
micromachines

Article

An FPGA-Based ECU for Remote Reconfiguration in
Automotive Systems

Kwonneung Cho, Jeongeun Kim, Do Young Choi , Young Hyun Yoon, Jung Hwan Oh and Seung Eun Lee *

����������
�������

Citation: Cho, K.; Kim, J.; Choi, D.Y.;

Yoon, Y.H.; Oh, J.H.; Lee, S.E. An

FPGA-Based ECU for Remote

Reconfiguration in Automotive

Systems. Micromachines 2021, 12, 1309.

https://doi.org/10.3390/mi12111309

Academic Editors: Piero Malcovati

and Ion Stiharu

Received: 31 August 2021

Accepted: 23 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
chokwonneung@seoultech.ac.kr (K.C.); kimjeongeun@seoultech.ac.kr (J.K.);
choidoyoung@seoultech.ac.kr (D.Y.C.); yoonyounghyun@seoultech.ac.kr (Y.H.Y.);
ohjunghwan@seoultech.ac.kr (J.H.O.)
* Correspondence: seung.lee@seoultech.ac.kr; Tel.: +82-2-970-9021

Abstract: Growing interest in intelligent vehicles is leading automotive systems to include numerous
electronic control units (ECUs) inside. As a result, efficient implementation and management of
automotive systems is gaining importance. Flexible updating and reconfiguration of ECUs is one
appropriate strategy for these goals. Software updates to the ECUs are expected to improve perfor-
mance and bug handling, but there are limitations due to the fixed hardware circuit. By applying
hardware-reconfigurable ECUs to the automotive system, patches that are not able to be handled
with only software updates are enabled. In this paper, a remotely hardware-reconfigurable ECU for
automotive systems is proposed. The proposed ECU is implemented with a field programmable
gate array (FPGA) and microcontroller unit (MCU) to support in-system reconfiguration (ISR). The
communication interface between the FPGA and MCU employs Zipwire communication for high
speed and resilient communication. For the Zipwire communication, a Zipwire controller is de-
signed and implemented in the FPGA. The proposed hardware-reconfigurable ECU was successfully
implemented, and feasibility was demonstrated.

Keywords: automotive systems; electronic control units; hardware-reconfigurable ECUs; in-system
reconfiguration; Zipwire controller

1. Introduction

As interest in intelligent vehicles is increasing, automotive systems will include a
number of electronic control units (ECUs) in order to provide various functions and
controls [1]. Not only high-end cars, but also entry models, are planning to be equipped
with high performance systems with multiple ECUs. Considering high-end cars are already
applying more than 100 ECUs and embedded computing units each, it can be anticipated
that there will be more demand for highly efficient systems for vehicles [2–4]. In addition,
self-driving vehicles and modern automobiles employ multi-modal sensors, numerous
digital processors, complex embedded software, and multiple in-vehicle networks [5–8].
Since the automotive system needs to perform various tasks, such as dealing with amounts
of sensor data and reliable communication with electrical units, the system becomes more
complex and larger, including numerous ECUs inside [9,10]. As a result, there are some
challenges for implementing and managing the automotive systems, and flexible updating
and reconfiguration of ECUs are required.

The ECU that controls core applications in the automotive system implements various
functions which are initially programmed when the ECU is rolled out. The initial program
occasionally needs to be updated for various reasons, such as performance improvement,
security enhancement and error handling [11–15]. In order to update the firmware of
the ECU with convenience, the techniques for automotive wireless software updates
are under study, achieving efficient and secure goals with over the air (OTA) software
updates [12,16,17]. However, the software update only changes the functional operation
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of an ECU which has specific hardware circuits. Therefore, there are limitations to the
reconfiguration domain and performance improvement.

With a hardware reconfiguration of an ECU, there are some advantages that hard to
achieve with software updates in the automotive system. For instance, when implementing
communication networks in automotive systems, hardware-reconfigurable ECUs improve
compatibility and performance. In automotive communication, the controller area network
(CAN) protocol is widely adopted due to its high reliability [18,19]. However, as the
number of ECUs increase, limited bandwidth makes it difficult to implement real-time
communication [2,18]. In order to address the issue, a CAN with flexible data rate (CAN
FD) protocol supports wider bandwidths while maintaining the characteristics of a CAN
protocol such as arbitration, stuffing, and acknowledge frame [19–21]. In addition, the
in-vehicle network, such as local interconnect network (LIN), FlexRay, and single edge
nibble transmission (SENT) also can be revised to satisfy the demands of bandwidth and
reliability, as the number of ECUs adopted by automobiles are increasing [22]. In that case, it
is hard to replace the revised network with software updates, but hardware reconfiguration
enables the ECU to support the network as long as the resource of the ECU is suitable to
implement the revised protocol. In this point of view, hardware-reconfigurable ECUs in
automotive systems save the cost of updating the network and provide up-to-date features
for passengers.

