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Abstract: Although linear regression models are fundamental tools in statistical science, the estimation
results can be sensitive to outliers. While several robust methods have been proposed in frequentist
frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian
approach to robust inference on linear regression models using synthetic posterior distributions based
on γ-divergence, which enables us to naturally assess the uncertainty of the estimation through the
posterior distribution. We also consider the use of shrinkage priors for the regression coefficients to
carry out robust Bayesian variable selection and estimation simultaneously. We develop an efficient
posterior computation algorithm by adopting the Bayesian bootstrap within Gibbs sampling. The
performance of the proposed method is illustrated through simulation studies and applications to
famous datasets.
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1. Introduction

Linear regression models are fundamental tools in statistical science. However, it is recognized
that the model can be highly influenced by outliers, which may result in biased or inefficient statistical
inference on regression coefficients and an error variance. In the content of frequentist inference,
general robust estimation methods using divergence e.g., [1–3] are known to be appealing, and
specialized methods for regression models have been proposed [4,5]. On the other hand, the valid
inference under existing outliers would be a challenging problem even if the divergence method is
adopted, and the problem is more difficult when the penalized methods for variable selection such as
Lasso [6] are incorporated.

In this paper, we develop a Bayesian approach for robust inference in linear regression models
based on γ-divergence [2,3]. We adopt a framework of synthetic (general) posterior inference
e.g., [7–11], and define the synthetic posterior distribution of the unknown parameters in the linear
regression models by replacing the log-likelihood function with γ-divergence, which enables us to
naturally carry out point estimation as well as uncertainty quantification based on the posterior. For the
prior distributions of the regression coefficients, we assign a class of shrinkage priors expressed as
a scale mixture of normals that includes typical ones such as Laplace [12] and horseshoe [13] priors,
leading to robust Bayesian variable selection and estimation at the same time. However, the main
difficulty of using the proposed synthetic posterior is that the form of the posterior is a complicated
function of the unknown parameters, thereby the efficient posterior computation algorithms as done in
the standard Bayesian linear regression models are no more applicable. To solve the issue, we develop
an efficient sampling algorithm using the Bayesian bootstrap e.g., [14–17] within Gibbs sampling.
In the step of the Bayesian bootstrap, we maximize the randomized posterior distribution to generate
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a sample from the full conditional distributions of the unknown parameters, which will be shown
to be efficiently carried out by modifying the Majorization-Minimization (MM) algorithm given in
Kawashima and Fujisawa [4]. The advantage of the proposed algorithm is that there is no rejection
steps that are typically required in the standard Metropolis-Hastings algorithm, and performance in
terms of mixing and autocorrelation are quite reasonable as shown in our numerical results. R code
implementing the proposed method is available at https://github.com/sshonosuke/RBR (see the
Supplementary Materials).

In the context of Bayesian inference, standard approaches for robust inference are replacing the
normal distribution with heavy-tailed distributions for the error term. The most typical choice is the
t-distribution, but this approach is not necessarily a good solution and still suffer from undesirable
performance under some scenarios of outliers as shown in our simulation studies. Recently, Gagnon
et al. [18] proposed a more robust error distribution than the Cauchy distribution, but the new
distribution does not admit stochastic representations that facilitate efficient posterior computation,
which would be quite problematic especially when the number of covariates is large as in most modern
applications. Moreover, the advantage of the synthetic posterior approach compared with the use
of heavy-tailed distribution is that the synthetic posterior can still be applicable to other types of
regression models such as logistic and Poisson regressions although we focus only on the application
to linear regression in this paper.

The paper is organized as follows: In Section 2, we introduce the setting of our model and
formulate the synthetic posterior distribution. Next, we consider the Bayesian linear regression model
under shrinkage priors expressed as scale mixtures of normals. Then a new posterior computation
algorithm for synthetic posterior with shrinkage priors is proposed. In Section 3, we provide results of
numerical studies and real data analysis. Under several types of contaminations, it is shown that the
proposed method outperforms the original Bayesian lasso and Bayesian lasso with the t-distribution
as the error distribution. Also, we show mixing properties of the proposed algorithm compared with
other options.

