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Abstract 

Background:   Classical genetic canalization models, which accommodate the mean and variance of a trait sepa-
rately, provide a flexible approach to take heteroscedasticity for continuous traits into account. However, this model is 
not appropriate for discrete traits. The aim of this work was to propose heteroscedastic threshold models suitable for 
the genetic analysis of ordinal data.

Methods:  In order to first fit the mean and variance of ordinal traits separately, we extended the classical threshold 
model (TM) for discrete data by introducing non-genetic and genetic factors of heterogeneity on the variance of its 
underlying variable, which leads to a homothetic threshold model HTM and its alternative parameterization HTM’ in 
which the thresholds of different individuals are linked by a homothetic-translation. Relaxing the constraint between 
the thresholds led us to propose an independent threshold model ITM that was more flexible than HTM’ but required 
the estimation of more parameters. TM, HTM and ITM models were applied to study 19,671 records on litter size in 
Romane sheep.

Results:  Both HTM and ITM were able to disentangle the link between the mean and variance that holds in the clas-
sical homoscedastic threshold model. The results obtained for the litter size of Romane ewes showed that the data 
was best fitted with HTM compared to ITM and TM. The correlations between the observed and predicted variances 
were equal to 0.6 and 0.2 for HTM and TM, respectively. These analyses showed the existence of a genetic component 
for the heterogeneity of litter size in sheep that was taken into account in HTM.

Conclusions:  HTM is the most suitable model to study the variability of litter size in sheep. It accommodates both 
the mean and variance separately while requiring the estimation of only a few parameters.

© 2016 Fathallah et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Robustness can be viewed as the ability to maintain a 
stable phenotype regardless of the environmental condi-
tions. In line with this approach, Scheiner and Lyman [1] 
proposed a model which considers that the expression of 
a trait is controlled by two sets of genes. One set controls 
the level of the performance and the other set controls 
the environmental variability of the trait. Various authors 
developed heteroscedastic models (i.e. canalization mod-
els) to jointly estimate the influence of various factors on 
both the mean and the variability of a trait [2–5].

These models were implemented with frequentist [6, 7] 
or Bayesian methods [8, 9], and applied to a large variety 

of continuous traits (birth weight of piglets, birth weight 
of rabbits, weight of chickens, etc.).

The methods described above mainly target continuous 
traits. Theoretically, these linear models do not analyze 
discrete traits adequately because of their non-normal 
distributions. However, some previous empirical stud-
ies showed that the performance of linear and non-linear 
models was similar in terms of goodness-of-fit and pre-
dictive ability [10, 11] when analyzing the level of discrete 
livestock data. However, it is not known whether these 
properties are still true when dealing with the variability 
of discrete data.

The main objective of this research was to propose new 
models that take the heterogeneous individual variabil-
ity of ordinal traits into account using derived threshold 
models. The models are described consecutively in the 
“Methods” section. “Heteroscedastic extensions of the 
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threshold model” are presented in the first subsection, and 
a “Numerical application” of these models to litter size in 
Romane sheep is presented in the second subsection.

Methods
Heteroscedastic models for ordinal traits
Homothetic threshold models for ordinal traits
A simple way of studying environmental sensitivity of an 
ordinal trait is to combine the threshold model (TM) [12] 
(appropriate for the study of ordinal traits) and the canal-
ization model (appropriate for continuous traits) [13]. 
Thus, heteroscedasticity is considered under the liability 
threshold model and we call this new model the homo-
thetic threshold model or HTM:

where l is the normally distributed liability and t is a 
set of thresholds, which transform this liability into the 
observed discrete variable y in n categories, µ is the over-
all mean, u the vector of additive genetic effects that 
affect the mean of the liability, η is the overall mean and ν 
is the vector of additive genetic effects that affect the var-
iability of the liability. Several functions f  have been pro-
posed in the literature (exponential, linear or square root 
functions [3]). The vectors of genetic values are assumed 
to be Gaussian:

t = (0, 1, τ3, . . . , τn−1); l|u, ν ∼ N
(

1µ+ u, f 2(η, ν)
)