In order to apply a reconfigurable ECU, employing a field programmable gate array
(FPGA) is appropriate due to the flexible circuit configuration [23–26]. By applying the
FPGA-based ECU, automotive systems are able to achieve performance improvements
which are hard to achieve with only software updates. FPGA-based ECUs provide hard-
ware flexibility for functional extension, physical specification of in-vehicle networks, and
the implementation of multiple ECUs on one chip. Several studies have been conducted
applying the configuration characteristics of the FPGA in automotive systems and indus-
tries [1,2,27]. In [1], the authors proposed ECU architecture for secure and dependable
automotive system with FPGA implementation. In [2], the authors designed an extensible
FlexRay communication controller for FPGA-based automotive systems. The authors
of [27] presented the technology of secure boot and OTA updates for a reconfigurable hard-
ware of internet of things (IoT) device which is implemented on the FPGA. When it comes
to reconfiguring the FPGA-based ECU in an automotive system, the updating process
needs to be progressed in specific place, incurs a high cost, and is time-consuming [28,29].
As reconfiguring the FPGA-based ECU with physical lines is inconvenient and risky due
to the complex structure of automobiles, a convenient way for the remote reconfiguration
is required.

In this paper, a hardware reconfigurable ECU with in-system reconfiguration (ISR) is
proposed. In order to address the inconvenience of ECU updates, an FPGA-based ISR that
is able to apply remote hardware updates is presented. The proposed reconfiguration of the
ECU is implemented with FPGA and microcontroller unit (MCU) co-designed architecture.
The MCU is employed to implement the ISR and to control the functionality of the FPGA.
For communication with the MCU and FPGA, Zipwire communication is adopted because
of its reliability and high-speed serial communication [30]. The ECUs ] implemented on
the FPGA and its reconfiguration process are controlled by the MCU through Zipwire com-
munication for system stability. By applying an MCU, FPGA and Zipwire communication,
the proposed ISR for a hardware-reconfigurable ECU is successfully implemented.

The contributions of this paper are as follows. The architecture for the reconfigurable
ECU is presented and implemented on Intel MAX10 FPGA and NXP MPC5777C auto-
motive MCU. Detailed methods of the in-system reconfiguration are described with error
sources and solutions that affect system stability. A Zipwire controller is designed with
Verilog HDL to provide Zipwire interface to the proposed ECU. The designed Zipwire
controller is implemented on the MAX10 FPGA with less than 1% resource utilization and
verified by experimenting with the NXP MCU.
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The remainder of this paper is organized as follows. In Section 2, the backgrounds
for Zipwire communication are described. The description of in-system programming
is also presented for FPGA configuration flow. Section 3 presents the proposed system
architecture and mechanism. Section 4 explains the result and discussion. Finally, the
conclusion is given in Section 5.

2. Background
2.1. Zipwire Communication

The Zipwire protocol was invented for inter-processor communication in automotive
systems [30]. Zipwire, a master–slave-based full duplex, is point to point communication
that consists of five pins. Since Zipwire adopts low voltage differential signal (LVDS), the
two pairs of positive and negative pins are used for transmission, and one other pin is
a reference clock pin. The reference clock is generated by a slave node and provided to
a master node. The master node can select the reference clock or oscillator clock source
as an input of internal phase-locked loop (PLL) to operate the Zipwire module. The
Zipwire frame includes several frame units such as request frame or response frame to
communicate between the master and slave node. Every frame is generated by the LVDS
fast asynchronous serial transmission interface (LFAST) and serial inter-processor interface
(SIPI) modules.

The Zipwire module consists of the physical layer module, LFAST module, and SIPI
module, as shown in Figure 1. The physical module acts as transceiver of the Zipwire
module. Therefore, it transforms the whole frame into differential signals. The LFAST
module integrates a frame generated from the SIPI module. The master and slave node
can synchronize communication and get the information of the whole frame as the LFAST
module adds the sync and header field to the frame. The SIPI module builds a payload of
the Zipwire frame and informs the transmission ID and data to the target node.
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Figure 1. Zipwire communication overview.

