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A B S T R A C T

C–X–C motif chemokine 10 (CXCL10) also known as interferon g-induced protein 10 kDa (IP-10) or

small-inducible cytokine B10 is a cytokine belonging to the CXC chemokine family. CXCL10 binds CXCR3

receptor to induce chemotaxis, apoptosis, cell growth and angiostasis. Alterations in CXCL10 expression

levels have been associated with inflammatory diseases including infectious diseases, immune

dysfunction and tumor development. CXCL10 is also recognized as a biomarker that predicts severity of

various diseases. A review of the emerging role of CXCL10 in pathogenesis of infectious diseases revealed

diverse roles of CXCL10 in disease initiation and progression. The potential utilization of CXCL10 as a

therapeutic target for infectious diseases is discussed.
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1. Introduction

Inflammation is associated with secretion of CXCL10 from
leukocytes, neutrophils, eosinophils [1], monocytes, epithelia,
endothelial and stromal cells, and keratinocytes in response to IFN-
g [2,3]. CXCL10 specifically activates CXCR3 receptor, a seven
trans-membrane-spanning G protein-coupled receptor (GPCR) [4],
which is predominantly expressed on activated T, B lymphocyte
[5], natural killer (NK), dendritic and macrophage cells. CXCL10
induces chemotaxis, apoptosis, cell growth inhibition and angios-
tasis. Abnormal levels of CXCL10 have been observed in body fluids
of individuals infected with viruses [1,6,7], bacteria [8,9], fungi [10]
and parasites [11–13] indicating an important role in pathogenesis
of these diseases.

2. The CXCL10 gene structure, function, and signaling pathways

2.1. CXCL10 gene structure

Human CXCL10 gene, was initially isolated in 1985 by Luster
[14] while treating a lymphoma cell line (U937) with recombinant
IFN-g. CXCL10 cDNA has an open reading frame of 1173-bp
containing 4 exons and encoding a protein of 98-amino acids with
a molecular mass of 10 kDa. The primary translational product of
the CXCL10 gene is a 12 kDa protein containing two internal
disulfide cross bridges [2]. The predicted signal peptidase cleavage
generates a 10 kDa secreted polypeptide with four conserved
cysteine residues in the N-terminal [2]. CXCL10 gene localizes on
chromosome 4 at band q21, a locus associated with an acute
monocytic/B-lymphocyte lineage leukemia exhibiting transloca-
tion of t(4;11)(q21;q23). CXCL10 protein shows significant
homology in sequence with a family of proteins having chemotac-
tic (platelet factor 4, b-thromboglobulin) and mitogenic (connec-
tive tissue-activating peptide HI) activities, which are associated
with inflammation and cell proliferation [2,15]. Human CXCL10
has 63% homology in cDNA sequence with mouse CXCL10.

2.2. CXCL10 functions

CXCL10 exerts its biological effects by binding to CXCR3, a seven
trans-membrane-spanning G protein-coupled receptor in a para-
crine or autocrine fashion [3]. CXCL10 induction depends
predominantly on the carboxyl-terminal region of CXCR3, which
is essential for CXCR3 internalization, chemotaxis and calcium
mobilization induced by the CXCL10 ligand [16,17]. CXCL10 is a
pleiotropic molecule capable of exerting potent biological func-
tions, including promoting the chemotactic activity of CXCR3+
cells, inducing apoptosis, regulating cell growth and proliferation
as well as angiogenesis in infectious and inflammatory diseases
and cancer.

