [75]. In human and rat aCDase, autoproteolytic cleavage has
been documented to occur between Cys-143 and Ile-142 (Met-142 in rats) [76–79]. As for
the natural activation mechanism of aCDase, a study using a crystal aCDase model hy-
pothesized that the three dimensional configuration of the substrate binding channel in
activated aCDase after autocleavage is specific for ceramide, as acyl-residue-containing
sphingolipids with bulky head groups such as SM and GCer would be sterically hindered
and unable to work as a substrate for aCDase [77]. Thus, it seems reasonable to assume
that both the autocleavage and the breaking of the disulfide bond between the α- and
β-subunits are essential requirements for the expression of SM deacylase. We thought it
likely that in the epidermis of HC skin, the proenzyme aCDase undergoes autocleavage
into α- and β-subunits in the intracellular lysosomal system without breaking the S-S bond
between the α- and β-subunits to acquire aCDase activity. In contrast, in the epidermis
of AD skin, it seems likely that the β-subunit is generated both by auto-cleavage of the
covalent peptide bond between Ile-142 in the α-subunit and Cys-143 in the β-subunit
and by breaking the S-S bond (C31/C340) between the α- and β-subunits of aCDase via
unknown mechanisms, which leads to the induction of SM deacylase activity. Thus, it is
probable that both cleavages result in removing the steric hindrance in the enzymatic active
pocket against acyl-residue-containing sphingolipids with bulky head groups such as SM
and GCer and leads to the expression of the activities of SM deacylase and GCer deacylase,
which occur as enzymatic deacylation reactions in the same active pocket as aCDase.

These uncovered enzymatic alterations of aCDase in AD skin also provide a deep in-
sight into understanding the pathogenesis of Gaucher disease, Fabry disease and Niemann–
Pick disease where GSP, globotriaosylsphingosine and SPC, respectively, are formed due
to deficiencies of BGCase (Gaucher disease), α-galactosidase (Fabry disease) and SMase
(Niemann–Pick disease). Thus, the molecular basis for the formation of corresponding
lysosphingolipids by deacylation reactions is attributable to the altered enzymatic prop-
erties of aCDase, which can trigger the deacylation of GCer, galactosylceramide and SM.
In fact, one recent study [80] pointed to an active role of aCDase in the former two pro-
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cesses through deacylation of lysosomal glycosphingolipids although the contribution
of aCDase was confirmed only by the inhibitory effect of an inhibitor of aCDase on the
formation of GSP and globotriaosylsphingosine. It is possible that the inhibitor can also
affect GCer/SM deacylase.

Based upon the above findings on SM deacylase, as shown schematically in Figure 32,
we hypothesize two possible causative biological factors that underlie the expression of
SM deacylase in AD skin as follows: (1) the formation of the S-S bond (C31/C340) between
the α- and β-subunits of aCDase could be impaired in AD skin, probably due to a point
mutation of the aCDase proenzyme although no such point mutations are currently known;
(2) breaking the S-S bond (C31/C340) could occur more easily in AD skin than in HC skin
via unknown mechanisms.
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19. Conclusions

In conclusion, our finding that the pathogenic ceramide degrading enzyme SM deacy-
lase, discovered as a causative factor that downregulates ceramide synthesis in the SC of
AD skin, is identical to the β-subunit of aCDase provides an essential and deep insight into
understanding the pathogenesis of AD. This should facilitate therapeutic approaches for
developing specific inhibitors of SM deacylase that could be applied topically or orally to
essentially abrogate the ceramide deficiency in AD skin, which would result in the essential
cure of AD even in the chronic phase, which contrasts with recent therapeutic drugs that
mainly target immunological aspects in the acute phase [81].
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acid ceramidase aCDase
acid sphingomyelinase aSMase
amiddleic dermatitis AD
ceramide synthases CERS
cell envelope CE
conduritol b-epoxide CBE
dithiothreitol DTT
endothelin EDN
endothelin B receptor EDBR
GCer synthase GCERS
globoid cell leukodystrophy GLD
b-glucocerebrosidase BGCase NOT GlcCDase
glucosylceramide GCer
glucosylsphingosine GSP
glycosphingolipids GSL
healthy control HC
intercellular adhesion molecule-1 ICAM-1
interleukin IL
isoelectric focusing IEF
lamellar granules LGs
2-mercaptoethanol ME
microphthalmia-associated transcription factor MITF
mitogen-activated protein MAP
1-oleoyl-2-acetyl-glycerol OAG
phosphorylcholine PC
photoacoustic spectrometry PAS
pseudo-ceramide pCer
radio-thin layer chromatography RTLC
serine-palmitoyl transferase SPT
SM synthase SMS
sphingomyelin SM
sphingosine SS
sphingosine-1-phosphate SSP
sphingosylphosphorylcholine SPC
stearoyl CoA desaturase SCD
stem cell factor SCF
stratum corneum SC
trans-epidermal water loss TEWL
transglutaminases TGase
tumor necrosis factor-α TNFα
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