,

Under this parameterization, the vector of thresholds 
t
′

i is specific to each individual i, with t′i = µ′ + u
′

i1
T + v

′

i 
where µ′ is an overall set of n− 1 thresholds, u′

i a subject-
specific deviation from this overall set and v′

i a vector of 
size n− 1 that reflects the specific deviation of the sub-
ject threshold from this overall set with:
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where ⊗ denotes the Kronecker product, A is the known 
additive genetic relationship matrix and G the genetic 

matrix 
[

σ 2
u ρσuσν

ρσuσν σ 2
ν

]

, where σ 2
u and σ 2

ν  are the vari-

ances of the additive genetic effects that affect the mean 
and the variability of the liability, and ρ their coefficient 
of correlation.

A fully equivalent parameterization of HTM can be 
written. This parameterization or HTM’ model is reached 
by fixing the parameters of the liability and considering 
that the matrix of thresholds T′ is affected by environ-
mental and genetic effects i.e.:
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Under this parameterization, the correlation between 
τ
′

1. and τ ′

2. is set to 1 and the transformation of t′i to t′i′ 
(from individuals i to i′) is not a translation as in TM 
but a homothetic translation, which means that the ratio 
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 is constant for the whole 
population i.e.:

 HTM and HTM’ are equivalent models with the same 
number of parameters (n+ 1) being estimated. The rela-
tionship between t′i and t is:
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The estimations obtained with HTM’ can be trans-
formed into the estimations that would have been 
obtained with HTM. Overall, in the case of a linear func-
tion f , the approach produces:

whereas for the other parameter we have:

Finally, the genetic correlation ρ is:

These formulas are detailed in “Appendix 1”. The herit-
ability of the trait on the liability scale is estimated by the 
ratio of the animal variance that acts on the mean to the 
total variance of the underlying variable i.e.:

For instance in the case of a linear function f :

Extension of the homothetic threshold model into the 
independent threshold model
A straightforward extension of the above HTM’ model 
can also be considered and consists in releasing the 
constraint of the homothetic-translation link between 
the thresholds of the individuals. The model therefore 
becomes an independent threshold model ITM, i.e.:

where ti = µ + vi with µ being an overall set of n− 1 
thresholds, and vi a vector of size n− 1, which reflects 
the specific deviation of the subject threshold from this 
overall set with:
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The total number of parameters in this model is 
(n+ 2)(n− 1)/2. It should be noted that ITM cannot be 
parameterized like HTM using a fixed set of thresholds 
and a model on the liability l . In this model, fixing the 
thresholds to modify the parameterization would imply 
that the underlying variable would no longer be Gaussian.

Due to the lack of constraints between the 
thresholds (except for the obvious relationship 
−∞ < τ1. < τ2. < · · · < τn−1. < ∞), ITM fits a much 
larger range of situations than a homothetic threshold 
model, which assumes a strong constraint either on the 
homothetic translation relationship between thresholds 
(HTM’) or on the normality of the liability (HTM).

Interestingly, we found that another parameterization of 
ITM is a constrained multiple-trait model MTM (Appen-
dix 2). Indeed, each observation of the ordinal trait can be 
considered as the result of n exclusive binary traits:

The observed variable y can thus be transformed into 
n indicator functions which can be analyzed using a mul-
tivariate binary threshold model. Only n− 1 indicator 
functions need to be considered in this MTM since the 
value of one of the indicator functions is fixed condition-
ally to the others. Each sub-model k , k ∈ [1, n− 1] can be 
written as MTMk:

According to this model, the probability that an indi-
vidual might achieve the observation k or that the kth 
indicator function is equal to 1 is:

and the n− 1 probabilities πk should satisfy the relation 
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k=1 πk < 1. This constraint must be added to the mul-
tivariate binary threshold model.
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Under the latter models, one cannot really consider 
that the expression of the ordinal trait is controlled by 
two sets of genes. The combination of elementary genetic 
values for each individual results in the heteroscedastic-
ity of the global trait. In this model, the heritability can be 
calculated for each class as:

The different parameterizations of the models are sum-
marized in Table  1. HTM’ and ITM can be fitted using 
the ASReml software.