2.2.1. Regulation of CXCR3+ cell chemotaxis

All three CXCR3 receptor ligands (CXCL9, CXCL10, and CXCL11)
have been shown to induce chemotaxis in different cell types of the
immune system [18]. CXCL10 performs ‘‘homing’’ functions to
chemoattract CXCR3-positive cells, including macrophages
(microglia cell in CNS), dendritic cells, NK cells and activated T
lymphocytes (CD4+ Th cells, CD8+ Tc cells) toward inflamed,
infected and/or neoplastic areas. CD4+ Th cells are subdivided into
two different types, known as type 1 Th (Th1) and type 2 Th (Th2).
Th1 cells produce cytokines, such as IL-2, IFN-g, and lymphotoxin-
a, which cause the activation of macrophages and the process of
opsonization and cytotoxicity [19]. In contrast, Th2 cells are
considered to play a regulatory rather than protective role, since
cytokines produced by these cells (i.e., IL-4 and IL-13) inhibit the
production of Th1 cytokines and activation of macrophages [19].
The fact that Th1 cells produce IFN-g, which induces the
production by different cell types of CXCL10, enables CXCL10 in
turn to attract and recruit Th1 cells, suggesting the existence of a
positive feedback loop between IFN-g producing Th1 cells and
resident cells producing CXCL10 [20]. The powerful chemotactic
action of CXCL10 on activated lymphocytes allows it to modulate
both innate and adaptive immunity, inducing tissue damage and
modulating tumor formation [18,21,22].

2.2.2. CXCL10 mediated induction of apoptosis

CXCL10 induces apoptosis under varied conditions. Neuronal
apoptosis is mediated by over expression of CXCL10 in simian
human immunodeficiency virus encephalitis via activation of
caspase-3 [23]. Further exploration revealed the utilization of the
intrinsic pathway activation in CXCL10-mediated apoptosis. For
example, Sui et al. show that incubation of fetal neurons in vitro

with CXCL10 increased Ca2+ uptake by the mitochondria, which
released cytochrome C and activated the initiator caspase-9.
Caspase-9 sequentially activated the effector caspase-3, ultimately
causing apoptosis in HIV-associated dementia [24]. Klein’s group
used a murine model of West Nile virus (WNV) encephalitis to
determine how pretreatment with TNF-a prevented neuronal
apoptosis during in vitro WNV infection [25]. They found WNV-
infected neurons that expressed TNF-a, interact with its receptor
TNFR1 to down-regulate CXCR3 expression, and reduced CXCL10
mediated calcium transients and prevent Caspase-3 activation
[26]. Some studies revealed that CXCL10 significantly increased the
apoptotic rate of cancer cells in HPV-related cervical carcinoma
[27,28]. CXCL10 not only induces apoptosis in infectious diseases,
it might also be involved in apoptosis during development of the
nervous system and myeloma [29–31]. However, the precise
mechanism is not yet understood although neuronal CXCL10
mediated recruitment and homing glial cells during embryogene-
sis in an in vitro model of cultured cortical neurons [29,30]. CXCR3
has two isoforms (see Section 2.2.3), which show paradoxical
effects on cell growth after interaction with its corresponding
CXCL10 ligand. Alexander et al. in 2006 demonstrated that the ratio
of CXCR3B to CXCR3A mRNA in different cell lines determined the
selectivity of CXCLl0 for cellular proliferation or apoptosis. CXCL10
selectively induced apoptosis in HUVECs without changing the
status of apoptosis in fibroblasts or human melanoma-A375 cells,
since HUVECs have a predominance of CXCR3B, the inhibitory
receptor [32].

