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Abstract

Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid
pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain
intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is
proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic
cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight
into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor
Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in
destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin
subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of
newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the
acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation
of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during
early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway
identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in
Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a
pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman’s thirties, not
because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new
cohesive linkages at the same rate at which they are lost.
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Introduction

In both mitotic and meiotic cells, sister chromatid cohesion is

required for accurate chromosome segregation, and the cohesive

linkages that hold sister chromatids together depend on the

cohesin complex which forms a DNA-entrapping ring [1,2]. In

addition to holding sister chromatids together, cohesion plays

several additional essential roles during meiosis. The integrity of

the synaptonemal complex, a meiosis-specific structure that holds

homologs in close proximity during recombination, depends on

cohesion proteins and crossovers between homologs are reduced

in cells in which cohesion is compromised [3]. In addition,

cohesion along the arms of sister chromatids provides an

evolutionarily conserved mechanism that keeps recombinant

homologs physically associated until anaphase I [4–6]. By

maintaining chiasmata, arm cohesion promotes proper orienta-

tion and microtubule attachments of homologous chromosomes

on the metaphase I spindle and is therefore crucial for accurate

segregation of homologs during the first meiotic division.

The timeline of human oogenesis presents a daunting challenge

for the maintenance of meiotic cohesion [7]. Oocytes undergo

meiotic DNA replication, establish sister chromatid cohesive

linkages and complete meiotic recombination during fetal

development. Before birth, oocytes enter a prolonged diplotene

arrest (known as dictyate), and resumption of meiosis occurs only

as individual oocytes are recruited for ovulation. Because the

majority of human oocytes remain arrested for decades, the

continued physical association of recombinant homologs and their

accurate segregation during meiosis I demands that cohesion along

the arms of sister chromatids remain intact during this extended

timeframe.

Chromosome segregation errors during female meiosis are the

leading cause of miscarriages and birth defects in humans [8].

Furthermore, the risk of producing aneuploid gametes increases

exponentially as women age. A correlation between advanced

maternal age and increased incidence of single chromatids prior to

the second meiotic division has been reported for human oocytes

obtained from cancer patients and from women undergoing in

PLOS Genetics | www.plosgenetics.org 1 September 2014 | Volume 10 | Issue 9 | e1004607

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004607&domain=pdf


vitro fertilization [9,10]. While the mechanisms underlying the

maternal age effect are likely to be complex, work in Drosophila

and mice also indicates that meiotic cohesion weakens with age

and supports the hypothesis that deterioration of meiotic cohesion

plays an important role in age-related segregation errors in human

oocytes [6,11–14].

Based on work in budding yeast, it is widely accepted that under

normal conditions, cohesive linkages are only established during S

phase [1,2]. However, if this were the case for human oocytes, the

same cohesin complexes used for cohesion establishment in the

human fetal ovary still would be present in adult oocytes years

later. On first reflection, this provides a satisfying explanation for

why cohesion defects would be more prevalent in the oocytes of

older women. However, is it really possible that the same cohesin

rings remain intact on meiotic chromosomes for even five years,

much less 25? An alternate possibility is that maintenance of

meiotic cohesion is an active process that utilizes a specialized

rejuvenation program to establish new cohesive linkages through-

out the extended timeframe of prophase I. Precedence for

cohesion establishment outside of S phase comes from work in

budding yeast, which has demonstrated that under certain

conditions vegetative cells can establish functional cohesive

linkages during G2 [15–19]. Moreover, in both Drosophila and

mouse oocytes, localization of the cohesin loader Nipped-B along

the arms of meiotic chromosome during pachytene has been

observed [20–22], consistent with the possibility that cohesin

complexes are loaded and converted to functional linkages during

meiotic prophase.

Here we utilize Drosophila to test the hypothesis that cohesion

rejuvenation occurs during meiotic prophase. The Drosophila

oocyte provides an excellent system to study the maintenance of

meiotic cohesion because prophase I lasts approximately six days

[23], and the linear array of oocytes within each of the ovarioles

comprising the ovary permits one to monitor chromosome

morphology at progressive stages during meiotic prophase. In

addition, a simple genetic assay allows us to measure the fidelity of

meiotic chromosome segregation. We have used a Gal4/UAS

inducible RNAi strategy to ask whether cohesion defects occur if

we reduce cohesion regulators or cohesin complex subunits after

meiotic cohesion is established normally during meiotic S phase. We

find that a rejuvenation program operating during prophase I is

necessary to sustain a level of meiotic cohesion that is sufficient for

chiasma maintenance and accurate chromosome segregation. Our

data support the model that rejuvenation of meiotic cohesion

requires Nipped-B-dependent loading of newly synthesized cohesin

complexes and Eco-dependent establishment of new cohesive

linkages. Furthermore, Eco-mediated cohesion rejuvenation does

not depend on induction of double-strand breaks and therefore

differs from the damage-induced cohesion re-establishment

pathway that operates in yeast cells. We raise the possibility that

the rejuvenation pathway we have uncovered in Drosophila oocytes

may represent an evolutionarily conserved mechanism to ensure

that an adequate number of cohesive linkages remain present

during the extended period that metazoan oocytes stay arrested in

prophase I.

Results

The mata driver induces Eco knockdown after meiotic S
phase

We reasoned that if it were to occur, rejuvenation of cohesion

during the extended prophase I period might utilize factors that

are normally required for cohesion establishment. Therefore, we

began our analysis by focusing on the cohesion establishment

factor Eco, (also known as Deco, Drosophila Eco1 [24]). In yeast,

Eco1 acetyltransferase activity is required to establish cohesion

during S phase [1,2].

In order to ask whether Eco activity is required to keep meiotic

cohesion intact after its original establishment, we employed a

Gal4/UAS inducible RNAi strategy that allowed us to leave Eco

levels and activity unaffected during meiotic S phase, when

cohesion is established, and to induce RNAi-mediated decay of

Eco transcripts only after cohesive linkages are generated. To

accomplish this, we used the mat-a-tubulin-Gal4-VP16 driver

(hereafter abbreviated mata driver) which has previously been

shown to begin expression during mid-prophase [25]. Using a

UASp-Actin-GFP reporter, we verified that the mata driver is not

active until after meiotic DNA replication and would therefore

allow us to induce Eco knockdown after normal cohesion

establishment (Figure S1).

We used the mata driver to induce expression of a UAS-Eco

RNAi hairpin transgene (VDRC.Eco.35982, Table S1, hereafter

referred to as Eco RNAiGD) and performed single molecule FISH

[26] to quantify the number of Eco transcripts in control and Eco

knockdown (KD) germline cysts at different stages during

oogenesis (Figure S2). In germarial region 3, the number of Eco

transcripts per area for control and Eco KD was the same

(p = 0.95, Figure S2B), confirming that Eco knockdown does not

commence until after meiotic S phase. We are confident that our

assay is sensitive enough to detect a change in the number of Eco

transcripts in the germarium because we observed a significant

reduction (,14%) in region 3 for the viable allelic combination

eco1/eco2 compared to the control (p = 0.018, Fig S2B). At later

stages, when mata driver expression is more robust, Eco

transcripts were significantly reduced in Eco RNAiGD egg

chambers, confirming that mata driving Eco RNAiGD reduces

Eco transcripts in germline cells, but only after cohesive linkages

are established during meiotic S phase.

Eco function is required after meiotic S phase
To begin to explore whether Eco activity is required to maintain

meiotic cohesion, we investigated whether reduction of Eco during

Author Summary

Meiosis is a specialized type of cell division that gives rise
to sperm and eggs. In a woman’s thirties, errors in meiotic
chromosome segregation rise exponentially, significantly
increasing the probability that she will conceive a fetus
with Down Syndrome (Trisomy 21). Accurate chromosome
segregation during meiosis depends on protein linkages
(cohesion) that hold sister chromatids together. The widely
held view is that under normal conditions, cohesion can
only be established during DNA replication, and the
original cohesive linkages formed in fetal oocytes are
gradually lost as a woman ages. However, it seems unlikely
that the same cohesion proteins could survive for even five
years, much less 25 years. Here we show that Drosophila
oocytes possess an active rejuvenation program that is
required to load newly synthesized cohesion proteins and
to establish new cohesive linkages after meiotic DNA
replication. When we reduce the proteins responsible for
rejuvenation after meiotic S phase, cohesion is lost and
meiotic chromosomes missegregate. If such a rejuvenation
pathway also exists in human oocytes and becomes less
efficient with age, oocytes of older women may no longer
be able to replace cohesive linkages at the same rate that
they are lost.