Numerical application
Data
These models were applied to study litter size in Romane 
sheep. All data (litter size, environmental variation fac-
tors and pedigrees over ten generations) were extracted 
from the national database for genetic evaluation and 
research managed by the Institut de l’Elevage (French 
Livestock Institute) and the Centre de Traitement de 
l’Information Génétique (Genetic Information Process-
ing Center, Jouy-en-Josas, France). Data consisted of 
records on litter size of 11,073 multiparous ewes from 23 
flocks with at least four lambings from 2000 to 2013. The 
mean prolificacy (2.13) in this sample was high and con-
sequently there was a high global variability in litter size. 

h2k =
σ 2
uk

σ 2
uk

+ 1
.

The main features of this dataset are in Table 2. To avoid 
extreme case problems [14], litter sizes of more than four 
lambs were pooled into a single class for all analyses, 
which resulted in four classes of litter size i.e. [1, 2, 3, 4+].

The fixed effects included in the analysis were selected 
to be as similar as possible to those found in others 
studies [15, 16]. This was done by comparing the likeli-
hood-ratio of all the possible linear mixed models which 
included the following fixed effects: age of ewe (nine lev-
els), time interval between lambing in months (seven lev-
els), parity (seven levels), age of the ewe at first lambing 
in months (nine levels), season of lambing (two levels), 
as well as the random effects: flock and ewe effect. For 
this step of the analysis, the ewe effect was considered as 
random but the genetic relationships between individuals 
were ignored.

Estimation of parameters and comparison of methods
The three threshold models TM, HTM’ and ITM 
described above were applied to this data. The classi-
cal TM, used as a basis for comparison, included the 
previously selected fixed effects and the ewe as both a 
random genetic effect (u∗) and a random permanent 
environmental effect (p∗) (i.e. t∗i = xiβ + u∗i 1

T + p∗i 1
T ). 

The homothetic threshold model HTM’ considered that 
fixed, genetic and permanent effects were common for 
all thresholds and threshold-specific random genetic 
effects with constrained genetic (co)variance to ensure 

Table 1  Main characteristics of the different models

 Models Number of parameters Thresholds Underlying

Population

Homoscedastic

TM n t
∗ =

{

t
∗
1 , t

∗
2 , t

∗
3 , . . . , t

∗
n−1

}
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(
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)
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Animal i
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i
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∗
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3i , . . . , t

∗
(n−1)i

}

t∗.i = ti + µi + ui

yi = εi

Heteroscedastic

HTM n+ 2 ti =
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}

yi = µi + ui + εi
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homothetic translation (i.e. t′i = xiβ + u
′

i1
T + p

′

i1
T + v

′

i
). 

Finally, an additional extension resulting in the independ-
ent threshold model ITM was fitted and it considered 
that the fixed and permanent effects were common for all 
thresholds and included a genetic effect that was specific 
to each threshold with no constrained genetic (co)vari-
ance (i.e. t′′i = xiβ + p′′i 1

T + v
′′
i
).

ASReml software [17] was used to implement all the 
models.

Models were compared using the likelihood ratio test for 
nested models (TM vs. HTM’, LRT df = 2; TM vs. ITM, LRT 
df =  5) and the Bayesian Information Criterion (BIC) for 
non-nested models (BIC = ln(N − p)∗c − 2lnL, HTM’ vs. 
ITM, where L is the restricted maximum likelihood of the 
model, N the number of observations, p and c the number 
of fixed effects and covariance parameters) [18]. The mod-
els were also compared based on their ability to predict new 
records as follows: 75  % of records were used to estimate 
parameters that were used to predict the remaining 25 %. 
Five replicates of this design were sampled at random. To 
evaluate the predictive ability of the models, MSEP (mean 
square error of prediction) statistic was computed as:

where y and ŷ correspond to the observed and predicted lit-
ter size, m is the number of data in the validation subset and 
M is the subset number.