2. Robust Bayesian Regression via Synthetic Posterior

2.1. Settings and Synthetic Posterior

Suppose we have independent observation (yi, xi) for i = 1, . . . , n, where yi is a continuous
response and xi = (xi1, . . . , xip)

> is a p-dimensional vector of covariates. We consider fitting a
regression model yi = x>i β + εi with εi ∼ N(0, σ2). Let π(β, σ2) be a prior distribution for the model
parameters β and σ2. Then the standard posterior distribution of (β, σ2) is given by

π(β, σ2|D) = π(β, σ2) exp

{
n

∑
i=1

log f (yi; x>i β, σ2)

}
, (1)

where f (yi; x>i β, σ2) is the density function of N(x>i β, σ2), and D denotes the set of sampled data.
When there exist outliers which have large residuals (yi − x>i β)/σ, the posterior distribution (1) is
known to be sensitive to such outliers, and it can produce biased or inefficient posterior inference.

To overcome the problem, we propose replacing the log-likelihood function in (1) with robust
alternatives. Specifically, we employ γ-divergence [2,3] of the form:

Rγ(β, σ2) =
n
γ

log

{
1
n

n

∑
i=1

(
f (yi; x>i β, σ2)

‖ f (·; x>i β, σ2)‖γ+1

)γ}
,

where

‖ f (·; x>i β, σ2)‖γ+1 =

(∫
f (t; x>i β, σ2)1+γdt

)1/(1+γ)

.

https://github.com/sshonosuke/RBR
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Note that γ is a tuning parameter that controls the robustness, and Rγ(θ) reduces to the
log-likelihood function as γ → 0. We now define the following synthetic posterior based on
γ-divergence:

πγ(β, σ2|D) ∝ π(β, σ2) exp
{

Rγ(β, σ2)
}

. (2)

Since πγ(β, σ2|D) reduces to the standard posterior (1) under γ→ 0, the synthetic posterior (2)
can be regarded as a natural extension of the standard posterior (1).

A robustness property of the posterior distribution (2) can be checked by considering the
framework adopted in Gagnon et al. [18]. Let `i be an indicator of being non-outlying observations,
that is, `i = 1 if yi is not an outlier and `i = 0 if yi is an outlier. For outliers, we consider a situation
that yi = ai + biω and ω → ∞. Under the framework, it follows that f (yi; x>i β, σ2)γ → 0 for arbitral
(β, σ2) ∈ Θ, where Θ is a compact set. Therefore, the posterior distribution (2) converges to the
distribution proportional to

π(β, σ2) exp

[
n
γ

log

{
1
n`

∑
i:`i=1

(
f (yi; x>i β, σ2)

‖ f (·; x>i β, σ2)‖γ+1

)γ}]
, (β, σ2) ∈ Θ,

as ω → ∞, where n` = ∑n
i=1 `i is the number of non-outlying observations. This means that the

information of outliers are automatically ignored in the posterior distribution (2) as long as the outlier
values are extreme, that is, the outliers and non-outliers are well-separated.

2.2. Posterior Computation

We first consider the standard prior for (β, σ2), namely, normal prior for β and inverse gamma
prior for σ2, independently, given by π(β, σ2) ∝ exp(−β>S−1

β β/2)(σ2)−a/2−1 exp{−a/(2σ2)}, where
Sβ and a are hyperparameters. Since the synthetic posterior distribution (2) is not a familiar form,
the posterior computation to generate random samples of (β, σ2) is not straightforward. We use crude
approaches such as Metropolis-Hastings algorithm, but the acceptance probabilities might be very
small even when the dimension of covariates xi is moderate. To avoid such undesirable situation,
we adopt approximated sampling strategy using weighted likelihood bootstrap [15] which generate
posterior samples as the minimizer of the weighted objective function:

Lw(β, σ2) = − n
γ

log

{
1
n

n

∑
i=1

wi f (yi; x>i β, σ2)γ

}
+

1
2

β>S−1
β β

+

(
1 +

a
2
− nγ

2(1 + γ)