As shown in Figure 2, the frame is made up of 16-bit sync field, 8-bit header, and 32 to
288-bit payload. The payload of LFAST frame contains the SIPI header, actual payload, and
cyclic redundancy check (CRC) of the SIPI. The LFAST sync field which has fixed 16-bit
1010_1000_0100_1011 data, enables synchronized communication between the master and
slave node. The LFAST header contains 3-bit payload information, 4-bit data channel
information and 1-bit clear to sent (CTS) information. The SIPI header consists of a 3-bit
transaction ID from request frame, 5-bit frame command, 3-bit channel number, and 5-bit
reserved bits. Since the LFAST frame has several fields, the SIPI payload contains from
32-bit to 256-bit data or address of the frame. The CRC field, calculation results of CRC-16,
is used to verify the reliability of frame.

In consideration of communication between a MCU and FPGA, it is essential to
ensure high-speed and high reliability in an automotive system. The Zipwire protocol has
the advantages of low power consumption and high data rate when adopting the LVDS
interface [31]. Additionally, Zipwire can qualify the frame by adopting CRC.
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2.2. In-System Programming

The FPGA offers in-system programming that provides configuration, erasing, and
verification [32]. In order to execute a specific logic on an FPGA, the configuration data
which includes the information of the logic needing to be loaded to the internal memory
of the FPGA, such as configuration RAM or configuration latches [32,33]. Since internal
memory is a volatile memory, the configuration data must be stored in flash memory
and the data must be shifted to the internal memory when the FPGA powers up. For
implementing in-system reconfiguration (ISR), the configuration process of the FPGA
needs to be controlled. In Figure 3, the configuration sequence is presented. The FPGA
resets IO pins, registers, and clears internal memory to start configuration. The FPGA reads
the settings and loads configuration data to the internal memory. During configuration,
the FPGA receives instruction, addresses, and data through the external interface that
loads the configuration data directly to the configuration RAM, or through the internal
programming sequence that shifts the configuration data from the internal flash memory to
the configuration RAM. As the various interfaces for configuration are supported according
to the FPGA models, employing an appropriate interface is required. When the loading
process is completed, the FPGA initializes the internal registers and executes the design.
In this work, an Intel MAX 10 FPGA that provides internal configuration flash memory
(CFM) for the internal programming is employed.
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3. System Architecture and Mechanism
3.1. Overall Design of System

The proposed system is composed of FPGA-based ECUs and the MCU performing
the ISR. Figure 4 shows the overall architecture of the proposed design. The MCU com-
municates with the external system, and stores reconfiguration data including the ECU
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logics in the memory. The external system can be an on-board diagnostic (OBD), which
is generally utilized in automotive applications, or server sending system that employs
OBD-2 protocols or 5G to implement the remote ISR. The MCU and the FPGA communi-
cate with Zipwire communication that ensures high speed and stable data transfers. The
FPGA includes internal flash memories and a programmable logic (PL) area. The PL area
implements the ECUs’ logic and enables the ECUs to achieve more diverse operations.
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The MCU contains the communication controller, processor, external interrupt con-
troller, memory controller, and memory. The MCU receives the reconfiguration data from
the external system through the communication controller and stores the data in the mem-
ory. The external interrupt controller receives commands from the external system and
initiates the reconfiguration process. The memory controller handles memory storing and
according to command from the external system, the MCU transmits reconfiguration data
and triggers to the FPGA.

In the FPGA, the Zipwire controller, processor, on-chip flash IP, configuration flash
memories (CFMs) and dual config IP are implemented for reconfigurable ECUs. The
processor includes peripherals such as a floating point unit (FPU), interrupt controller,
GPIO, watchdog timer (WDT), and programmable interval timers (PITs). Through the
peripherals, the processor controls the ECUs and operates functions for the automotive
system. The on-chip flash IP and dual configuration IP are connected to the processor.
The processor sets up registers of the on-chip flash IP and dual configuration IP to initiate
the FPGA reconfiguration. In order to reconfigure the FPGA logic, the FPGA receives the
reconfiguration data and the trigger from the MCU. The on-chip flash IP stores the recon-
figuration data in CFM0 or CFM1/2. When the storing data is completed, the processor
controls the dual configuration IP to select the target logic of CFM0 or CFM1/2. The dual
configuration IP updates the configuration RAM with the selected reconfiguration data.
Consequently, the PL area is reconfigured with the target logic, and the design is executed.
Since the reconfiguration data are stored in the CFM but the current logic is executed in
configuration RAM, the FPGA-based ECU can be reconfigured during run-time.