For ewes with observations, we compared the raw 
means and variances of their litter sizes to the cor-
responding predicted values on the observable scale 
obtained with the different models. The raw mean and 
variance were calculated for each individual from the 
observed data. The predicted values were calculated as:

MSEP =
1

M

M
∑

j=1

(

1

m

m
∑

i=1

(

yij − ŷij
)2

)

,

ŷi =

4
∑

k=1

kπ̂i,k ,

and 

where π̂i,k was the probability that the litter size of a 
ewe i was k. These probabilities were calculated using 
π̂i,k = �

(

τ̂i,k
)

−�
(

τ̂i,k−1

)

 with as above τ0 = −∞ and 
τ4 = +∞ (τ̂i,k corresponds to τ̂ ∗i,k , τ̂

′

i,k or τ̂ ′′i,k depending on 
the model). To measure the ability of the models to break 
the link between ŷi = t and σ̂ 2

i = z, we used the following 
criterion:

which ranges from 0 to 1. The criterion B was 0 if 
E(Var(z|t)) = 0, which means that a single value of the 
mean has a single value of the variance. The criterion B 
was 1 if E(Var(z|t)) = 1, which means that a single value 
of the mean has different variance values. Because the 
density associated to the variance Var(z|t) is unknown, 
data were ordered in ascending order of litter size and 
were discretized into s subgroups, and the variance of y 
in each subgroup σ̂ 2

m was calculated in order to calculate:

The subgroup number was defined in order to get a suf-
ficient amount of data in each subgroup to obtain a good 
estimation of the subgroup variance. The intensity of the 
dispersion of each model was also assessed by calculat-
ing the correlation, either for the mean or the variance, 
between the observed values and the predicted values on 
the observable scale.

Results
Comparison of models
The values of the criteria (LRT, BIC, MSE and MSEP) 
used to compare the adjustment quality of the models are 
in Tables 3 and 4.

The results showed that the homoscedastic model 
should be rejected and that the models that account for 
genetic heterogeneity of litter size distribution should be 
favored. Among the heteroscedastic models, BIC values 
were lower with HTM’ than with ITM. MSE estimates of 
the mean were similar for the three models, whereas MSE 
estimates of the variance differed and were higher with 
TM than with HTM’ (0.13 with TM vs. 0.10 with HTM’). 
The differences between MSEP values are small, which is 
explained by the fact that this parameter can estimate pre-
diction error for the level of the trait only and not for its 
variability. To evaluate the ability of the models to predict 

σ̂ 2
i =

4
∑

k=1

k2π̂i,k −

(

4
∑

k=1

kπ̂i,k

)

,

B =
E(Var(z|t))

Var(z)
,

E(Var(z|t)) = E
(

σ̂ 2
yi

∣

∣

∣ŷi

)

=

s
∑

m=1

σ̂ 2
m/s.

Table 2  Features of Romane sheep

Item

Number of records 19,671

Number of animals 11,073

Number of sires 1096

Number of dams 6550

Mean 2.13

Distribution of litter size (%)

Single 17.70

Twin 55.01

Triplet 24.18

Quadruplet and + 3.11
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variance, we calculated the B criteria on the validation 
subset by discretizing the whole data into 200 adjacent 
subgroups. The results are in Table 4. Based on the B cri-
teria, HTM’ and ITM were more efficient than TM (0.36 
for HTM’, 0.37 for ITM vs. 0.005 for TM).

Homoscedastic threshold model used as reference (TM)
With TM, the genetic additive variance of the liability 
σ 2
u∗ was equal to 0.079 and the variance of the perma-

nent environmental σ 2
p∗ effect was equal to 0.034, which 

resulted in a heritability h2 of 0.07. The correlation 
between the predicted and observed means was very high 
(r = 0.80) (Table 5), but it was low between the predicted 
and observed variances (r = 0.20). In spite of the curvi-
linearity between the predicted means and variances, the 
correlation between these variables was high (r = 0.99 ) 
and close to 1, and the B parameter was equal to 0.013 
(Table  3), which reveals the one-to-one relationship 
between these variables when this homoscedastic thresh-
old model was used as shown on the scatterplot of Fig. 1a.