)
log σ2 +

a
σ2 ,

(3)

where (w1, . . . , wn) ∼ n · Dirichlet(1, . . . , 1), so that ∑n
i=1 wi = n. The minimization of (3) can be

efficiently carried by MM algorithm [19] obtained by slight modification of one given in Kawashima
and Fujisawa [4]. From Jensen’s inequality, with current values (β∗, σ2

∗) of the model parameters,
the upper bound of the objective function (3) can be obtained as follows:

Lw(β, σ2) =
1

2σ2

n

∑
i=1

s∗i (yi − x>i β)2 +
1
2

β>S−1
β β

+

(
1 +

a
2
+

n
2(1 + γ)

)
log σ2 +

a
σ2 + C,

(4)

where C is an irrelevant constant and s∗i is a new weight defined as

s∗i =
wi f (yi; x>i β∗, σ2

∗)
γ

∑n
j=1 wj f (yj; x>j β∗, σ2∗)γ

, (5)
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noting that ∑n
i=1 s∗i = n. The upper bound in (4) can be easily minimized, so that the updating process

is given by

β† =

{
1
σ2∗

n

∑
i=1

s∗i xix>i + S−1
β

}−1
1
σ2∗

n

∑
i=1

s∗i xiyi,

σ2
† =

(
2 + a +

n
1 + γ

)−1
{

a +
n

∑
i=1

s∗i (yi − x>i β†)
2

}
.

(6)

Therefore, the MM algorithm to get the minimizer of (3) repeats calculation of the weight (5) and
updating parameter values via (6) until convergence.

For generating B random samples from synthetic posterior distribution (2), we generate B samples
of wi’s and solve minimization problems of (3) for B times via the MM algorithm. The resulting samples
can be approximately regarded as posterior samples of (2), and the approximation error would be
negligible when n is large e.g., [16,17].

2.3. Incorporating Shrinkage Priors

When the dimension of xi is moderate or large, it is desirable to select a subset of xi that are
associated with yi, which corresponds to shrinkage estimation of β. Here we rewrite the regression
model to explicitly express an intercept term as yi = α + x>i β + εi. We consider normal prior for α, that
is, α ∼ N(0, Sα) with fixed Sα > 0. For coefficients β, we introduce shrinkage priors expressed as a
scale mixture of normals given by

π(β) =
p

∏
k=1

∫ ∈
0

φ(βk; 0, uk)g(uk; λ)duk, (7)

where g(·; λ) is a mixing distribution which may depends on some tuning (scale) parameter λ. Many
existing shrinkage priors are included in this class by appropriately choosing the mixing distribution
g(·). Among many others, we consider two priors for ui: exponential distribution which results in
Laplace prior of β known as Bayesian Lasso [12], and half-Cauchy distribution for

√
uk which results

in horseshoe prior for β [13]. The detailed settings of these two priors are given as follows:

(Laplace) uk|λ ∼ Exp(λ2/2), λ2 ∼ Ga(c1, c2)

(Horseshoe) uk|ξk, λ ∼ IG(1/2, λ/ξk), ξk ∼ IG(1/2, 1), λ ∼ Ga(c1, c2),

where c1 and c2 are fixed hyperparameters, Ga(a, b) denotes the gamma distribution with shape
parameter a and rate parameter b, and IG(a, b) is the inverse gamma distribution with shape parameter
a and scale parameter b. Note that ξk in the horseshoe prior is additional latent variable to make
posterior computation easier, and the density of uk|λ is proportional to u−1/2

k (uk + λ)−1, so that
√

uk|λ
follows half-Cauchy distribution.