Rejuvenation of Meiotic Cohesion
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meiotic prophase impacts the integrity of the synaptonemal

complex (SC), a tripartite proteinacious structure that holds

homologous chromosomes in close proximity during the process of

meiotic recombination [27]. Mutations in cohesion proteins have

been shown to disrupt the formation and/or maintenance of the

SC [28–35]. In wild-type Drosophila oocytes, full-length SC forms

in region 2A of the germarium and remains intact until stage 6

[36,37]. To monitor SC stability in Eco KD oocytes, we stained

for the SC transverse filament protein C(3)G [36,38]. In control

ovarioles (Eco RNAiGD transgene, no driver), we observed long

continuous C(3)G threads until stage 6 (Figure 1) when normal SC

disassembly occurs at the end of pachytene. However, when Eco is

knocked down in mid-prophase I (mata driving Eco RNAiGD

transgene), we observed a number of SC defects. Figure 1 shows

representative images of the SC in control and Eco KD oocytes at

different stages, as well as quantification of the defects we

observed. In order to quantify the severity of the defects, we

utilized three categories (broken threads, short threads, or spots) to

describe oocytes that lacked normal, continuous C(3)G threads.

These categories represent the range of defects we observed, with

spots corresponding to the most severe disruption of the SC.

When Eco is knocked down during mid-prophase I, the SC

appears normal in all germarial stages (regions 2A, 2B and 3), but

premature disassembly is visible beginning at stage 2 (Figure 1,

Eco KD), after expression of the mata driver begins. The majority

of stage 2 oocytes contain continuous SC, but minor defects

(broken threads) are apparent in approximately 35% of the Eco

KD oocytes. By stage 3, the majority of oocytes exhibit SC defects;

the percentage of oocytes with broken threads increases to 40%,

while 25% display a more severe phenotype (short threads). As

oocytes progress through prophase I, the severity of the defects

increases. By stage 4, premature disassembly of the SC is visible in

all Eco KD oocytes examined, the majority of which contain only

short threads of SC. At stage 5, 35% of the Eco KD oocytes

contain only spots of SC signal, and the majority of the stage 6

oocytes belong to this category (Figure 1). These results demon-

strate that when Eco is knocked down after S phase, progressive

deterioration of the SC occurs.

Because the Drosophila germline is somewhat refractory to

RNAi [39] and because the Eco RNAiGD vector (modified

pUAST vector pMF3) is not efficiently expressed in the germline

[40,41], we overexpressed Dicer-2 [41] to increase the efficacy of

the Eco RNAiGD hairpin. Dicer-2 is a component of siRNA-

dependent RISC (RNA induced silencing complex) and is

required for siRNA-mediated silencing [42]. As shown in Figure 1,

SC defects are enhanced both in the number of oocytes affected

and the severity of the defects when the mata driver induces

overexpression of a UAS-Dicer-2 transgene simultaneously with

Eco RNAiGD. Overall, these data argue that Eco activity during

meiotic prophase is essential to stabilize the synaptonemal complex

and are consistent with a role for Eco in maintaining meiotic

cohesion after meiotic S phase.

Meiotic chromosomes missegregate when Eco is reduced
after S phase

If Eco were required to rejuvenate meiotic cohesion after S

phase, we would expect RNAi-mediated reduction of Eco activity

during prophase to result in chromosome segregation errors.

Therefore, we used our standard genetic assay (see Materials and

Methods) to measure the fidelity of chromosome segregation in

Eco KD and control oocytes. Induction of the Eco RNAiGD

transgene with the mata driver caused a significant increase in

meiotic nondisjunction (p = 0.004, Figure 2A), and chromosome

segregation errors increased even more substantially in Eco KD

oocytes when Dicer-2 was over-expressed (p,0.0001, Figure 2A).

Our findings that chromosome segregation errors in Drosophila

oocytes increase when Eco is reduced during prophase I indicate

that Eco activity is required after S phase to ensure accurate

chromosome segregation during meiosis.

We carried out a number of controls to rule out nonspecific

effects and confirm that the SC and segregation defects we

observed in Eco KD oocytes were indeed due to reduction of Eco

during meiotic prophase. Expression of two additional Eco hairpin

transgenes (Eco RNAiV1 and Eco RNAiV22, see Table S1) with the

mata driver caused premature disassembly of the SC (Figure S3),

and induction of the Eco RNAiV1 hairpin also resulted in meiotic

NDJ (Figure S3). The low fertility of Eco RNAiV22 KD females

(even in the absence of UAS-Dcr-2) prevented us from measuring

meiotic NDJ in this genotype. However, together these data verify

that the effects of Eco RNAiGD transgene expression were not due

to nonspecific targets. In addition, in oocytes in which mata-

induced Dicer-2 overexpression occurred in the absence of any

RNAi hairpin transgene, we observed normal SC (Figure S4A)

and no significant increase in NDJ (Figure S4B) confirming that

the enhanced SC and NDJ defects we observed when Dicer-2 was

overexpressed in a Eco KD background were a result of the

increased RNAi efficiency. Finally, we also validated that the onset

of SC defects at stage 2 in Eco KD oocytes (Figure 1) occurred as a

natural consequence of the temporal expression of the mata driver

and not because the germarium is refractory to RNAi. When we

used the nanos-Gal4-VP16 driver [43] to induce the expression of

Eco RNAiGD in the germarium, we observed premature

disassembly of the SC beginning in germarial region 2B (Figure

S5A & B), providing evidence that Eco knockdown in the

germarium can be achieved with the nanos driver. Moreover,

knockdown of Eco using the nanos driver resulted in a significant

increase in segregation errors (p,0.0001, Figure S5C). Most likely,

nanos-driven knockdown of Eco impacts the establishment of

cohesion during meiotic S phase as well as any prophase I

functions of Eco protein.

Chiasmata are not maintained when Eco is knocked
down during mid-prophase

One prerequisite for accurate segregation during meiosis I is

that homologous chromosomes must remain physically associated

until anaphase I when they segregate to opposite poles. After

crossovers are formed, it is cohesion along the arms of sister

chromatids that keeps recombinant homologs tethered to each

other and chiasmata stabilized [4–6]. If knockdown of Eco after

meiotic S phase causes loss of cohesion during prophase, we would

expect chiasmata to become destabilized and recombinant

chromosomes to missegregate during anaphase I. Therefore, we

utilized a genetic assay [11] that allowed us to monitor for loss of

chiasma maintenance in Eco KD oocytes.

We first verified that crossover formation was not severely

disrupted when Eco RNAiGD was induced with the mata driver in

combination with Dicer-2 overexpression. We monitored cross-

over frequency in four intervals along the X chromosome in Eco

KD and control oocytes and found no significant difference

between the two genotypes (Figure S6), indicating that crossovers

form normally when Eco is reduced during mid/late pachytene.

To obtain direct evidence that Eco KD during prophase I

causes loss of cohesion, we assayed the recombinational history of

the missegregating chromosomes in Eco RNAiGD oocytes. To

obtain these data, we performed a standard NDJ test using Eco

KD and control females heterozygous for an X chromosome with

several visible markers, including one located proximal to the

centromere (Figure 2B). By performing an additional cross with

Rejuvenation of Meiotic Cohesion
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the Diplo-X progeny arising from the NDJ test, we were able to

determine what fraction of missegregating chromosomes had

undergone one or more crossovers and, based on the centromere-

linked y+ marker, whether segregation errors occurred primarily in

meiosis I or in meiosis II.