Homothetic threshold model (HTM’)
The genetic additive variances obtained with HTM’ 
are in Table  6. By design, the correlation between the 
genetic values associated to thresholds (v) was equal 
to 1 in this model and the variance σ 2

ν′.1 was equal to 0. 
Moreover, and as expected due to the homothetic rela-
tionship, we observed an increase of σ 2

ν′.3 compared to 
σ 2
ν′.2. The variances were equal to 0.04, 0.05 and 0.20 for 

σ 2
u′.1, σ

2
ν′.2, and σ 2

ν′.3, respectively. The variance of the per-
manent environmental effect was equal to 0.015.

By transforming the results of the HTM’ parameteriza-
tion to those of HTM, we could estimate the variance of 
the genetic effects that affect the mean of the liability as 
well as the correlation between these effects. The values 
found for the mean of the liability, the scaling function 
and the correlation between effects were σ 2

u = 0.069 , 
σ 2
ν = 0.020 and ρ = −0.40, respectively. The variance 

of the permanent effect was σ 2
p = 0.015 whereas, by 

design, the mean of the residual variance was η2 = 1. 
Since the model fitted for the environmental variance did 
not include fixed effects but only a general mean and a 
genetic effect, the heritability of the liability mean could 
be estimated independently of a given environment and 
was as follows:

The correlation between observed and predicted means 
was high (r = 0.79) and not different from the value 
obtained with TM. This contrasts with the correlation 
between predicted and observed variances (r = 0.61). 
Although the prediction of the variances was still lower 
than that of the means, it was much higher than with 
TM. HTM’ could therefore break the link between the 
predicted means and variances and the B parameter was 
equal to 0.51 (Table  3) even if the correlation between 
these variables was still high (r = 0.88). The scatterplot in 
Fig. 1b shows this variability of the predicted variance for 
a given predicted mean.

In this homothetic translation model, the gap �1−2 
between the two first thresholds is an indirect measure 
of its variability for each individual. As an example, we 

h2l =
σ 2
u

σ 2
u + σ 2

p + η2 + σ 2
ν

= 0.062.

Table 3  Values obtained from  likelihood-ratio, BIC tests, B criteria, and  mean squared error (MSE) between  observed 
and fitted values in the different models

TM threshold model, HTM’ homothetic threshold model, ITM independent threshold model, B B criteria

Models/tests Likelihood-ratio (LRT) BIC test B MSE of mean MSE of variance

TM TM versus HTM’: ≫11
(Reject H0 P value <0.001)
TM versus ITM: ≫16
(Reject H0 P value <0.001)

54,005 0.013 0.07 0.13

HTM’ 49,517 0.51 0.07 0.10

ITM 50,663 0.42 0.07 0.10

Table 4  Values obtained from mean squared error of pre-
diction (MSEP) and  B criteria on  the validation subset 
in the different models

Models/tests MSEP B criteria

Threshold model (TM) 0.473 0.005

Homothetic threshold model (HTM’) 0.471 0.363

Independent threshold model (ITM) 0.481 0.371

Table 5  Correlations between the predicted and observed 
means as well as the predicted observed variance with the 
different models

TM threshold model, HTM’ homothetic threshold model, ITM independent 
threshold model

Model Predicted mean ver-
sus observed mean

Predicted variance 
versus observed vari-
ance

TM 0.80 0.21

HTM’ 0.79 0.61

ITM 0.78 0.59
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estimated the distribution of the litter size of two indi-
viduals having the same average litter size but different 
variances (Table  7). For these individuals, the values of 
the mean and variance estimated with HTM’ are close to 
the observed values of the mean and variance. The ratio 
is constant for the two individuals, and the difference in 
percentage of grand-offspring born as quadruplets or 
more can be large (0 vs. 6 %).