3.2. Flow of In-System Reconfiguration

The flow of storing data from the external system to the MCU is demonstrated in
Figure 5a. When the external system sends a trigger to the MCU, the MCU assigns the
memory address to store the reconfiguration data. During the transmission, the data are
stacked in an array. When the transfer process is completed, the MCU memory is locked
and the stable state is confirmed to guarantee memory reliability.
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Figure 5b depicts the reconfiguration flow. The MCU sends a trigger to the FPGA
according to the received command from an external system. The reconfiguration process
of the FPGA is divided into two sequences according to the received trigger. When the
FPGA receives updating trigger, the MCU transmits the reconfiguration data to update,
and the FPGA stores the data in CFM. In order to update the CFM, the processor in
the FPGA allocates the start and end address for the reconfiguration data and executes
memory erasing with the on-chip flash IP. After the erasing, the on-chip flash IP writes the
reconfiguration data to the CFM considering the bit order and data size of the CFM. When
the FPGA receives the programming trigger, the processor sets the registers of the dual
configuration IP. The dual configuration IP controls the internal programming sequence
and updates the PL area with the received reconfiguration data.

3.3. FPGA Reconfiguration Feature

In order to implement the FPGA reconfiguration and revise the CFM area on the
FPGA, the Intel dual configuration IP and Nios II processor are employed [32]. When the
design to update is compiled, the raw programming data file, programmer object file, and
memory map file are generated. The memory map file is required to be checked to verify
the address of CFM and modified according to the assigned address of the configuration
data. The programmer object file contains the logic of the processor and instruction code
data. The code data needs to be loaded to the external flash memory of the FPGA board in
order to boot the processor. The raw programming data file includes the actual bit data
to configurate the target logic. The reconfiguration process starts with receiving the raw
programming data from the external system. The MCU stores the raw data in memory
with a 4-page unit and transmits the data to the FPGA with the trigger.

3.4. Design of the Zipwire Controller

The Zipwire controller unit is designed for communication between the MCU and
processor in the FPGA. In proposed architecture, the MCU controls ECUs through Zipwire
communication as a master. The FPGA processor also controls the ECUs, operating with
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received data from the MCU or sending data about the status of the ECU to the MCU. In
addition, the FPGA processor communicates with the Zipwire controller via the system bus.

The Zipwire controller is made up of the FSM, LVDS communicator, Tx controller,
Rx controller, and PLL module as shown in Figure 6. The FSM controls overall modules
and manages the communication sequence and errors. The LVDS communicator facilitates
the LVDS interface which has a noise-resistant characteristic. The Rx controller stores and
interprets the Zipwire frame data. The Tx controller sends the received data through the
LVDS transmitter. The receiver and the transmitter include a CRC-16 module to detect
errors and to increase system reliability. During the configuration, the FPGA calculates the
CRC value based on the received frame data and compares it against the pre-calculated
CRC value achieved at the end of the transfer. When the CRC values match, it demonstrates
that there is no error in the current transfer.
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The Zipwire controller accepts 32-bit data input and creates the Zipwire frame to
communicate with the MCU. With the 50 MHz input clock, the PLL generates the 100 MHz
system clock and 20 MHz reference clock.

In the case of the Rx controller, when the bus is in an idle state, the Zipwire signal
remains low. When the Zipwire signal is driven to high, the RX controller shifts to an
initial state for receiving data. During the receiving process, the Rx controller samples the
received signal at a point of 80 percent of one bit length. When the LFAST sync and header
fields are received with no error, the RX controller is ready to receive SIPI frame. As the
SIPI frame contains SIPI header, data and CRC fields, the Rx controller interprets each field
sequentially. The SIPI header contains the frame ID, channel selection and frame size. The
Rx controller receives the data field according to the information of the SIPI header and
calculates the CRC with the received data. When the calculated CRC value is matched to
the received CRC field, the Rx controller enters the state for receiving stop bit and finishes
the receiving process.

The Tx controller receives the frame ID and transmission data as inputs in order to
compose a Zipwire frame. When the Tx controller receives a start signal, the Tx controller
calculates the CRC-16 with the SIPI header and data to transmit. At the end of CRC
operation, the Zipwire frame is generated and stored in a transmit buffer with the LFAST
sync, LFAST header, SIPI header, data to transfer, CRC value, and stop bit. The Tx controller
sends the Zipwire signal based on the data rate, with shifting the buffer until the transfer
of the stop bit.