The results from two independent experiments shown in

Figure 2C demonstrate that the majority of bivalents that exhibit

segregation defects in Eco KD oocytes are recombinant and that

segregation errors occur primarily during meiosis I. In the first

experiment, 18 of the 27 Diplo-X females arising from chromo-

some NDJ in Eco KD oocytes harbored at least one recombinant

chromosome. In the second experiment, 13 of the 16 Diplo-X
females contained at least one recombinant chromosome. In

addition, because 27 of the 31 Diplo-X females harboring

recombinant chromosomes were heterozygous for the centromere

proximal y+ marker (Experiments 1 and 2 combined, see Figure

S7), we conclude that the majority of segregation errors arose from

meiosis I NDJ (Figures 2C and S7). Missegregation of recombi-

nant chromosomes during meiosis I supports the hypothesis that

when Eco is knocked down after meiotic S phase, crossovers are

formed but chiasmata are not stabilized due to loss of arm

cohesion. Moreover, it is important to note that our assay

Figure 1. Eco knockdown in mid-prophase causes premature disassembly of the SC. (Top) C(3)G immunostaining is shown for oocytes
from females containing the UAS-Eco RNAiGD transgene in the absence of driver (Control), the presence of the mata driver (Eco KD) and the presence
of the mata driver and a UAS-Dicer-2 transgene to increase Eco RNAi efficiency (Eco KD + Dcr-2). Long continuous threads of SC are apparent in
Control oocytes until stage 6. In contrast, premature disassembly of the SC is visible in Eco KD and Eco KD + Dcr-2 oocytes starting as early as stage 2.
Images for each stage were captured and processed identically and projections of deconvolved Z-series are shown. Scale bar, 2 mm. (Bottom)
Quantification of SC defects is presented. Oocytes with SC disassembly were assigned to one of three categories with increasing severity: broken
threads, short threads and spots. In Control oocytes, SC disassembly is not detected until stage 6. In contrast, premature disassembly of the SC is
detectable beginning at stage 2 in the Eco KD oocytes. As prophase I progresses, both the severity of the defects and the percentage of oocytes
affected increase. When Dicer-2 is overexpressed, the phenotype is enhanced at all stages, in both the percentage of oocytes with defects and the
severity of defects. At least 20 oocytes were scored for each genotype at each stage.
doi:10.1371/journal.pgen.1004607.g001
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Figure 2. Chiasmata are not maintained if Eco is knocked down during mid-prophase I. (A) X chromosome nondisjunction (NDJ) is
significantly higher (p = 0.004) in oocytes expressing the UAS-Eco RNAiGD transgene under the control of the mata driver (Eco KD, n = 631) compared
to oocytes containing the UAS-Eco RNAiGD transgene in the absence of driver (Control, n = 763). Overexpression of the UAS-Dicer-2 transgene in Eco
KD oocytes (Eco KD + Dcr-2, n = 505) causes a further increase in X chromosome NDJ (p,0.0001) compared to UAS-Eco RNAiGD + UAS-Dicer-2 oocytes

Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 5 September 2014 | Volume 10 | Issue 9 | e1004607



underrepresents the percentage of recombinant bivalents that

missegregate, because it is possible for a Diplo-X female to inherit

two non-recombinant chromatids from a recombinant bivalent

(Figure 2B). Together, these results demonstrate that Eco activity

is required to maintain meiotic cohesion after cohesive linkages are

formed during S phase and that Eco-mediated rejuvenation of

cohesion during meiotic prophase is necessary for chiasma

maintenance and accurate chromosome segregation.

Synthesis of cohesin subunits is required during meiotic
prophase I to maintain cohesion

Our analysis of Eco KD oocytes indicates that Eco activity is

required to maintain cohesive linkages during meiotic prophase I.

One possibility is that re-acetylation of SMC3 molecules within

existing cohesive rings is required to stabilize meiotic cohesion

during the prolonged period of prophase I. Alternatively, Eco-

mediated rejuvenation of cohesion during prophase I could

involve establishment of new linkages. Mata-driven knockdown

of cohesin subunits should only impact meiotic cohesion if the

latter were true. Therefore, we used the mata driver to induce

expression of SMC1 RNAiV22, SMC3 RNAiV20, or Stromalin (SA)

RNAiV20 hairpins (see Table S1) to reduce synthesis of cohesin

subunits after establishment of meiotic cohesion. These transgenic

constructs utilized the Valium 20 or Valium 22 vectors optimized

for expression in the Drosophila germline [39].

Like reduction of Eco during meiotic prophase, knockdown of

SMC1, SMC3 or SA using the mata driver results in premature

disassembly of the SC starting at stage 2 (Figure 3). A comparison

of each KD genotype with its corresponding control genotype

(UAS RNAi, no driver) is shown in Figure 3. Similar to what we

observed for Eco KD oocytes, both the number of oocytes affected

and the severity of the defects escalate as cohesin knockdown

oocytes progress through prophase I. In addition, the phenotype at

each stage of oogenesis is very similar for each of the cohesin

knockdowns. These data indicate that synthesis of new cohesin

subunits is required during meiotic prophase I to keep the SC

intact.

Given the similarity of SC defects in Eco KD and cohesin KD

oocytes, we asked whether chromatin localization of SMC1 was

perturbed when Eco or SMC1 proteins were reduced after meiotic

S phase. One possibility is that premature disassembly of the SC

occurs in these genotypes because of disruption of the cohesin-

enriched chromosome cores that form a scaffold for the axial

elements of the SC [29,35,44,45]. We performed C(3)G and

SMC1 co-immunolocalization experiments with ovarioles of Eco

KD and SMC1 KD females and their respective controls (no

driver) and compared region 3 oocytes (before SC defects occur)

with those at stage 4 (when SC defects are pronounced). In both

Eco KD and SMC1 KD oocytes, long continuous SMC1 threads

were visible in region 3 oocytes, coincident with intact SC

(Figure 4). However, in both genotypes, the SMC1 signal was

restricted to short threads and spots in stage 4 oocytes, similar to

that of the C(3)G signal. This pattern contrasts sharply with the

extensive SMC1 threads visible in stage 4 oocytes for both control

genotypes (Figure 4). Our findings indicate that SMC1 protein

synthesis and Eco activity are required after meiotic S phase to

maintain cohesin-enriched chromosome cores during pachytene.

These data support the model that chromatin association of newly

synthesized cohesin subunits occurs during prophase I and

depends on Eco.

We also found that X chromosome NDJ increases when cohesin

subunits are knocked down after meiotic S phase (Figure 5). Mata
driver induced expression of an SMC1 RNAiV22 or SMC3

RNAiV20 hairpin during mid-prophase increased chromosome

missegregation significantly (p = 0.011 and p,0.0001, respective-

ly). Of particular note, SMC3 KD oocytes were extremely

subfertile, and progeny were obtained in only one of three NDJ

tests performed. SA KD oocytes were sterile in all NDJ tests

attempted. The sterility observed when cohesin subunits are

knocked down during prophase most likely stems from embryonic

lethality following effective maternal depletion of these essential

proteins using the germ-line optimized Valium 20 and Valium 22

expression cassettes. Regardless, the significant increase in NDJ

observed when SMC1 or SMC3 is reduced indicates that new

synthesis of cohesin subunits during meiotic prophase is required

for accurate chromosome segregation.

To verify that meiotic cohesion is lost when SMC1 is knocked

down after meiotic S phase, we used our recombinational history

assay to determine the genotype of missegregating chromosomes

in SMC1 KD oocytes. The number and distribution of crossovers

along the X chromosome are normal when SMC1 KD is induced

with the mata driver (Figure S8); however, although chiasmata

form, they are not maintained. In two independent experiments,

the majority of Diplo-X females arising from segregation errors

harbored at least one recombinant chromosome, and segregation

errors occurred primarily during meiosis I (Figures 5 and S8).

These data indicate that maintenance of meiotic cohesion and

chiasmata require incorporation of newly synthesized cohesin

subunits into functional cohesive linkages during prophase I.