2.2.3. CXCL10 regulation of cell growth and proliferation

CXCL10 has dual effects on cell growth [33]. The proliferative or
anti-proliferative action of CXCL10 appears to be cell-type
dependent, in other words, it may depend on the subtype of its
receptor CXCR3. Three CXCR3 splice variants have been reported:
CXCR3-A, CXCR3-B, and CXCR3-alt, which are differentially
expressed by different cell types, resulting in divergent effects
on proliferation when bound to its ligand CXCL10 [33]. CXCL10 co-
localizes with a cell proliferation marker, cytokeratin 17 (K17) in
tumor cells [3]. Its cell proliferating actions are cell cycle
dependent. The main isoform, CXCR3-A, found in most cell types,
codes for a protein of 368 amino acids [33] and couples with Gai to
activate ERK1/2, p38/MAPK, JNK and PI3-kinase/Akt signaling
pathways, subsequently inducing intracellular calcium influx, DNA
synthesis, and cell proliferation or chemotaxis [17,33–35]. These
types of cells include human normal bronchial epithelial cells [33],
astrocytes, glioma cells [35], microglia cells [36], as well as breast
cancer cells [3,37]. Unfortunately studies on the interactions of
CXCL10 and CXCR3-A in infectious disease are underdeveloped.
Only one report documents that CXCR3(�/�) mice survived longer
than wild type controls when infected with prion [38]. CXCR3-alt,
which always co-expresses with CXCR3-A at a very low level [3,33]
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has not been found associated with cell growth. The anti-
proliferative function of CXCL10 is regulated by CXCR3-B.
However, the mechanisms mediating CXCR3-B effects in the
context of infectious diseases are unclear, most observations are
from the field of cancer research. CXCR3-B codes for a larger
protein of 416 amino acids, couples with Gas to activate adenyl
cyclase and causes inhibition of endothelial cell proliferation and
migration [31,33,39]. Interestingly, this receptor subtype does not
induce chemotaxis [31,34]. These cell types have been found in
uterine endometrial cancer [37,40], glioblastoma [21], CCL-51
mammary tumor [41,42] and colorectal cancer [43]. CXCR3+ T cell
migration into inflamed and/or neoplastic areas attracted by
CXCL10 along with CXCL9 and CXCL11 also contributes to anti-
tumor progression and anti-metastasis mechanisms [21]. The
variant CXCR3-B, a common receptor for all four angiostatic
chemokines (CXCL4, CXCL9, CXCL10 and CXCL11), has enabled a
better understanding of the role of CXC chemokines in the
regulation of inflammation, angiostasis, and inhibition of endo-
thelial cell proliferation [44].

2.2.4. CXCL10 and regulation of angiostasis

The CXC chemokines have dual effects on angiogenesis,
depending on the presence or absence of the Glu–Leu–Arg (ELR)
motif. ELR-negative CXCL10 is an angiostatic chemokine, which
inhibits angiogenesis. Studies in Indian and Ghanaian patients
with malaria revealed a hither to unknown angiostatic effects of
elevated levels of CXCL10 in severe malaria patients coupled with
reduced levels of vascular endothelial growth factor (VEGF) and
platelet derived growth factor (PDGF) [11,12]. Remarkably,
angiogenic chemokine CXCL10 has been applied in gene therapy
to treat high-risk HPV-related cervical carcinoma in mice models
and shown to inhibit the growth of cervical carcinoma through
combined actions, including reducing the formation of micro-
vessels, down-regulation of the expression of proliferating cell
nuclear antigen (PCNA) and human papillomavirus (HPV) onco-
proteins E6 and E7, as well as increasing apoptotic rate of cancer
cells [27]. As an ELR-negative CXC chemokine, CXCL10 exerts
important effects in anti-tumor effects which cannot be omitted
when we review angiostatic functions of CXCL10 [45–47]. In
xenograft models of lymphoma, squamous cell carcinoma (SCCA)
and adenocarcinoma of lung, the production of CXCL10 was
inversely correlated with tumor growth. This resulted in marked
reduction in tumor-associated angiogenesis. CXCL10 induced
angiostatic action in a T-, NK-cells or macrophage independent
manner [46,47]. CXCL10 was reported to antagonize the action of
fibroblast growth factor (bFGF), thus suppressing angiogenesis
induced by bFGF in advanced uterine endometrial cancers [40]. In
estrogen receptor positive (ER+) mammary tumor, CXCL10 inhibits
vascular endothelial growth factor (VEGF) levels to reduce tumor
burden [41].