4. Results and Discussion
4.1. Experiment Environment and Equipment

The experiment was performed with a MCU board, FPGA board, PC for external
system, and interface board, as shown in Figure 7. The NXP MPC5777CEVB motherboard,
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which contains the 32-bit MPC5777C microcontroller, provides the software library and
physical layer for Zipwire communication. In the case of the FPGA board, a Intel MAX10
FPGA development board with the 10M50DAF484C6GES FPGA was utilized. As the FPGA
development board supports the LVDS physical layer through the high-speed mezzanine
card (HSMC) port, the interface board was fabricated to connect the MCU board and the
FPGA board. The interface board provides port compatibility and impedance matching.
In this experiment, the test focused on how to recompose the FPGA-based ECU through
communication with the MCU. Experiments were performed to verify functionality of
the proposed system. The MCU board controls the transmission process through Zipwire
communication. For Zipwire communication, the MCU and FPGA board shared two LVDS
channels and one reference clock pin through the interface board. The LEDs on the FPGA
board were used to confirm the reconfiguration result.
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4.2. Experimental Results of In-System Reconfiguration

In order to demonstrate the reconfiguration of the FPGA-based ECU, the experiment
was conducted. As a first step, the MCU received the trigger command and image data
including reconfiguration information through the PC and stored them in the register. The
MCU assigned the address and wrote the data on the memory. When the receiving process
was completed, the MCU locked the memory to ensure system stability. Subsequently, the
FPGA reset the address of the CFM to receive the reconfiguration data and assigned the
CFM to un-protect mode to clear. The MCU provided the commands and reconfiguration
data to the FPGA according to the input of the user switch. The user switches generated
interrupt signals to the MCU, performing four reconfiguration processes.

1. Switch 1: Send CFM0 data to the FPGA and store in the memory.
2. Switch 2: Send CFM1/2 data to the FPGA and store in the memory.
3. Switch 3: Perform reconfiguration with CFM0.
4. Switch 4: Perform reconfiguration with CFM1/2.

When the switch 1 interrupt occurred, the trigger command was sent to the FPGA to
update the CFM0 area. The FPGA received the data and swapped the data to arrange in
memory. The data was written into the CFM0 and the switch 1 process was completed. The
switch 2 interrupt is for updating CFM1/2 area and performed same process as the switch
1 interrupt. Switch 3 and switch 4 act as triggers for FPGA reconfiguration with the CFM0
and CFM1/2, respectively. The functionality of the system was verified by reconfiguring
the FPGA with different ECU logic and the reconfiguration result was confirmed with the
user LED. The results of each reconfiguration process are shown in Table 1.
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Table 1. Reconfiguration results of the FPGA-based ECU.
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In the reconfiguration process of the FPGA-based ECU, several error handlings are
required for system stability. Firstly, storing error occurs when the FPGA stores the received
reconfiguration data through the on-chip flash IP. The error is independent to the Zipwire
communication and causes critical issues. To address the error, the MCU reads the flash
data immediately after a writing operation, and compares the data to check its validity.
As the on-chip flash IP stores 4-byte data with reversed bit-order at one write operation,
the MCU needs to compare the data in bit unit. Secondly, disturbances which occur in
the middle of the reconfiguration such as disconnection or powering-off cause errors. In
order to protect the ECU from these disturbances, the ECU employs two sections of CFM
which are named CFM0 and CFM1/2. One section is utilized as a default section that stores
current ECU logic, and the other section stores the reconfiguration data for the update.
When the reconfiguration process is performed, the MCU sets the default section to protect
mode by controlling the on-chip flash IP. The FPGA restores the current logic when the
errors occur in the update sequence.

Table 2 indicates the amount of FPGA resources used for the reconfigurable ECU.
The designed Zipwire controller utilizes 495 logic elements, which account for less than
1% of total resources. The processor, on-chip flash IP, and dual configuration IP, which
are responsible for FPGA reconfiguration utilize 9.6% of logic elements. The processor
contains 64,448 memory bits to operate programming code. The system controller includes
remain parts of design such as system bus. The top design occupies 12.6% of logic elements
and 3.8% of memory resource in MAX10 FPGA. Therefore, the proposed ECU provides
flexibility for applying more complicated ECU logic.

Table 2. MAX 10 implementation of reconfigurable ECU.