The cohesin loader, Nipped-B, is required for cohesion
rejuvenation during meiotic prophase I

We have shown that the synthesis of new cohesin subunits

during prophase I is required for maintenance of cohesion and SC

integrity. These data suggest that rejuvenation requires either

replacement of individual cohesin subunits within pre-existing

rings or the loading of new intact cohesin complexes. To further

investigate the mechanism of rejuvenation, we asked whether

Nipped-B, the Drosophila Scc2 ortholog [46], is required after

meiotic S phase to maintain cohesion. In S. cerevisiae, cohesin

rings form normally in scc2 mutants but do not associate with

chromosomes [47]. In Drosophila oocytes, Nipped-B co-localizes

lacking the mata driver (Control, n = 799). (B) The method used to determine the recombinational history of X chromosomes that missegregate is
shown. The NDJ test utilizes females that are heterozygous for several visible markers on the X chromosome, including a centromere-linked y+

marker. In this illustration, a single crossover between cv and v produces a bivalent with two recombinant and two non-recombinant chromatids.
Subsequent meiosis I NDJ could result in a Diplo-X female that inherits two X chromosomes from her mother, only one of which has undergone a
crossover. In order to determine the genotype of the X chromosomes in the Diplo-X female, she is crossed to a wild-type male and her sons are
scored for the X chromosome visible markers. Because the two largest classes of her progeny will correspond to parentals, the genotype of the X
chromosomes in the Diplo-X female can be deduced, allowing us to determine whether recombinant chromosomes missegregated in the NDJ test.
(C) The results of two independent experiments are presented. Each utilized females containing the UAS-Eco RNAiGD and UAS-Dicer-2 transgenes in
the absence of driver (Control) and the presence of the mata driver (Eco KD + Dcr-2). In both tests, more than 66% of Diplo-X progeny result from
missegregation of recombinant chromosomes (18 out of 27, and 13 out of 16 Diplo-X females, respectively). Moreover, 83% of the recombinant
bivalents that missegregate result in Diplo-X females that are heterozygous for the y+ centromere-linked marker and therefore represent meiosis 1
NDJ events (15 out of 18, and 12 out of 13 Diplo-X females, respectively). See Figure S7 for raw data.
doi:10.1371/journal.pgen.1004607.g002

Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 6 September 2014 | Volume 10 | Issue 9 | e1004607



Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 7 September 2014 | Volume 10 | Issue 9 | e1004607



with SMC1 and SMC3 along the arms of pachytene chromosomes

[20], supporting the model that loading of cohesin complexes

continues to occur after meiotic S phase.

We reasoned that if loading of new cohesin rings during

prophase I is required for cohesion maintenance, knockdown of

Nipped-B using the mata driver would cause meiotic defects.

We performed experiments using two different hairpins

(Nipped-B RNAiV20 and Nipped-B RNAiV22, see Table S1) so

that concerns of off-target effects could be eliminated. Figure 6

shows that when the mata driver induces expression of either of

the Nipped-B hairpins, premature disassembly of the SC begins

at stage 2. The observed defects are very similar for the two

Figure 3. Knockdown of cohesin subunits in mid-prophase causes SC defects. (Top) C(3)G immunostaining is shown for oocytes in which
expression of the UAS-SMC1 RNAiV22, UAS-SMC3 RNAiV20 or UAS-SA RNAiV20 transgene is induced by the mata driver (SMC1 KD, SMC3 KD, SA KD) as
well as a control for each in which the respective RNAi transgene is present but the driver is absent. In contrast to the long continuous threads visible
in control oocytes until stage 6, premature disassembly of the SC is visible in SMC1 KD, SMC3 KD, and SA KD oocytes starting as early as stage 2.
Images for each stage were captured and processed identically. Projections of deconvolved Z-series are shown. Scale bar, 2 mm. (Bottom)
Quantification of SC defects from region 3 (Reg 3) through stage 6 (St 6) is presented for the control (C) and knockdown (KD) genotypes described
above. SC disassembly is not detected until stage 6 in Control oocytes for each RNAi transgene. In contrast, premature disassembly of the SC is
detectable beginning at stage 2 (St 2) in the SMC1 KD, SMC3 KD, and SA KD oocytes. As prophase I progresses, both the severity of the defects and
the percentage of oocytes affected increase. At least 20 oocytes were scored for each genotype at each stage.
doi:10.1371/journal.pgen.1004607.g003

Figure 4. Maintenance of chromosome cores during pachytene requires Eco activity and synthesis of SMC1. (A) SMC1 and C(3)G
immunostaining is shown for Region 3 and Stage 4 oocytes from females containing the UAS-Eco RNAiGD and UAS-Dicer-2 transgenes in the absence
(Control) and presence of the mata driver (Eco KD + Dcr-2). In Region 3, for both Control and Eco KD + Dcr-2 oocytes, long continuous C(3)G and
SMC1 threads are apparent, indicating that SMC1 chromosome cores are intact. However, by stage 4, severe fragmentation of C(3)G and SMC1
threads is evident in Eco KD oocytes. (B) SMC1 and C(3)G immunostaining is shown for Region 3 and Stage 4 oocytes from females containing the
UAS-SMC1 RNAiV22 transgene in the absence (Control) and presence of the mata driver (SMC1 KD). Long continuous threads of C(3)G and SMC1 are
visible in Region 3 for both Control and SMC1 KD oocytes. In contrast, the signal for both proteins is limited to short stretches and spots in SMC1 KD
oocytes at Stage 4, consistent with loss of cohesin from chromosome cores. Images in both A and B are projections of deconvolved Z-series and for
each antibody. Control and KD images for each stage were captured and processed identically. Scale bar, 2 mm.
doi:10.1371/journal.pgen.1004607.g004
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Figure 5. Cohesin subunit knockdown after meiotic S phase causes loss of chiasmata and chromosome segregation defects. (A) The
UAS-SMC1 RNAiV22 transgene driven by mata-Gal4-VP16 (SMC1 KD) resulted in 2.48% X chromosome NDJ (n = 725), significantly higher than that
observed in UAS-SMC1 RNAiV22 oocytes lacking the mata driver (Control, 0.27%, n = 730). (B) Expression of the UAS-SMC3 RNAiV20 transgene with the
mata driver (SMC3 KD) caused 8.21% NDJ (n = 682), significantly higher than that observed in females containing the UAS-SMC3 RNAiV20 transgene in
the absence of driver (Control, 0% NDJ, n = 810). (C) In two independent tests, at least 71% of Diplo-X females arising from SMC1 RNAiV22 KD oocytes
contained recombinant chromosomes (5 out of 7, and 6 out of 7 respectively). Of these 11 Diplo-X females, the majority (4 out of 5, and 4 out of 6
respectively) contained X chromosomes that were heterozygous for the y+ centromere-linked marker, indicative of meiosis 1 segregation errors.
Please see Figure S8 for raw data.
doi:10.1371/journal.pgen.1004607.g005

Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 9 September 2014 | Volume 10 | Issue 9 | e1004607



Nipped-B constructs, and both the percentage of oocytes

affected and the severity of the defects increases during

prophase I progression. If we simultaneously overexpress

Dicer-2 in Nipped-B knockdown oocytes, SC defects are

modestly enhanced. Importantly, the phenotypes that are

manifest in Nipped-B KD oocytes closely resemble those

observed when Eco or cohesin subunits are reduced during

prophase I. Unfortunately, we were unable to monitor the

fidelity of chromosome segregation because Nipped-B KD flies

were sterile, even in the absence of Dicer-2 overexpression.

However, our finding that SC defects arise when Nipped-B is

reduced after S phase supports the model that cohesion

rejuvenation involves the loading of new cohesin complexes,

not substitution of new subunits into preexisting chromatin

bound cohesin rings.

Eco-mediated rejuvenation is independent of meiotic
double-stand breaks

Under normal conditions, establishment of cohesive linkages

occurs only during S phase. However, a notable exception has

been described in yeast vegetative cells exposed to DNA

damage during G2. In response to double-strand-breaks

(DSBs), Eco1-mediated re-establishment of cohesion occurs

throughout the genome during G2 [15,17].

Figure 6. The cohesin loader Nipped-B is required after meiotic S phase to maintain the SC. Quantification of SC defects is shown for
region 3 (Reg 3) through stage 6 (St 6) and two different hairpins: Nipped-B RNAiV20 (SH00450.N) and Nipped-B RNAiV22 (SH002735.N). Results are
shown for oocytes from females containing the UAS-Nipped-B RNAi transgene in the absence of driver (Control), the presence of the mata driver
(NipB KD), and the presence of the mata driver plus a UAS-Dicer-2 transgene (NipB KD + Dcr-2). At least 20 oocytes were scored for each genotype at
each stage.
doi:10.1371/journal.pgen.1004607.g006
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One possibility is that Eco-mediated rejuvenation of cohesion in

Drosophila oocytes is a programmed response to the DSBs that

initiate crossovers during early meiotic prophase. We set out to test

this hypothesis by determining whether Eco is still required to

maintain arm cohesion in the absence of meiotic DSBs. If

rejuvenation of cohesion only occurs in response to DSBs, then SC

defects should be absent in Eco KD oocytes that lack DSBs. In

order to genetically eliminate meiotic DSBs, we utilized a null

allele of the mei-W68 gene, which encodes the evolutionarily

conserved Spo11 endonuclease required for formation of meiotic

DSBs [48]. In mei-W681 mutant oocytes, meiotic DSBs are

eliminated and crossovers do not occur, but the temporal program

of SC assembly and disassembly is normal [49].