Using the mixture representation (7), the full conditional distribution of (α, β, σ2) given the other
parameters including uk’s is given by

exp
(
− α2

2Sα
− 1

2
β>U−1β

)
(σ2)−a/2−1 exp

(
− a

2σ2

)
× exp

[
n
γ

log

{
1
n

n

∑
i=1

f (yi; α + x>i β, σ2)γ

}
+

nγ

2(1 + γ)
log σ2

]
,

where U = diag(u1, . . . , up). Similarly to the previous section, we can generate approximate posterior
samples of (α, β, σ2) by minimizing the weighted objective function obtained by replacing f (yi; α +

x>i β, σ2)γ with wi f (yi; α + x>i β, σ2)γ in the above expression, where wi is defined in the same way in
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the previous section. Then, the objective function can be minimized by a similar MM-algorithm given
in the previous section. Under given regression coefficients β, the full conditional distribution of latent
variables u1, . . . , up and hyperparameter λ are the same as the case with the standard linear regression,
so that we can use the existing Gibbs sampling methods. We summarize our Markov chain Monte
Carlo (MCMC) algorithm under the two shrinkage priors in what follows.

MCMC algorithm under shrinkage prior

• (Sampling from α, β and σ2) Generate wi = n ·Dir(1, . . . , 1), and set initial values α(0), β(0) and
σ2
(0). Repeat the following procedures until convergence:

– Compute the following weight:

s(k)i =
wi f (yi; α(k) + x>i β(k), σ2

(k))
γ

∑n
j=1 wj f (yj; α(k) + x>j β(k), σ2

(k))
γ

, i = 1, . . . , n.

– Update the parameter values:

α(k+1) =

(
n

σ2
(k)

+
1

Sα

)−1
1

σ2
(k)

n

∑
i=1

s(k)i (yi − x>i β(k)),

β(k+1) =

(
1

σ2
(k)

n

∑
i=1

s(k)i xix>i + U−1

)−1
1

σ2
(k)

n

∑
i=1

s(k)i xi(yi − α(k+1)),

σ2
(k+1) =

(
2 + a +

n
1 + γ

)−1
{

a +
n

∑
i=1

s(k)i (yi − α(k+1) − x>i β(k+1))
2

}
.

We adopt the final values as sampled values from the full conditional distribution.
• (Sampling from u1, . . . , up and λ)

– (Laplace prior) The full conditional distribution of 1/uk is inverse-Gaussian with parameters

µ =
√

λ/β2
k and δ = λ in the parametrization of the inverse-Gaussian density given by

f (x) =

√
δ

2π
x−3/2 exp

{
− δ(x− µ)2

2µ2x

}
, x > 0.

The full conditional distribution of λ2 is Ga(c1 + p, c2 + ∑
p
k=1 uk/2).

– (Horseshoe prior) The full conditional distribution of uk, ξk and λ are IG(1, λ/ξk + β2
k/2),

IG(1, 1 + λ/uk) and Ga(c1 + p2, c2 + ∑
p
k=1 u−1

k ξ−1
k ), respectively.

Note that the sampling scheme in the main parameter β does not use the previous sampled
values of β and there is no rejection steps, thereby autocorrelation of β generated from the above
MCMC algorithm is expected to be very small, which will be demonstrated in our numerical studies
in Section 3.
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3. Numerical Studies

3.1. Bayesian Robustness Properties

We demonstrate Bayesian robustness properties of the proposed method compared with existing
ones. We first consider the influence function of posterior means. To this end, we employ a simple
linear regression model given by

yi = α + βxi + εi, i = 1, . . . , n, (8)

where α = 0, β = 1, εi ∼ N(0, σ2) with σ2 = 1, xi is generated from the standard normal distribution,
and we set n = 300. Let θ = (α, β, σ2) be the set of unknown parameters in the model. Let
f (yi|xi; θ) be the assumed density function for each yi given xi. Then, the Bayesian analog of
the influence function for the posterior means [1,11] of θk (k = 1, 2, 3) evaluated at x is given by
IFk(z|x) = nCovθ|D(θk, H(θ, z|x)), where Covθ|D denotes the covariance with respect to the posterior
distribution of θ under the model (8), and H(θ, z|x) is the derivative of the (synthetic) likelihood under
contamination with respect to the contamination ratio [1,11]. We used uniform priors for α and β, and
Ga(1, 1) prior for σ−2 to obtain the posterior distribution of θ under the model (8). Under the standard
likelihood function, it holds that H(θ, z|x) = log f (α + βx + z|x; θ)−