Module Logic Elements Memory Bits

Zipwire Controller 495 (1%) 0 (0%)
Processor 3934 (7.9%) 64,448 (3.8%)
On-chip Flash IP 591 (1.2%) 0 (0%)
Dual Configuration IP 230 (0.5%) 0 (0%)
System Controller 998 (2%) 0 (0%)
Total 6248 (12.6%) 64,448 (3.8%)

4.3. Functional Verification of Zipwire Controller

In order to verify the design of Zipwire controller, the oscilloscope and internal logic
analyzer of the FPGA were utilized. Figure 8 depicts the waveform of the Zipwire frame
captured by the oscilloscope. In this experiment, the MCU acts as a master of Zipwire
communication and the Zipwire controller which is implemented on the FPGA checks
the LVDS signals and sends back the response as a slave. In Figure 8, the FPGA receives
the Zipwire frame that includes the sync, header, payload, and CRC field, and transmits
the response with the same Zipwire frame format. The experiment confirmed that the
transmission rate between the MCU and the FPGA was up to 5 Mbps and provided feasible
and reliable Zipwire communication.
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4.4. Discussion

In this work, ISR for hardware-reconfigurable ECUs was implemented with an NXP
MPC5777C microcontroller and Intel MAX10 FPGA. In order to perform the reconfigura-
tion and control the ECUs in the FPGA, a Zipwire interface was implemented with the
designed Zipwire controller. The Zipwire interface ensured the reliability of communi-
cation by applying an LVDS physical layer and CRC. ISR and Zipwire communication
were demonstrated throughout the experiment, and the feasibility of proposal was verified.
To measure power consumption, the Power Analyzer of the Intel Quartus II 15.0 was
used. The total power was estimated to be 569.26 mW, 450.70 mW for the ISR process and
118.56 mW for Zipwire communication.

For applying reconfigurable ECUs in automotive systems, the authors of [1] and [2]
proposed FPGA-based ECUs. In [1], reconfiguration of the FPGA was implemented to
ensure fault tolerance of the ECUs by changing the faulty design. The Xilinx Automotive
Spartan-6 FPGA was employed with LogiCORE IP and XPS HWICAP IP to perform the
ISR, and they achieved security and dependability in the proposed system. The authors
of [2] presented the FPGA-based FlexRay communication controller, which allows sharing
of resources and multiple applications through reconfiguration. They employed Xilinx
Spartan 6 XC6SLX45 FPGA to implement the design.

In comparison with these papers, this work focuses on the detailed method and
sequence of ISR that apply to MCU and FPGA co-designed architecture. The error sources
which occur in the ISR process were analyzed. The ISR process was controlled by the MCU
and FPGA to deal with errors and disturbances. The amount of FPGA resources for the
proposed ECU is presented, which demonstrates the compactness of the ECU. Furthermore,
by employing the MCU, the ISR enabled it to be applied to the remote system when the
remote interface between the MCU and external system is implemented. Remote ISR is
essential when applying hardware-reconfigurable ECUs due to the physical inconvenience
of updating ECUs in a vehicle. Therefore, the proposed reconfigurable ECU achieves the
advantages of application in automotive systems, and further research such as security or
reliability in remote systems can be explored.
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5. Conclusions

In this paper, a remotely hardware-reconfigurable ECU for automotive systems was
proposed. The proposed system, based on in-system reconfiguration (ISR), was designed
with FPGA and MCU co-designed architecture to improve system flexibility and guarantee
the reliability of internal communication. In order to verify its high-speed and reliable
communication, Zipwire communication was employed as an interface between the Intel
MAX10 10M50DAF484C6GES FPGA and NXP MPC5777C MCU. The Zipwire controller is
implemented on each board, and its functionality was verified by oscilloscope and internal
logic analyzer. The proposed reconfigurable ECU was successfully implemented, and the
feasibility of proposal was verified.

In future work, we plan to study and adopt methods to strengthen the security and
reliability of the system. Since this works focuses on secure reconfiguration control, the
experiments were conducted with compact ECU logic, utilizing less than 20% of the FPGA
resources. However, as the complexity of logic and the resource utilization affect the
stability of FPGA, additional experiments with complicated ECUs which include various
in-vehicle networks or processing units are required. Moreover, further research is needed
for the next step of remote reconfiguration of ECUs, such as reliability of the interface
between external server systems and the proposed MCU. Test methodology for the updated
ECUs must also meet the strict automotive standard. As security and reliability are most
important factors for automotive systems, these studies can guarantee the realization
feasibility of remotely hardware-reconfigurable ECUs for automotive systems.
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