We compared the morphology of the SC in mei-W681 Eco KD

oocytes (Eco RNAiGD and mata driver) and mei-W681 oocytes in

which the Eco RNAiGD was not expressed (Eco RNAiGD, no

driver). Two independent experiments are shown in Figure 7. We

observed long, continuous SC in mei-W681 oocytes (no driver)

with normal disassembly commencing at stage 6. In contrast, when

Eco was knocked down in mei-W681 oocytes, premature

disassembly of the SC was evident in stage 2 and became

progressively more pronounced. Therefore, even in the absence of

Spo-11 induced DSBs, Eco is required after meiotic S phase to

maintain the integrity of the SC. These data support the model

that cohesion rejuvenation during meiosis occurs though a novel

mechanism that is distinct from DNA damage induced cohesion

re-establishment during G2 in vegetative yeast cells.

Discussion

Here we describe the first evidence that maintenance of meiotic

cohesion during prophase I is an active process and provide

mechanistic insight into this rejuvenation pathway in Drosophila

oocytes. The defects that we observe when SMC1, SMC3 or SA

mRNAs are knocked down after meiotic S phase indicate that

newly synthesized cohesin proteins are required during prophase I

for sustained cohesion until the meiotic divisions. Moreover, our

finding that SC stability depends on the Scc2 ortholog Nipped-B

during prophase I suggests that loading of new cohesin complexes,

and not replacement of individual subunits within existing cohesin

rings, occurs during prophase I. Finally, our observation that the

cohesion establishment factor Eco is required after meiotic S phase

argues that cohesion maintenance and chiasma stabilization

require new cohesive linkages to be formed during meiotic

prophase I.

Together our findings indicate that the cohesive linkages

established in Drosophila oocytes during meiotic S phase are

insufficient for cohesion to remain intact throughout prophase I.

Accurate chromosome segregation requires more than passive

endurance of the original cohesive linkages established during meiotic

DNA replication. Our data support the model that cohesive linkages

turn over during the protracted timeframe of meiotic prophase and

that in order for oocytes to ensure levels of meiotic cohesion sufficient

for accurate chromosome segregation, replacement cohesin com-

plexes must be loaded onto the meiotic chromosomes by Nipped-B

and made cohesive by the action of the acetyltransferase Eco. We use

the term ‘‘rejuvenation’’ to describe this active process of loading

cohesin complexes and generating replacement cohesive linkages

during meiotic prophase I. Although it is possible that intact linkages

are targeted for replacement by the rejuvenation program, we favor

the model that rejuvenation acts to replace linkages that are lost due

to normal turn over.

At this time, we cannot rule out the possibility that Nipped-B

performs a function other than cohesin loading during meiotic

Figure 7. Stabilization of the SC depends on Eco even in the
absence of Spo-11 induced DSBs. Quantification of SC defects in
two independent experiments is presented for oocytes from region 3
(Reg 3) through stage 6 (St 6). Results are shown for oocytes from mei-
W681 trans-heterozygotes (Spo-11null) containing the UAS-Eco RNAiV22

transgene and a UAS-Dicer-2 transgene in the absence (Control) or
presence (Eco KD) of the mata driver. In mei-W681 Control oocytes, SC
disassembly is not detected until stage 6. In contrast, premature
disassembly of the SC is detectable beginning at stage 2 (St 2) in the
mei-W681 Eco KD oocytes. As prophase I progresses, both the severity
of the defects and the percentage of oocytes affected increase. At least
20 oocytes were scored for each genotype at each stage.
doi:10.1371/journal.pgen.1004607.g007

Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 11 September 2014 | Volume 10 | Issue 9 | e1004607



prophase. However, the striking similarities between the SC

defects in cohesin KD and Nipped-B KD oocytes (Figures 3 and 6)

support the model that continuous loading of cohesin by Nipped-B

during meiotic prophase is required for sustained cohesion and

chiasma stabilization (Figure 4). Furthermore, we have previously

reported that Nipped-B localizes along the arms of meiotic

chromosomes during pachytene [20] and these results agree with

recent reports that Nipbl, the mammalian Scc2 ortholog, localizes

along the chromosome axes of meiotic chromosomes in mouse

spermatocytes and oocytes [21,22]. Interestingly, although Nipbl

largely dissociates from spermatocyte chromosomes by late

pachytene, it remains associated with diplotene chromosomes in

mouse oocytes [21], consistent with the hypothesis that cohesin

loading is required throughout the extended arrest period that

mammalian oocytes undergo. Our Nipped-B and cohesin

knockdown results also argue that loading of cohesin complexes

onto existing lateral elements is able to occur within the context of

a fully formed SC. These results nicely complement the evidence

in budding yeast that the transverse filament protein Zip1 is

continuously incorporated into the existing complex during

pachytene [50]. Together, these results highlight the dynamic

nature of the synaptonemal complex, a complex structure found

almost universally in meiotic cells undergoing recombination.

How do oocytes generate new cohesive linkages outside the

context of meiotic S phase? In budding yeast, cohesion can be

established during G2 in response to DSBs [15,17]. Given that

induction of DSBs and initiation of meiotic recombination occur

early in the meiotic program, we reasoned that cohesion

rejuvenation during meiosis might be mechanistically similar to

the DSB-induced re-establishment pathway in vegetative yeast

cells. However, when we abolish meiotic DSBs using a null allele

of mei-W68 (Drosophila Spo-11), we find that reduction of Eco

after meiotic S phase still results in premature disassembly of the

SC. These results indicate that even in the absence of Spo-11

induced DSBs, an Eco-mediated rejuvenation pathway is required

to stabilize the SC. Our experiments also address the possibility

that meiotic DSBs initiate a signaling cascade in Drosophila

oocytes that promotes conditions permissive for Eco activity

outside of S phase. If this were the case, we might expect that

turnover of cohesive linkages during prophase in mei-W68 oocytes

would result in premature disassembly of the SC because Eco is

not active. However, we and others (Figure 7 and [49]) observe

normal timing of SC disassembly in mei-W68 oocytes that contain

wild-type levels of Eco. Although we cannot rule out the possibility

that a low number of Spo11-independent DSBs occur in

Drosophila oocytes during prophase I, our results are consistent

with the model that cohesion rejuvenation in oocytes is not a

programmed response to the induction of Spo-11 triggered DSBs

or their repair, and represents a novel mechanism that is distinct

from that described in G2 vegetative yeast cells.

Another noteworthy example of cohesion establishment outside

of S phase has been reported in budding yeast vegetative cells [18].

Under normal conditions, phosphorylation of Eco1 beginning in

late S phase creates a phospho-degron recognized by the SCF

ubiquitin ligase, and destruction of Eco1 prevents additional

cohesive linkages from forming after S phase [19]. Although three

kinases participate in this pathway [19], the initiating phosphor-

ylation event is catalyzed by CDK1, and yeast expressing an Eco1

mutant protein that cannot be phosphorylated by CDK1 are able

to establish new cohesive linkages during G2 [18]. Significantly,

during prophase I in metazoan oocytes, which lasts for days (fruit

flies) to decades (humans), CDK1 activity is silenced, primarily

through translational inhibition of cyclins [51]. If CDK1-induced

destruction of Eco1 orthologs is conserved in metazoans,

inhibition of CDK1 during meiotic prophase I arrest may provide

a key regulatory mechanism that allows Eco1 orthologs to remain

active in metazoan oocytes beyond meiotic S phase. This would

allow rejuvenation of cohesion to occur during the extended

period in which oocytes must sustain a number of cohesive

linkages that will be adequate to support accurate chromosome

segregation.

In yeast and human cells, it is well established that the

acetyltransferase activity of Eco1/Esco is required for formation of

cohesive linkages [52,53]. While Eco1-mediated acetylation of

SMC3 is essential for cohesion establishment during S phase,

DSB-induced cohesive linkages that are formed in G2 require

acetylation of the a-kleisin cohesin subunit [54]. Although we

know that Drosophila Eco is necessary for prophase I rejuvenation

of meiotic cohesion, future experiments will be needed to

determine whether the acetyltransferase activity of Eco is required

for this process and to identify the substrate(s) of Eco1 during

meiotic prophase.

Is arm cohesion more dependent on rejuvenation than

centromeric cohesion in Drosophila oocytes? One interpretation

of our recombinational history analyses would support this notion.