2.3. Potential CXCL10 signaling pathways

Recent studies have shown the importance of CXCL10 signaling
and relevant downstream pathways in the regulation of different
biological responses such as chemotaxis, cell motility and growth
[36,37,48]. Interaction of CXCL10 with its receptor CXCR3, results
in increased chemotactic activity through several signaling path-
ways. p38/MAPK and PI3K signaling play important roles in the
CXCL10/CXCR3 chemokine receptor-induced chemotaxis in hu-
man airway epithelial cells [36,37,48]; in human type II
pneumocytes, CXCL10/CXCR3 interaction induces chemotaxis via
mitogen-activated protein kinase (MAPK) and PI 3-kinase path-
ways (PI3K) [34]; CXCL10 induces chemotactic responses in
eosinophils possibly through the cAMP-dependent protein kinase
A (PKA) signaling pathways [49]. Cell motility and proliferation are
controlled through the activation of Ras/ERK, Src, and phospha-
tidylinositol 3-Kinase/Akt [50]. A proposed model of CXCL10
signaling in the regulation of biological responses in human airway
epithelial cells and vascular pericytes is shown in Fig. 1.

Since CXCL10 levels are linked with severe illness, understand-
ing the mechanism of CXCL10 production and regulation could
assist in the generation of therapeutic interventions in human
diseases. We also reviewed how CXCL10 is produced and regulated
under different conditions of infection. Chemokine CXCL10 is
released from astrocytes by the combined actions of viral factors
HIV-1 Tat and pro-inflammatory cytokines IFN-g and TNF-a.
During this process CXCL10 up regulation at both mRNA and
protein levels is mediated through the activation of the p38, JNK,
and Akt signaling pathways and their downstream transcription
factors, NF-kB and STAT1 [51]. Mycobacterium bovis Bacillus
Calmette-Guérin (BCG) regulates expression of CXCL10 in epithe-
lial cells by induced activation of PI3K/Akt and NF-kB signaling
pathways [52]. In murine macrophage-like cells, activation of JAK1,
JAK2/STAT1 but not p38 pathways up regulate the expression of
CXCL10 which is a strong inflammatory factor [53]. Thus it seems
that inhibition of CXCL10 expression in target cells by targeting the
JAK/STAT1 signaling pathway could exert anti-inflammatory
effects through attenuation of chemokine CXCL10 production.
Rabies virus (RV) stimulates CXCL10 expression in macrophages
through activation of extracellular signal-regulated kinases 1 and 2
(ERK1/2) [54], whereas in microglia in CNS this was achieved by
the activation of p38 and NF-kB pathways [55]. Regarding cancer
studies, over expression of CXCL10 in human cancer is mediated
through the Raf, PI3K, p38/MAPK, JNK/MAPK and NF-kB signaling
cascades which promote cell proliferation and contribute to the
development of tumors [36,37]. A proposed schematic model of
the signaling pathways involved in the increased induction of
CXCL10 in human macrophages, microglia, epithelial and cancer
cells in response to various stimuli are shown in Fig. 2.

3. CXCL10 in infectious disease

The role of CXCL10 has been discovered in various infectious
diseases. The multifunctional features of CXCL10 make it a
promising target for the treatment of infectious diseases. However,
the mechanism of CXCL10 in the pathogenesis of infectious disease
remains unclear. At present the studies in this field have been left
far behind other fields such as tumor biology studies. Here we
review the alteration of CXCL10 levels in infectious diseases with
the aim to raise the awareness of its importance.