∫
log f (t|x; θ)g(t|x)dt, where

g(·|x) = φ(·; x, 1) is the true density under (8). Also, it follows that

H(θ, z|x) = 1
γ

{
f (α + βx + z|x; θ)γ∫
f (t|x; θ)γg(t|x; θ0)dt

− 1
}

under the γ-divergence. We note that z can be interpreted as the residual of the outlying value, namely,
the distance between the outlying value and the regression line α + βx. We approximated the integral
appeared in H by Monte Carlo integration based on 2000 random samples from g(·|x). Based on
10,000 posterior samples of θ, we computed IF1(z|x) and IF2(z|x) which are the influence functions
for α and β, respectively, for x ∈ {−0.5, 1} and z ∈ [−10, 10], under the γ-divergence with γ = 0.2
(RBR1) and γ = 0.5 (RBR2). For comparison, we also computed the influence functions using the
normal distribution (LM), Cauchy distribution (c-LM) and t-distribution with 3 degrees of freedom
(t-LM) for the error term εi in the model (8). The results are presented in Figure 1. It shows that using
heavy-tailed distributions such as Cauchy and t-distribution provide bounded influence functions
for both parameters, but the influence functions based on the proposed γ-divergence method quickly
converges to 0 as |z| increases. This would indicate more strong robustness of the proposed method
than using the heavy-tailed distributions.

We next more directly evaluate the robustness properties. To this end, we employ the contaminated
structure for the error term, εi ∼ N(0, a2σ2) for i = 1, . . . , nω, and εi ∼ N(0, σ2) for i = nω + 1, . . . , n,
so the first nω observations are outliers, where ω and a control the number of outliers and severity of the
contamination, respectively. We then define the oracle posterior distribution π∗(α, β) as the posterior
distribution based on the normality assumption εi ∼ N(0, σ2) and observations without outliers,
that is, (xi, yi) for i = nω + 1, . . . , n. Let π(α, β) be (synthetic) posterior distributions based on the
whole data including outliers. If the distance between π(α, β) and π∗(α, β) is small, we can conclude
that the posterior π(α, β) successfully eliminate the information from outliers to make the posterior
inference robust. Therefore, we assess the distance by computing the Kullback–Leibler divergence
given by

∫
π∗(α, β) log{π∗(α, β)/π(α, β)}dαdβ. In Table 1, we reported the results averaged over

300 replications under scenarios with ω ∈ {0.05, 0.1, 0.15, 0.2} and a ∈ {10, 20}. It is observed that
the proposed synthetic posterior is reasonably close to the oracle posterior, which is consistent to the
theoretical argument given in Section 2.1, and the distance is smaller than those of the other methods.



Entropy 2020, 22, 661 7 of 14

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

α (x=−0.5)

residual

IF

LM
c−LM
t−LM

RBR1
RBR2

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

β (x=−0.5)

residual

IF

LM
c−LM
t−LM

RBR1
RBR2

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

α (x=1)

residual

IF

LM
c−LM
t−LM

RBR1
RBR2

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

β (x=1)

residual

IF
LM
c−LM
t−LM

RBR1
RBR2

Figure 1. Influence functions for α and β under a simple linear model.

Table 1. Kullback-Leibler divergence averaged over 300 replications.

a = 10 a = 20
ω LM c-LM t-LM RBR1 RBR2 LM c-LM t-LM RBR1 RBR2

0.05 1.689 0.704 0.256 0.188 0.318 2.883 0.682 0.238 0.172 0.313
0.1 2.212 0.605 0.292 0.229 0.328 3.471 0.552 0.257 0.171 0.297
0.15 2.886 0.587 0.422 0.341 0.386 4.214 0.537 0.418 0.240 0.367
0.2 3.074 0.576 0.579 0.429 0.393 4.445 0.547 0.683 0.297 0.398