However, caution is required because our assay relies solely on

genetic markers and therefore only allows us to capture

information about the final segregation outcome. This makes it

difficult to compare our data directly with recent cytological

studies of mouse oocytes that observed age-dependent weakening

of centromeric cohesion prior to anaphase I [12,14]. The

clustering of Drosophila oocyte chromosomes within a compact

karyosome structure during prophase I [23] precludes our ability

to perform a cytological analysis similar to those for mouse

oocytes. Still, from both Eco and SMC1 KD oocytes, we

recovered Diplo-X progeny that were homozygous for the

centromere-linked marker (Figures 2C, 4C, S7 and S8), indicating

that at least in some cases, centromeric cohesion is definitely

impacted when the rejuvenation pathway is compromised.

However, most Diplo-X oocytes arising from knockdown of Eco

or SMC1 during prophase I were heterozygous for a centromere-

linked marker, consistent with disruption of arm cohesion causing

loss of chiasmata and missegregation of homologous chromosomes

during the first meiotic division. These results fit nicely with

observations in both human and fly oocytes that bivalents with a

distal crossover are more vulnerable to segregation defects [55–

58], presumably because the closer a crossover is to the end of the

chromosome, the shorter the region of arm cohesion is that holds

recombinant homologs together. Interestingly, in ord null mutants

that lack both arm and centromeric meiotic cohesion, random

segregation of sister chromatids results in reductional segregation

errors (homologs) that outnumber equational errors (sisters) by a

factor of at least 3 to 1 [59,60]. Therefore, our results are not

inconsistent with loss of both arm and centromeric cohesion

yielding a random segregation outcome. Finally, it is important to

note that defects solely in centromeric cohesion prior to the first

meiotic division could theoretically lead to missegregation events

that yield a gamete heterozygous for a centromere-linked marker

(for examples see [8,61]). So, although our data support the

conclusion that both arm and centromeric cohesion defects arise

from knockdown of Eco or SMC1 in Drosophila oocytes during

meiotic prophase, we cannot assign their relative contributions to

the segregation errors we observe.

Our data support the model that cohesive linkages turn over in

Drosophila oocytes during the normal timeframe of meiotic

prophase (,6 days) and that replacement linkages are required to

ensure cohesion. However, recent studies in mouse oocytes have

led to the opposite conclusion – namely, that turnover of cohesin
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does not occur during meiotic prophase [62,63]. What is the basis

for this apparent contradiction? One possibility is that differences

in meiotic progression in fly and mouse oocytes have led to

divergent mechanisms for the regulation of meiotic cohesion

during prophase I. For instance, once mouse oocytes exit from

dictyate arrest and mature, they complete meiosis I and remain

arrested in metaphase II until fertilization. Unlike mammalian

oocytes, Drosophila oocytes arrest at metaphase I and passage

through the oviduct triggers resumption and completion of

meiosis, even in the absence of fertilization. Perhaps the

requirement to stabilize chiasmata that are under tension during

metaphase I arrest requires new supplementary linkages to be

formed in Drosophila oocytes but not mouse oocytes. This seems

unlikely, however, given that under normal conditions Drosophila

females lay fertilized eggs continuously and the metaphase I arrest

usually lasts less than two hours [23].

Another possibility is that differences in the experimental

tools and approaches used in the fly and mouse studies account

for these contradictory results. The mata driver that we use to

induce knockdown of cohesin subunits or cohesin regulators

becomes active during mid-pachytene, although robust expres-

sion does not occur until late pachytene (Stage 4, Figure S1B).

As such, we are manipulating Eco, Nipped-B and cohesin levels

earlier during meiotic prophase than the mouse experiments

that utilized the GDF-9 promoter to drive Cre recombinase and

inactivate the SMC1b gene in developing oocytes [62] or those

that utilized the ZP3 promoter to drive expression of TEV-

resistant Rec8 during the growing phase that precedes ovulation

[63]. In addition, one potential problem with ectopic Rec8

expression is that an imbalance in the normal stoichiometry of

cohesin subunits may have prevented TEV-resistant Rec8 from

entering the nucleus [64].

Whether rejuvenation of meiotic cohesion is a conserved feature

of metazoan meiosis remains to be demonstrated. However, it is

hard to comprehend why fruit flies possess a mechanism to actively

keep cohesion intact during a six-day time frame if no similar

program exists in mammalian oocytes during their much longer

prophase I arrest. Under conditions of normal meiotic progression

in Drosophila oocytes, rejuvenation ensures that the number of

cohesive linkages is sufficient to promote accurate chromosome

segregation. However, when Drosophila oocytes are forced to

‘‘age,’’ and spend approximately 20 times longer in diplotene [11],

cohesion is lost prematurely and chromosomes missegregate. The

observation that under ‘‘aging’’ conditions, the normal rejuvena-

tion pathway is incapable of sustaining cohesion in Drosophila

oocytes raises the intriguing possibility that rejuvenation becomes

less efficient with age. If a meiotic cohesion rejuvenation pathway

also operates in human oocytes, and its effectiveness declines with

age, cohesion defects may become pronounced in older women

not because the original cohesive linkages finally give out, but

because the rejuvenation program can no longer supply new

cohesive linkages at the same rate at which they are lost.

Materials and Methods

Fly stocks and crosses
Flies were reared at 25uC on standard cornmeal molasses

medium. Please see Table S1 for the complete genotypes and

origin of stocks used in this study. Please see Text S1 for detailed

descriptions of the cross schemes utilized to generate flies for

genetic and/or cytological experiments. For X chromosome NDJ

assays, B+ experimental females were crossed to males containing

an attached X‘Y, v f B chromosome. In this scheme, progeny

arising from normal as well as Diplo-X and Nullo-X gametes can

be recovered and distinguished based on eye shape and sex. Total

%NDJ and P values were calculated according to Zeng et al. [65].

sc cv v f-y+/y females were used to measure crossover frequency

along the X chromosome as well as to perform NDJ tests with

subsequent recombinational history analysis and male progeny

were scored for each of the visible markers.

Immunolocalization of C(3)G and SMC1 in whole-mount
ovaries

Six sets of ovaries from newly eclosed females fattened overnight

with extra yeast and males were dissected in 1X PBS, splayed

using a tungsten needle, and fixed for 20 minutes in a mixture of

600 ul heptane and 200 ul of 2% unbuffered formaldehyde (EM

grade, Ted Pella) containing 0.5% Nonidet P-40 (Surfact-Amps

NP-40, Pierce). All incubations and washes were done on a

rotating platform at room temperature unless otherwise noted.

Ovaries were rinsed three times with 1X PBST (1X PBS with

0.2% Tween-20 (Surfact-Amps 20, Pierce)) and blocked for one

hour in 1X PBS with 1% BSA. Ovaries stained only with C(3)G

antibody, were incubated overnight at 4uC with primary antibody

diluted in antibody buffer (1X PBS with 0.01% Tween-20 and

0.5% BSA). For SMC1 immunolocalization, ovaries were incu-

bated in primary antibody for 2 hours at room temperature.

SMC1 primary and secondary antibody incubations were

completed before C(3)G primary and secondary antibody incuba-

tions were performed. Following primary antibody incubation,

ovaries were rinsed three times, washed 3620 min in 1X PBST

and incubated with the appropriate secondary antibodies diluted

in antibody buffer for one hour. Subsequently, ovaries were rinsed

three times and washed for 20 minutes each in 1X PBST, 1X

PBST containing 0.1 ug/ml DAPI, and 1X PBS containing 0.01%

Tween 20. After the final wash, ovaries were separated into

individual ovarioles with a tungsten needle, transferred to #1.5

18-mm poly-L-lysine-coated coverslips, and mounted in 20 ml of

Prolong Gold Antifade reagent.

C(3)G mouse monoclonal antibody, clone 1A8-1G2 [38], was

diluted 1:1000 and detected using Cy3-conjugated anti-mouse

secondary antibody. For simultaneous immunolocalization of

C(3)G and SMC1, guinea pig polyclonal SMC1 antibody [29]

was diluted 1:2000 and detected using Cy3-conjugated anti-guinea

pig secondary antibody, and C(3)G was detected using either Cy5-

conjugated or Alexa Fluor-488 conjugated anti-mouse secondary.

All secondary antibodies were used at a final dilution of 1:400.