Independent threshold model (ITM)
The genetic variances and correlations obtained with 
ITM are in Table  8. Genetic variances were small, but 

larger for the second and third thresholds than for the 
first threshold. Genetic correlations were moderate 
(ρ > 0.4) and it was highest between ν′′2  and ν′′3 . Using 
the transformation formulas described in “Appendix 2”, it 
was possible to estimate the genetic variance associated 
with twin lambing (σ 2

ls=2 = 0.14), the corresponding her-
itability (h2ls=2 = 0.128) as well as the genetic correlation 
between the values for the first and the second classes of 
litter size (ρ = 0.44). The correlations between the pre-
dicted and observed means (r = 0.78) and between the 
predicted and observed variances (r = 0.59) were close 
to those obtained with HTM (Table 8). The B parameter 
(B = 0.42, Table 3), the correlation between the predicted 
means and variances (r = 0.91) and the scatter plot 
(Fig. 1c) were also similar to those obtained with HTM’. 
The Spearman rank correlations between the thresholds 
of HTM’ and ITM were high (Table 9).

Discussion
A genetic heteroscedastic model was previously pro-
posed [6] to analyze categorical variables and break down 

Fig. 1  Scatterplots of estimated mean vs. estimated variance across the observed range for the three models. a TM model. b HTM’ model. c ITM 
model

Table 6  Genetic variance and correlation between thresh-
olds for Romane sheep using the HTM’ model

Thresholds/genetic variance σ 2

u′ .1
σ 2

ν′ .2
σ 2

ν′ .3

0.04 0.13 0.13

0.05 1

0.20

Table 7  Observed values (prolificacy, variance) and estimated values with HTM’ [thresholds, different gap between the 
first thresholds (�1−2), ratio (R), prolificacy, variance, and percentage of the simple (% LS 1), double (% LS 2), triplet (% LS 
3) and quadruplet (% LS 4)] for two individuals

Observed values Estimated values with HTM’ model

Ind Prolificacy Variance τ
′

1
τ
′

2
τ
′

3
�1−2 R Prolificacy Variance % LS1 % LS2 % LS3 % LS4+

1 2.00 0.50 −0.63 0.92 2.16 1.55 1.8 2.09 0.54 16 53 25 6

2 2.00 0.33 −0.89 0.86 2.28 1.75 1.8 2.02 0.38 21 64 15 0
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the link between mean and variance that holds with the 
classical homoscedastic threshold model. This model 
originated from the combination of two base models: the 
homoscedastic threshold model for categorical data [19] 
and the structural heteroscedastic model for continuous 
variables [2]. In this paper, we studied further extensions 
of this model by analyzing the relationship that exists 
between categories and in particular by releasing the 
main constraint. 

In this paper, we propose two kinds of heteroscedastic 
models, both with different parameterizations. The first 
type (HTM/HTM’) was fully derived from the canaliza-
tion model proposed for continuous traits [2] with which 
it was easy to draw comparisons. The second type con-
sisted in relaxing the relationship that exists between 
thresholds (translation in TM or homothetic translation 

in HTM) and led to a model that considers each thresh-
old independently i.e. ITM. We demonstrated that this 
model was equivalent to a constrained multiple-trait 
model MTM on each class of the ordinal trait. This sec-
ond type of model is much more flexible than HTM and 
its application in selection would be of particular interest 
because it allows for each class to be controlled through 
a multiple selection index [20] with specific environmen-
tal effects and economic weights for each class. Mod-
eling each class of the trait to control its distribution or 
modeling only the most important class are trivial issues 
and have already been considered [21], however the cor-
rect multiple trait model must include a constraint on 
the sum of the probabilities of the n− 1 binary variables. 
In spite of their potential interest, the use of this kind of 
model (ITM or MTM) for genetic evaluation and selec-
tion would be limited since they require a larger number 
of parameters to be estimated than HTM or HTM’ and 
would probably show convergence problems when the 
number of classes exceeds three. Furthermore, their bio-
logical interpretation is difficult; for instance we could 
not link the parameters of ITM or MTM to the biological 
model of Schneider and Lyman [22], which assumes the 
existence of different genes that control the mean and the 
variance of a trait.