3.1. Altered expression of CXCL10 and viral infection

CXCL10 has been implicated in rhinovirus [56], respiratory
syncytial virus (RSV) [1,6,7], Coxsackie virus, hepatitis virus B and C
[57], Ebola [58], dengue (DENV) [59,60] and equine infectious
anemia virus (EIAV) [61] infections. CXCL10 either protects or
promotes infection, depending on host immune status and genetic
background [62]. CXCL10 is protective in coronavirus (CoV)-
induced severe acute respiratory syndrome (SARS) [63,64] and
EBV-immortalized cells [65]. In contrast, CXCL10 facilitates herpes
simplex virus type 2 (HSV-2) [66] and HIV infection by stimulating
virus replication in macrophages and lymphocytes [67]. Over
expression of CXCL10 may precede or follow onset of certain
diseases [68–70]. For example, the increased expression of CXCL10
occurs prior to the development of clinical symptoms, as observed
during HIV infection, in brain tissue of neonatal mice infected with
virulent (Fr98) polytropic murine retroviruses [69]; whereas in
SARS patients, elevation of CXCL10 levels occurred for at least two
weeks after disease onset [68,70]. Persistently high levels of
CXCL10 have been reported to be associated with immunological



Fig. 1. A model of CXCL10 signaling in human airway epithelial cells and vascular pericytes. ERK and p38 MAPK and PI3K/Akt [36,37,48] are all activated by interaction of

CXCL10 with its receptor CXCR3. P38, PI3K/Akt and cAMP-dependent protein kinase A (PKA) [49] signaling pathways appear to regulate chemotaxis in human eosinophils,

pneumocyte and epithelial cells. Activation of Ras/ERK, Src and PI3K/Akt [36,50] controls cell migration and proliferation in human vascular pericytes.
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treatment failure following highly active anti-retroviral therapy
(HAART) in HIV-infected patients [71]. The CXCL10 levels were
positively correlated with the extent of organ damage and
pathogen burden [72]. In both HCV-monoinfected and HCV/HIV-
Fig. 2. Schematic model of the signaling pathways involved in the induction of CXCL10 i

stimulus. The major signaling pathways activated include p38, JNK, ERK, Akt and NFkB

molecules, along with the activation of STAT1, results in the transcription of CXCL10 [
co-infected patients, elevated CXCL10 levels were positively
correlated with liver damage (as indicated by high liver fibrosis
scores and liver enzyme levels) [72,73]. Co-infections with HIV
virus and other pathogens up regulated CXCL10 beyond that
n human macrophages, microglia, epithelial and cancer cells in response to various

 [51–55]. The activation of corresponding downstream nuclear signaling of above

51,53]. P38 and ERK are able to converge on NFkB [52] (not shown for clarity).
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observed in mono-infected patients. For instance, CXCL10 was
significantly more elevated in HCV/HIV co-infected patients than
mono-infected ones [72], as well as elevated in AIDS/cryptospo-
ridiosis co-infection [74] than AIDS alone. In a case-control study in
Chinese HBV carriers, the polymorphism G-201A in the promoter
of the CXCL10 gene predicted susceptibility to chronic HBV
infection [62]. Decreased plasma CXCL10 levels have been
achieved by corticosteroid hormone in SARS [68,70]. Anti-
retroviral therapy or other interference of CXCL10 and CXCR3
interactions also reduces plasma CXCL10 levels in HIV infection
[67]. Anti-retrovirus treatment reduced plasma CXCL10 indicating
an important role of CXCL10 in pathogenesis of the diseases.

3.2. CXCL10 and bacterial infection

CXCL10 have been shown to play a role in Helicobacter pylori

[75], Mycoplasma [75,76] and marginal periodontitis [77] infec-
tions by recruitment of inflammatory T cells into the mucosa [75]
and inflamed gingival tissues [77]. Elevation of CXCL10 levels
appears to be an early host response to scrub typhus infection [78]
and is associated with severity of Legionnaire’s disease and
tuberculosis (TB) [79]. Antimicrobial treatment significantly
decreased the level of CXCL10 in a murine model of Mycoplasma

pneumonia [76]. In tuberculosis (TB), a significantly high level of
CXCL10, like adenosine deaminase (ADA), is indicative of acute
disease and may be used as a suitable surrogate or additional
marker for immunodiagnosis [80–83]. Furthermore the enhanced
CXCL10 transactivation is achieved by a specific SNP genotype
(�135G>A) of the CXCL10 gene promoter, upstream of the NF-kB
Fig. 3. Proposed cellular pathway of CXCL10-mediated severe malaria. Endothelial cell, a

cells sequestration [95–97,129]. CXCL10 could attract activated T cells and mediate Th1-