3.2. Simulation Study

We here evaluate the performance of the proposed methods through simulation studies. We first
compare the point and interval estimation performance of the proposed methods with those of some
existing methods. To this end, we consider the following regression model with n = 100 and p = 20:

yi = α + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n,

where α = 0.5, β1 = β4 = 0.5 and β7 = β10 = β13 = 2 and the other βk’s were set to 0. The
covariates xi = (xi1, . . . , xip) were generated from a multivariate normal distribution Np(0, Σ) with
Σ = (ρ|i−j|)1≤i,j≤p with ρ = 0.2. For the error term εi, we adopted contaminated structure given
by εi ∼ (1− ωi)N(0, 1) + ωi fc, where fc is a contamination distribution and ωi is contamination
probability which might be heterogeneous over samples. We considered two settings fc, that is,
(I) fc ∼ N(0, 102) and (II) fc ∼ N(10, 1), noting that the contamination distribution has very large
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variance in scenario (I) while the contamination distribution tends to produce large values in scenario
(II). Regarding the contamination probability, we considered the following scenarios:

(Homo) ωi = ω ∈ {0, 0.05, 0.10, 0.15, 0.20}
(Hetero) ωi = δ× logistic(−3.3 + xi10), δ ∈ {0, 1, 2, 3, 4}.

Note that the contamination probability in the first setting is constant over the samples, which
is refereed to homogeneous contamination. On the other hand, in the second setting, the probability
depends on covariates and is different over the samples, so that it is refereed to heterogenous
contamination.

For the simulated dataset, we applied the proposed robust methods with Laplace and horseshoe
priors, denoted by RBL and RHS, respectively, as well as the standard (non-robust) Bayesian lasso
(BL). The tuning parameter γ in the proposed method is set to γ = 0.2. Moreover, as existing robust
methods, we also applied the regression model with the error term following Cauchy distribution
and t-distribution with 3 degrees of freedom, denoted by c-BL and t-BL, respectively. In applying
the above methods, we generated 2000 posterior samples after discarding the first 1000 samples as
burn-in. For point estimates of βk’s, we computed posterior median of each element of βk’s, and
their performance is evaluated via mean squared error (MSE) defined as p−1 ∑

p
k=1(β̂k − βk)

2. We also
computed 95% credible intervals of βk’s, and calculated average lengths (AL) and coverage probability
(CP) defined as p−1 ∑

p
k=1 |CIk| and p−1 ∑

p
k=1 I(βk ∈ CIk), respectively. These values were averaged

over 300 replications of simulating datasets.
In Figure 2, we presented the results of logarithm of MSE (log-MSE) with error bars corresponding

to three times estimated Monte Carlo errors. When there is no outliers, the standard BL method
performs quite well while the proposed two robust methods (RBL, RHS) are comparable. On the
other hand, the performance of BL gets worse as the ratio of outliers increases, compared with the
other robust methods. Comparing the proposed methods with t-BL, it is observed that they perform
similarly when the contaminated error distribution is symmetric and has large variance as in Scenario
(I), possibly because t-distribution can be effectively adapted to such structure. However, when the
contaminated distribution is not symmetric as in Scenario (II), the performance of t-BL gets worse
than the proposed robust methods as the contamination ratio increases. In these scenarios, c-BL works
better than t-BL, but the proposed method still provides better results than c-BL. It is also observed that
c-BL is considerably inefficient compared with the other robust methods when the contamination ratio
is not large. Comparing the proposed two robust methods, RHS is slightly better than RBL in all the
scenarios. As the horseshoe prior is known to have better performance than Laplace prior as shrinkage
priors under no contamination, this results would indicate that such property can be inherited even
under contamination by using the proposed robust approach.

Regarding interval estimation, the results for AL and CP are given in Figure 3 and Table 2,
respectively. From Table 2, we can see that CPs of the proposed methods are around the nominal
level whereas t-CL and c-BL shows over-coverage and short-coverage properties, respectively, in some
scenarios. Figure 3 reveals a similar trend to one observed in log-MSE, so that the credible intervals
of BL are shown to be very inefficient when there exist outliers. Also it is observed that the credible
intervals of t-BL and c-BL tend to be inefficient compared with the proposed methods. Comparing
the proposed two robust methods, RHS provides slightly more efficient interval estimation than RBL,
which is consistent with the results of log-MSE in Figure 2.