Secondary antibodies conjugated to Cy3 and Cy5 were obtained

from Jackson Immunoresearch Laboratories and the Alexa-488

conjugated secondary antibodies were obtained from Molecular

Probes.

Confocal analysis of the UAS-Actin-GFP reporter
To characterize the onset of expression for the mata driver,

ovaries from young females containing a UASp-Actin-GFP

reporter (B-071) driven by mata-Gal4-VP16 were dissected in

1X PBS, and the anterior region of each ovary splayed slightly.

Ovaries were fixed for 5 minutes at room temperature in 1X PBS

containing 4% formaldehyde (EM grade, Ted Pella) and rinsed

three times in 1X PBS. Nuclei were stained by incubating fixed

ovaries in 1 mg/ml Hoechst 33342 for 15 min, followed by a brief

rinse and a 15 min wash in 1X PBS. Individual ovarioles were

separated using a tungsten needle, transferred to #1.5 18-mm

poly-L-lysine-coated coverslips, and mounted in 15 ml of Vecta-

shield. Coverslips were sealed with nail polish, and slides stored at

4uC until imaging.

Images were acquired using a Nikon A1RSi laser scanning

confocal controlled by NIS Elements (version 4.13). All images
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were collected using a 40X oil Plan Fluor DIC (NA 1.3) objective

and sequential scanning mode. Single slices were captured using

unidirectional scanning with a 407 nm laser (for DAPI) and

488 nm laser (for GFP).

Single molecule FISH
The single molecule FISH probes were designed using the

Stellaris Probe Designer and ordered from Biosearch Technologies

(http://www.singlemoleculefish.com). The probe set consisted of a

mixture of 48 DNA oligonucleotides (20 mers) complementary to

the Eco open reading frame. In designing the probes, the zinc

finger and acetyltransferase domains of Eco were excluded, as well

as any regions with homology to non-Eco sequences within the

Drosophila genome. Probes were conjugated to Quasar 570 dye.

Ovaries from 8 young females held with yeast and males for one

day were dissected and slightly splayed in 1X PBS and then

transferred to a 1.5 ml tube for fixation in 4% formaldehyde in 1X

PBS for 15 minutes at room temperature on a nutator. After

rinsing 3 times and washing twice for 5 min with 1X PBS to

remove the fixative, ovaries were stored in 1 ml of 70% ethanol at

4uC for at least twelve hours. After removing the 70% ethanol,

ovaries were incubated in 2X SSC containing 10% formamide for

10 min and then incubated in 100 ul of hybridization buffer (2X

SSC, 10% formamide, 100 mg/ml dextran sulfate, 2 mM vanadyl

ribonucleoside complex, 20 mg/ml BSA and 1 mg/ml E. coli
tRNA) containing 50 nM probe overnight at 37uC with gentle

rotation in a dark chamber. Following hybridization, all washes

and incubations were performed at room temperature with

rocking. Ovaries were rinsed once in 400 ml of 2X SSC containing

10% formamide, and then washed for 10 min in an additional

400 ml of the same buffer. For visual identification of germline

cells, ovaries were incubated for 2 hours in a mixture of ORB

mouse monoclonal antibodies, clones 4H8 and 6H4 [66] each at

1:30 dilution in 2X SSCT (2X SCC containing 0.2% Tween 20).

Ovaries were rinsed 3X and washed 3610 min in 2X SSCT and

then incubated for one hour in Alexa Fluor-488 conjugated anti-

mouse secondary diluted 1:400 in 2X SSCT. Ovaries were rinsed

3X and washed 2610 min in 2X SSCT followed by a 20 minute

incubation in 2X SSCT containing 0.1 mg/ml DAPI and an

additional 10 minute wash in 2X SSCT. A tungsten needle was

used to separate ovarioles before mounting on a #1 18-mm poly-

L-lysine-coated coverslip with 20 ml of Prolong Gold Antifade

reagent.

Imaging was performed using a Nikon A1RSi laser scanning

confocal system controlled by NIS Elements (version 3.22). All

images were collected using a 100X oil CFI Apochromat TIRF

objective (NA 1.49) and sequential scanning mode. Single focal

planes in which the oocyte nucleus was visible were captured using

unidirectional scanning with a 407 nm laser (for DAPI), 488 nm

laser (for ORB) and 561 nm laser (for smFISH). Control,

knockdown and eco mutant images were acquired using the same

settings and processed identically. Captured images were imported

into Volocity 5.5 for quantification of mRNAs in individual germ-

line cysts. ORB staining allowed each egg chamber to be cropped

in order to remove the surrounding layer of follicle cells so that

mRNA quantification was limited to the oocyte and nurse cells.

Quantification of the number of mRNA signals was carried out

using the following protocol in Volocity 5.5: First, a ‘‘find objects

by % intensity’’ task was applied to the smFISH channel to set a

threshold to best identify the bright mRNA spots. Second, a

‘‘remove noise from object, medium filter’’ task was applied. Then

an ‘‘exclude objects by size’’ was added to remove the background

signal from the measurements. This measurement sequence

allowed determination of the total number of mRNA spots within

the germ-line ROI for a single optical section. Because there is

some variability in the size of egg chambers even at the same stage,

the # of mRNA spots/area was used for comparison of different

genotypes.

Supporting Information

Figure S1 The germline mata driver is not active until after

meiotic S phase. (A) The P{w+mC = matalpha4-GAL4-VP16}V37
transgene (mata driver) was used to induce Gal4-VP16 expression

in the ovary during mid-prophase I. Onset of mata driver

expression was visualized using a UAS-Actin-GFP reporter. (B) A

single confocal section is shown of an ovariole from a female in

which the UASp-Actin-GFP transgene is induced by the mata
driver. Stages of oogenesis are noted. The mata driver is inactive

in early region 2A of the germarium, the stage at which meiotic

cohesion is established [67,68]. Even with the robust expression of

this reporter, the earliest mata-driven expression we observed was

a relatively faint GFP signal in region 3 of the germarium,

approximately 48–60 hours after oocytes undergo DNA replica-

tion [69,70]. In the majority of ovarioles, GFP signal was first

visible during stage 2 of the oogenesis (,72 hours post-replication)

and in some ovarioles, expression was not apparent until stage 3 or

4. Scale bar, 25 mm. (C) Diagram illustrates use of the mata driver

to express UAS RNAi hairpin constructs in germline cells after

meiotic S phase.

(TIF)

Figure S2 Eco RNAiGD induced by the mata driver reduces the

number of Eco germ-line transcripts but only after meiotic S

phase. (A) Single molecule FISH was performed to detect Eco

mRNAs (magenta) and DAPI was used to visualize DNA (blue).

Because expression of the mata driver is restricted to germline

cells, we used Orb staining (not shown) to distinguish germline

cysts from somatic cells [66] and to define a region of interest

(ROI) that included only the germline cells. In this way, we were

able to quantify the number of Eco transcripts in single confocal

sections of germline cysts for different genotypes. Confocal single

sections are shown for germaria as well as Stage 2 and Stage 4 egg

chambers from females containing the UAS-Eco RNAiGD and

UAS-Dicer-2 transgenes in the absence of driver (Control) and in

the presence of the mata driver (Eco KD + Dcr-2). eco1/eco2

oocytes were included to confirm that our assay is sensitive enough

to detect a reduction of Eco transcripts within the germarium. The

white arrow points to germarial Region 3 and the insert shows the

Eco mRNA signal in Region 3. Images for each stage were

captured and processed identically. Scale bars, 10 mm. (B)

Quantification of Eco mRNA in Region 3, Stage 2 and Stage 4

germline cysts for Control, eco1/eco2, and Eco KD + Dcr-2 oocytes

is shown. An unpaired t-test was performed to determine

significance in relation to the control. ‘‘*’’ denotes significance

(p,0.05). At least 10 oocytes were imaged and quantified for each

genotype at each stage. In region 3, Eco transcript numbers were

the same for Eco KD and control (p = 0.095), but a measurable

reduction (,14%) was observed for eco1/eco2 compared to the

control (p = 0.018). However, compared to control, Eco transcripts

were decreased approximately 36% in stage 4 egg chambers

(p = 0.0019) and 46% in stage 6 egg chambers (p = 0.0001) from

Eco RNAiGD females. Although Eco transcripts were also reduced

in eco1/eco2 females at these stages (11–12% reduction), the

difference did not reach significance for either stage (p = 0.255 and

p = 0.082, stage 4 and 6 respectively), perhaps because the lower

concentration of Eco transcripts at later stages makes it more

difficult to detect a reduction in this weak allelic combination.