CD8+) in cerebral microvessels. Granule exocytosis and Fas/Fas ligand activation pathw

CD8+ lymphocytes. (2) Through NK cell sequestration [130,131], NK cells mediate direc

CXCL10 to the CNS. (3) Through upregulation of ICAM-1 on brain microvascular endo

endothelial ICAM-1 up regulation, increased in cytoadherence of sequestration of par

hemorrhage and pathology representing another potential mechanism of CM pathogen
binding site [84] indicating that CXCL10 gene polymorphism may
be associated with observed disparities in CXCL10 levels in subset
of individuals during diseases. During Chlamydia infections the
signaling events induced by IFN via CXCL10 ligand is associated
with a MyD88-dependent pathway in mouse ex vivo infected
macrophages and fibroblast cells [85]. In other instances, impaired
CXCL10 production leads to susceptibility to infection. For
instance, impaired CXCL10 production led to susceptibility to
Leginella pneumophila infection [79], the levels of CXCL10 were
markedly increased in plasma and infected kidney tissues in
leptospirosis [86].

3.3. CXCL10 and mycotic infection

Fewer studies on role of CXCL10 in fungal infections have been
reported. Fungal infections abrogate CXCL10 expression in human
cells [10]. Impaired CXCL10 production contributes to the
pathogenesis of cutaneous candidiasis caused by Candida albicans

[10] whereas in the case of murine Pneumocystis carinii and
Cryptococcus neoformans infections in the brains of immunized
mice, CXCL10 seems to be protective [87,88].

3.4. CXCL10 and protozoan infection

In AIDS-associated cryptosporidiosis patients, increased muco-
sal CXCL10 levels are consistent with the histopathology in jejunal
biopsies, which correlate with parasite burden [74]. Interestingly,
CXCL10 helps to eliminate cryptosporidiosis in the presence of
immune effector cells, to favor immunopathogenesis in the
strocytes and microglia are a prominent source of CXCL10 and CXCL9. (1) Through T

type response, characterized by the sequestration of monocytes and T cells (mainly

ays are two distinct mechanisms involved in the death of brain endothelial cells by

t cytotoxic activity or reconstitution of capacity of T cells to migrate in response to

thelial cells [132], LTa and IFN-g are required for P. berghei ANKA(PbA)-induced

asitized RBC (pRBC) to the endothelium of cerebral vessels, resulting in hypoxia,

esis.
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absence of effector cells in AIDS patients [74]. CXCL10 has been
shown to be a novel biomarker for severity of Human African
trypanosomiasis (HAT) caused by infection with sub-species of
Trypanosoma brucei (T. brucei) [89], Plasmodium falciparum (P.

falciparum) and Plasmodium vivax malaria [11–13], Toxoplasma

gondii [90] and Leishmania major [91]. It appears that most of the
parasitic diseases of the CNS involve significant alterations of
CXCL10 expression in peripheral blood of infected host. In 2003,
CXCL10 was first reported to be a host-protective factor in murine
experimental malaria (ECM) [92]. CXCL10 expression was
Table 1
Potential therapeutic implications of CXCL10.