We next checked mixing properties of the proposed MCMC algorithm (denoted by RBL-proposal)
compared with standard methods. We consider the same setting as above simulations. In particular,
we show only results in the case of (II)-Homo. Note that we can obtain similar results in other cases,
i.e., (I)-Homo, (I)-Hetero and (II)-Hetero. We set ω = 0.20. In addition to the case of p = 20, we also
consider the case of p = 40, where we set the same true non-zero regression coefficients as the case of
p = 20. For comparison, we employed (non-robust) Bayesian lasso (BL) and robust Bayesian lasso
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with Langevin algorithm e.g., [20] with the step size 0.01 (denoted by RBL-Langevin). Note that the
Langevin algorithm is applied to the full conditional distribution of β, so that this algorithm has
only difference from the proposed algorithm in sampling from the full conditional distribution of
β. Figure 4 shows mixing and autocorrelation results for one-shot posterior simulation of β10. As is
well-known, since the ordinal BL have the efficient Gibbs sampling algorithm, we can find that mixing
and autocorrelation of them are quite well whereas the sample path of BL is away from the true value
due to outliers. From the second row Figure 4, it is observed that the Langevin algorithm produces poor
mixing and relatively high autocorrelation. We tried other choices of tuning parameters in the Langevin
algorithm, but the results were comparable. On the other hand, the bottom of Figure 4 shows that the
mixing properties of the proposed algorithm are quite satisfactory, that is, sample paths are around the
true value and there is almost no autocorrelations. It should be noted that the proposed algorithm
does not depend on any tuning parameters unlike the Langevin algorithm algorithm. In Figure 5,
we reported the results under p = 40, which also clearly shows the preferable performance of the
proposed sampling algorithm compared with the direct application of the Langevin algorithm.

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

(I)−Homo

omega

lo
g−

M
S

E

0 0.05 0.1 0.15 0.2

BL
c−BL
t−BL

RBL
RHS

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

(I)−Hetero

omega

lo
g−

M
S

E

0 0.05 0.1 0.15 0.2

BL
c−BL
t−BL

RBL
RHS

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

(II)−Homo

omega

lo
g−

M
S

E

0 0.05 0.1 0.15 0.2

BL
c−BL
t−BL

RBL
RHS

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

(II)−Hetero

omega

lo
g−

M
S

E

0 0.05 0.1 0.15 0.2

BL
c−BL
t−BL

RBL
RHS

Figure 2. Average values of log-MSE with ±3 Monte Carlo error bands based on 300 replications in
four simulation scenarios.
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Figure 3. Average values of average length of 95% credible intervals with ±3 Monte Carlo error bands
based on 300 replications in four simulation scenarios.

Table 2. Coverage probability of 95% credible intervals averaged over 300 replications.

(I)-Homo (II)-Homo
ω BL c-BL t-BL RBL RHS BL c-BL t-BL RBL RHS

0 96.0 92.6 94.8 93.5 93.4 96.0 92.6 94.8 93.5 93.4
0.05 96.0 93.9 96.6 94.2 94.0 96.4 94.2 97.2 93.7 93.7
0.1 96.4 94.5 97.3 94.6 94.2 96.5 95.4 98.5 94.0 93.9

0.15 96.6 95.4 98.1 95.2 95.2 96.7 96.6 99.0 94.4 94.1
0.2 96.6 96.1 98.5 96.3 96.0 96.7 97.4 98.6 95.3 94.8

(I)-Hetero (II)-Hetero
δ BL c-BL t-BL RBL RHS BL c-BL t-BL RBL RHS

0 96.0 92.6 94.8 93.5 93.4 96.0 92.6 94.8 93.5 93.4
1 95.9 93.4 96.3 94.3 94.1 95.9 94.0 97.1 93.7 93.6
2 96.0 94.8 97.6 95.1 94.9 95.0 95.3 98.5 94.0 93.7
3 96.7 95.1 98.4 95.5 95.3 94.3 96.3 98.9 94.4 94.1
4 96.6 95.6 98.8 96.2 96.2 92.7 96.9 96.7 95.0 94.5
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Figure 4. Trace plots and autocorrelations of posterior samples of β10 based on three methods (BL,
RBL-Langevin and RBL-proposal) in (II)-Homo case with ω = 0.20 and p = 20.
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Figure 5. Trace plots and autocorrelations of posterior samples of β10 based on three methods (BL,
RBL-Langevin and RBL-proposal) in (II)-Homo case with ω = 0.20 and p = 40.
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3.3. Real Data Examples