We compared TM, HTM’ and ITM through the anal-
ysis of data on litter size from both Romane and Rouge 
de l’Ouest sheep (the latter results are not shown). The 
low heritability of the liability to litter size obtained with 
an homoscedastic threshold model (i.e. TM) agreed with 
previous studies that used TM [23–25]. However, LRT, 
BIC, and MSE parameters showed that this homoscedas-
tic model was less successful than both heteroscedastic 
models. Consequently, the distribution of sheep litter size 
shows heteroscedasticity of genetic origin as revealed by 
both the homothetic HTM’ and independent threshold 
ITM models.

Taking the genetic heteroscedasticity in HTM’ and the 
subsequent transformation of the parameters to those 
of HTM into account did not substantially change the 
heritability of the liability to litter size compared to TM. 
However, with HTM, the additive genetic variance of the 
variability of the trait was smaller than the corresponding 
variance of its mean. This is in line with results in the lit-
erature that showed that when additive genetic variances 
of the mean and the variability of a trait were jointly esti-
mated, their values were smaller for the variability than 
for the mean [6, 9, 26–31]. This seems to be a common 
rule regardless of the methodology used for such esti-
mations, the trait or the species. In contrast, the genetic 
correlation between the mean of a trait and its variability 
is highly variable and covers the whole range of its varia-
tion interval. For instance, in a mouse population, genetic 

Table 8  Genetic variance and correlation between thresh-
olds for Romane sheep using the ITM model

Thresholds/genetic variance σ 2

ν′′ .1
σ 2

ν′′ .2
σ 2

ν′′ .3

0.035 0.631 0.430

0.138 0.921

0.176

Table 9  Spearman rank correlations between  the HTM’ 
and ITM models

First threshold 0.988

Second threshold 0.989

Third threshold 0.988

Fig. 2  Scatterplot of estimates of the gap between the threshold and 
the mean predicted by the HTM model
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correlations of −0.93 and 0.97 were reported for litter 
size and individual birth weight, respectively [29]. In our 
study, we found a negative genetic correlation between 
the mean and the variability of sheep litter size with 
HTM’ (ρ = −0.40). As highlighted by Yang et  al. [32], 
this parameter might be affected by an artefact due to the 
scale of measurement or skewness of the data, although 
with the threshold model no such skewness affected this 
correlation. However, a study on another French sheep 
breed (Rouge de l’Ouest) for which the mean prolifi-
cacy (prolificacy =  1.80; LS3+ =  12.5  %) is lower than 
in Romane sheep (results not shown) reported a similar 
value i.e. −0.25.

Relaxing the homothetic constraint between the 
thresholds of HTM’ did not improve the fit of the model 
or the predictive ability of the data as might be expected, 
but instead increased the BIC values due to the larger 
number of parameters to estimate in ITM. Moreo-
ver, although the constraint on the genetic correlation 
between thresholds was relaxed in ITM, the correlation 
between the second and third thresholds remained close 
to 1 and the correlation between the first and second 
thresholds was high; in addition, the Spearman rank cor-
relations between the thresholds of HTM’ and ITM were 
close to 1 (Table 9). This suggests that the true nature of 
the link between the thresholds is almost a homothetic 
translation in sheep and that the distributions of litter 
size classes are not independent but linked by a strong 
common law. It also means that the concept of sensitiv-
ity thresholds, which transform individual Gaussian vari-
ables that differ in mean and variance into the observed 
categories, might be relevant.

Nonetheless in our study, only genetic effects were con-
sidered as threshold-specific in ITM in order to compare 
the different models using LRT or BIC criteria. Of course, 
threshold-specific fixed effects and permanent effects 
could be included in ITM. In the same way, threshold-
specific fixed effects and permanent effects could be 
included in HTM’. Unfortunately, HTM with a threshold-
specific permanent effect did not converge and thresh-
old-specific fixed factors with proportional effects cannot 
be implemented in ASReml. It may be possible to esti-
mate fixed effects in the residual variance using an itera-
tive process that tests the influence of each effect on the 
variance of the model. We did not test such algorithms 
on our data and it would probably be a slow and difficult 
process. Another solution would be to modify existing 
software for canalizing selection of a continuous trait in 
order to take into account the discrete characteristics of 
the data.