(TIF)

Rejuvenation of Meiotic Cohesion

PLOS Genetics | www.plosgenetics.org 14 September 2014 | Volume 10 | Issue 9 | e1004607

http://www.singlemoleculefish.com


Figure S3 Eco KD phenotypes are not due to off-target RNAi

effects. (A) Schematic illustrates the three different Eco hairpins

used and their targets within the Eco mRNA. Numbers within

parentheses correspond to nucleotide positions of the Eco

transcript. (B) Quantification of SC defects is shown for region 3

(Reg 3) through stage 6 (St 6) oocytes from females containing the

UAS-Eco RNAiV1 and UAS-Dicer-2 transgenes in the absence

(Control) and presence (Eco KD + Dcr-2) of the mata driver. At

least 20 oocytes were scored for each genotype at each stage. (C) X
chromosome NDJ increases significantly in females containing the

UAS-Eco RNAiV1 and UAS-Dicer-2 transgenes in the presence of

the mata driver (Eco KD + Dcr-2) compared to those that lack the

driver (Control). 1.32 % NDJ was observed for the Control

(n = 903) while 4.36% NDJ was observed for Eco KD + Dcr-2

(n = 1078). (D) Quantification of SC defects from region 3 (Reg 3)

through stage 6 (St 6) is shown for oocytes from females containing

the UAS-Eco RNAiV22 and UAS-Dicer-2 transgenes in the

absence of driver (Control), the UAS-Eco RNAiV22 transgene

and the mata driver (Eco KD) and the UAS-Eco RNAiV22 and

UAS-Dicer-2 transgenes with the mata driver (Eco KD + Dcr-2).

In control oocytes, SC disassembly is not detected until stage 6. In

contrast, premature disassembly of the SC is detectable beginning

at stage 3 in the Eco KD oocytes and at stage 2 for the Eco KD +
Dcr-2 oocytes. As prophase I progresses, both the severity of the

defects and the percentage of affected oocytes increase. When

Dicer-2 is overexpressed, the phenotype is enhanced at all stages,

in both the percentage of oocytes with defects and the severity of

defects. At least 20 oocytes were scored for each genotype at each

stage. Because females expressing mata-induced Eco RNAiV22

exhibited extremely low fertility (even in the absence of UAS-Dcr-

2), we could not assay meiotic NDJ in this genotype.

(TIF)

Figure S4 Dicer-2 overexpression does not lead to SC defects or

increased NDJ. (A) C(3)G immunostaining was performed on

whole mount preparations and quantification of SC defects is

shown for region 3 (Reg 3) through stage 6 (St 6) for oocytes from

y; cn bw sp females (Control) and from females containing the

UAS-Dicer-2 transgene induced by the mata driver (Mata R Dcr-

2). In both Control and Mata R Dcr-2 oocytes, SC disassembly

was not detected until stage 6. (B) NDJ tests were performed using

y; cn bw sp (Control) and Mata R Dcr-2 females. No increase in

NDJ was observed when Dicer-2 was overexpressed (p = 0.793).

(TIF)

Figure S5 UAS-EcoRNAiGD knockdown using the Nanos-GFP-

VP16 driver. (A) Projections of deconvolved Z-series are shown for

C(3)G immunostaining of oocytes from females containing the

UAS-Eco RNAiGD transgene in the absence of driver (Control)

and the presence of the nanos driver (NanosREco RNAiGD).

Normal SC appears to form in region 2A (Reg 2A) of NanosREco

RNAiGD oocytes, but defects are apparent by region 2B (Reg 2B).

Scale bar, 2 mm (B) SC defects were scored from germarial region

2A (Reg 2A) through Stage 6 (St 6) for oocytes from females

containing the UAS-Eco RNAiGD transgene in the absence of

driver (Control) and the presence of the nanos driver (Eco KD).

Normal SC disassembly commences in Control oocytes at stage 6

(St 6). In contrast, premature disassembly of the SC is detectable in

Eco KD oocytes beginning at Region 2B (Reg 2B). At least 20

oocytes were scored for each genotype at each stage. (C) An X
chromosome NDJ assay was performed on the genotypes above.

NDJ was significantly higher (p,0.0001) in Eco KD oocytes

(16.6% NDJ, n = 834) than in Control oocytes (1.1% NDJ,

n = 1079).

(TIF)

Figure S6 Crossover frequency and distribution along the X
chromosome are not altered when UAS-Eco RNAiGD is induced

with the mata driver. (A) Schematic shows the relative location of

X chromosome visible markers used for the recombination assay.

Heterochromatin is depicted by a thicker line, and a filled circle

marks the centromere. (B) Meiotic crossovers were measured

within four intervals in y sc cv v f-y+/y ; P{UAS-EcoRNAiGD}/+ ;
P{UAS-Dcr-2}/+ (Control) and y sc cv v f-y+/y ; P{UAS-Eco
RNAiGD}/+ ; P{UAS-Dcr-2}/P{mata-Gal4-VP16} (Eco KD +
Dcr-2) females. A two-tailed Fisher’s exact test performed for each

interval indicated that crossover frequency was not significantly

different between Control and Eco KD + Dcr-2 oocytes. This

assay was performed twice. One replicate is shown here.

(TIF)

Figure S7 The majority of Diplo-X progeny arising from Eco

KD females result from missegregation of recombinant chromo-

somes during meiosis I. Two independent experiments were

performed and both show similar results, depicted in graphical

format in Figure 2C. The raw data obtained for each experiment

is presented here. At the top of each table, the results of the initial

NDJ test are provided. Diplo-X females were used for an

additional cross to determine the recombinational history of their

X chromosomes. Not all Dipo-X females resulted in sufficient

numbers of progeny to enable an unambiguous genotype

determination. The deduced X chromosome genotypes for

Diplo-X females are listed below the NDJ results. For the first

test, 9 Diplo-X progeny from Eco KD mothers and all of the

Diplo-X progeny from Control mothers contained two non-

recombinant (NR) X chromosomes; for the second test, three

Diplo-X progeny from Eco KD mothers harbored two non-

recombinant X chromosomes. For both tests, all other Diplo-X
progeny inherited at least one recombinant X chromosome. For

these, the majority (15 out of 18, and 12 out of 13) were

heterozygous for the centromere-linked y+ marker, consistent with

a meiosis I missegregation event following loss of arm cohesion

and destabilization of chiasmata. In the two tests combined, four

Diplo-X females inherited two sister chromatids (based on

homozygozity of y+), most likely because centromere cohesion

was also compromised prior to metaphase I or II.

(TIF)

Figure S8 Chiasmata are formed but not maintained when

SMC1 is knocked down after meiotic S phase. (A) Crossover

frequency and distribution along the X chromosome are normal

when SMC1 is knocked down using the mata driver. Meiotic

crossovers were measured within four intervals in y sc cv v f-y+/y ;
+ ;P{UAS-SMC1RNAiV22}/+ (Control) and y sc cv v f-y+/y ;
+ ;P{UAS-SMC1RNAiV22}/P{mata-Gal4-VP16} (SMC1 KD)

females. A two-tailed Fisher’s exact test performed for each interval

indicated that crossover frequency did not significantly differ

between Control and SMC1 KD oocytes. (B) Diplo-X progeny of

SMC1 KD females arise primarily from missegregation of

recombinant chromosomes during meiosis I. Raw data is provided

for two independent experiments that are presented in graphical

format in Figure 5C. Results of each NDJ test are shown at the top

with the deduced X chromosome genotypes for Diplo-X females

listed underneath. In the first experiment, 5 of the 7 Diplo-X
progeny inherited at least one recombinant X chromosome and in

the second experiment 6 out of 7 Diplo-X progeny inherited at least

one recombinant X chromosome. Of these 11 Diplo-X progeny, 8

contained chromosomes that were heterozygous for the centro-

mere-linked y+ marker, consistent with loss of arm cohesion and

chiasma destabilization causing missegregation during meiosis I.

(TIF)
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Table S1 The complete genotypes of fly stocks used in this study

are provided in this table as well as their origin and Bickel Lab

stock numbers.

(DOCX)

Text S1 Detailed descriptions of the cross schemes utilized to

generate flies for genetic and/or cytological experiments.

(DOCX)
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