We compare results of the proposed methods with that of the non-robust Bayesian Lasso through
applications to two famous datasets, Boston Housing [21] and Diabetes data [22]. The response
variable in the Boston housing data is corrected median value of owner-occupied homes in USD 1000 $,
and there are 15 covariates including one binary covariate. We standardized 14 continuous valued
covariates, and included squared values of these covariates, which results in 29 predictors in our
models. The sample size is 506. Regarding the Diabetes data, the data contains information of 442
individuals and we adopted 10 covariates, following [12].

For the datasets, we applied the proposed robust Bayesian methods with Laplace prior (RBL)
and horseshoe prior (RHS). We set γ = 0.2 in both methods. For comparison, we also applied the
standard non-robust Bayesian Lasso (BL). Based on 4000 posterior samples after discarding 1000
posterior samples, we computed posterior medians as well as 95% credible intervals of regression
coefficients, which are shown in Figure 6. It is observed that the two robust methods, RBL and
RHS produce similar results while the standard BL provides quite different results than the others in
some coefficients. In particular, in the Diabetes dataset, the two robust methods detected 5th and 7th
variables as significant ones based on their credible intervals while the credible intervals of the BL
method contains 0, which shows that the robust methods may be able to detect significant variables
that the non-robust method cannot. A similar phenomena is observed in several covariates in the
Boston Housing data. Comparing two figures, the degree of difference of the results between the two
robust methods and the non-robust method in the Diabetes data is smaller than that in the Boston
Housing data, for example, the posterior medians among the three methods are almost identical in the
Diabetes data. This might show that the ratio of outliers in the Diabetes dataset is smaller than that of
the Boston Housing data.
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Figure 6. 95% credible intervals with posterior medians (×) of regression coefficients based on the
standard Bayesian Lasso (BL), the proposed robust Bayesian methods with Laplace prior (RBL) and
horseshoe prior (RHS), applied to Boston Housing data and Diabetes data.

4. Conclusions and Discussion

We proposed a new robust Bayesian regression method by using synthetic posterior based on
γ-divergence. Using a technique of Bayesian bootstrap that optimizes a weighted objective function
within Gibbs sampling, we developed an efficient posterior computation algorithm to generate
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posterior samples of regression coefficients under shrinkage priors. The numerical performance
of the proposed method compared with existing methods are investigated through simulation and real
data examples.

Although our presentation is focused on a linear regression in this paper, the proposed method
can be conceptionally extended to other models such as generalized linear models. However, under
generalized linear models, corresponding objective functions from γ-divergence is not necessarily
tractable since it might include intractable integrals or infinite sums [5], thereby the posterior
computation would not be feasible even if we use a similar techniques used in this paper. Only
logistic regression for binary outcomes could be a tractable regression model in which γ-divergence is
obtained in an analytical form, and outliers in logistic regression is typically related to a mislabeling
problem e.g., [23]. The detailed investigation including developing an efficient posterior computation
algorithm would be an important future work.

Regarding the choice of γ, it is not straightforward to estimate/select the value in a
data-dependent way as it is not a model parameter. From the results in Section 3.1, the posterior
distribution would not be very sensitive to the different values of γ, and γ-divergence is known to
be robust as long as γ > 0. Hence, our recommendation is simply using a small value for γ such as
γ = 0.2 as adopted in our numerical studies. On the other hand, some ideas have been proposed
for the data-dependent selection of γ (e.g., [4,24]). Also several methods for estimating the ratios of
outliers or the outlier probability are available (e.g., [25–28]), and such information could be useful to
determine the value of γ. The detailed investigation is left to a future research.

Supplementary Materials: R code implementing the proposed robust Bayesian method is available at GitHub
repository (https://github.com/sshonosuke/RBR).
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