Using ITM, Martin et  al. [33] showed that the poly-
morphism of a single gene affected not only the mean 
prolificacy in Lacaune sheep, but also modified its 

variability by changing the gap between the thresholds 
in a homothetic way. A superiority of the homothetic 
model (HTM’), as well as a similar genetic variability 
of the liability to litter size were found for Rouge de 
l’Ouest sheep (results not shown), thus covering the 
whole range of prolificacy in breeds for which canaliza-
tion might be of interest. By design, the gap between 
the first two thresholds estimated for each individual 
in HTM’ is inversely proportional to the individual 
residual variance of HTM  (Fig.  2). This criterion has 
been used to compare the variability of about 50 French 
sheep breeds [34].

Conclusions
This study shows that we can model the variabilities 
(mean and variance) of a discrete trait using a suitable 
model, namely the HTM’ model. Thus, the canalization 
of discrete traits is possible and the gap between the 
first two thresholds estimated for each individual in this 
model could be used to estimate the breeding value for 
the variability of litter size independently from that of the 
mean.
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Appendix 1
In this section we describe how we calculated the param-
eters σ 2

u, σ 2
ν  and ρuν of a HTM model based on the HTM’ 

estimates. Let t ′k be the kth threshold of the HTM’ model 
with t′.i = µ

′
+ u

′

i1
T + v

′

i
, a simple variable transforma-

tion gives:

Given that t1 = 0 and t2 = 1 in HTM and t ′1. = µ
′

1 + u
′ 

and t ′2. = µ
′

2 + u
′
+ ν

′

2 in HTM’, we obtain:

Considering that the ratio ν ′

2/µ
′

2 − µ
′

1 is small in com-
parison to 1, we applied Taylor’s expansion to the previ-
ous equation:

{

t
′

2 =
t2−(µ+u)
f (η+ν)

t
′

1 =
t1−(µ+u)
f (η+ν)

.























f (η, ν) = 1

µ
′

2−µ
′

1+ν
′

2

= 1

µ
′

2−µ
′

1

�

1

1+ν
′

2/µ
′

2−µ
′

1

�

u = −µ− f (η, ν)
�

µ
′

1 + u
′
�

.
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Thus, In the case of a linear function f  and given that 
ν′2 =

(

µ′
2 − µ′

1

)

ν′, we obtain:

where C1 =
1

µ
′

2−µ
′

1

− η and C2 = −µ−
µ
′

1

µ
′

2−µ
′

1

 are con-
stant terms.

Therefore, given that the variance of the prod-
uct of two centered random variables X and Y  is 
σ 2
X∗Y = σ 2

Xσ
2
Y +

(

σX ,Y
)2 and that σXY ,Y = 0, we obtain:

The correlation between ν and u is: ρuν = σuν
σuσν

, with:

Appendix 2
In this section, we describe how we calculated the genetic 
variance (u′′∗2 ) in the MTM model based on the genetic 
variances 

(

u′′1,u
′′
2

)

 of the ITM model.
The probability that the trait be of class 1 (2, or 3, etc.) 

is the same for both models, thus:

⇒























f (η, ν) = 1

µ
′

2−µ
′

1

−
ν
′

2
�

µ
′

2−µ
′

1

�2

u = −µ− 1

µ
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2−µ
′

1

�

1−
ν
′

2

µ
′

2−µ
′

1

�

�

µ
′

1 + u
′
�

⇒










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µ′
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1
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�
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1
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1

�

− u′
�

1
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2−µ′

1

�
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�

1
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�

,








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
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where L is the Logit distribution function.

Thus, the variance σ 2
u′′∗2

 is:

We see that, from the parameters of the ITM model, we 
can deduce the parameters of the MTM model.
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