Type of compound Type of studies (experimental models) 

Anti-CXCL10 mAb C57BL/6 mice infected with

Toxoplasma gondii

C57BL/6 mice infected P. berghei ANKA 

Experimental autoimmune

encephalomyelitis (EAE) in SJL mice

Murine inflammatory bowel disease 

Murine AIDS (MAIDS) colitis 

Transgenic mice infected

with lymphocytic

choriomeningitis virus (LCMV)-type

1 diabetes model

C57 BL/6 Wild type, RAG-null,

CXCR�/� mice

Animal models of inflammation 

HUVEC 

C57BL/6 mice with spinal

cord injury (SCI)

CXCL10 antagonist (truncated

CXCL10 at the N-terminal)

Autoimmune sialadenitis

in MRL/lpr mice

DNA plasmid encoding recombinant

immunotoxin DT390-CXCL10

EAE in C57BL/6 mice 

DNA plasmid encoding CXCL10 Non-obese diabetic (NOD)

mice with diabetes

Pseudorabies virus (PrV)

infected C57 BL/6 mice

Dentritic cell-based vaccine,

cancer immunology

C57BL/6 and BALB/c mice

with lung cancer and hepatocarcinoma

CXCL10 Organogenesis and wound repair models us

human dermal micro vascular endothelial c

(HMEC-1), adult dermal microvascular (dHM

human Lung microvascular (hLMEC) and hu

umbilical vein endothelial cells (HUVEC),

as well as C57BL/6 wild type and CXCR3�/�

Chimeric ITIP (substituting

N-terminal and N-loop

of CXCL10 with CXCL11)

BALB/c (H-2d) and C57BL/6 (H-2d)

colon, mammary, lung carcinoma
expressed early in either cerebral malaria-susceptible or -resistant
strains of mice to Plasmodium berghei ANKA infection [93,94]. More
recently, a pioneering study conducted both in India and Ghana,
identified CXCL10 as a serum and CSF biomarker associated with
increased risk of fatal P. falciparum-mediated cerebral malaria (CM)
in humans [11–13]. Subsequent confirmatory studies in murine
ECM revealed that the CXCL10/CXCR3 axis plays a crucial role in
CD8+T cell recruitment into the brain and activation of CD8+ T cells
to develop murine CM [95]. The study also revealed that CXCR3�/�
mice were resistant to CM as a result of a reduction in the number
Biological effects reported Reference

In vivo Inhibits massive influx of T cells into

tissues and impairs antigen specific T cell

effector functions

[110]

In vivo Reduces the recruitment of inflammatory

leukocytes across the blood brain barrier

[104]

In vivo Specifically decreases accumulation of

encephalitogenic PLP139–151 Ag-specific

CD4+T cells

[102]

In vivo Attenuates Th1 mediated inflammatory

colitis

[103]

In vivo Blocks cellular trafficking and protects

intestinal epithelial cells, attenuate

chronic experimental colitis

[111]

In vivo Impedes expansion of peripheral

Ag-specific T cells and hinders their

migration into the pancreas

[112]

In vivo Reduces Th1-cell mediated lung injury and

inflammation

[113]

In vivo Antagonizes CXCL10 mediated chemotaxis

in vitro and in vivo, causes a therapeutic

benefit in multiple mouse models of

inflammatory disease

In vitro Restores vessel formation [114]

In vivo Reduces T-lymphocyte invasion and

inflammation, reduces apoptosis, neuronal

loss and whole tissue loss, promotes

angiogenesis and revascularization,

enhances tissue sparing, increases axon

sprouting, reduces secondary

degeneration after SCI

[115–118]

In vivo Fails to induce chemotaxis and calcium

influx by CXCR3-expressing cells, reduces

infiltration of CXCR3+ T cells

[119]

In vivo Eliminates CXCR3+ autoimmune T cells,

attenuate EAE

[120]

In vivo Produces anti-CXCL10 antibody by CXCL10

DNA vaccination, increases regulatory T

cells expressing CXCR3 in local pancreatic

regions, reverses diabetes, increases

residual beta-cell mass, promotes beta-cell

proliferation

[121,122]

In vivo Induces immune responses of the Th1-

type, causes a rebalance of the immunity,

protects against a virulent virus infection

[123]

In vivo Increases anti-tumor vaccine potency [124]

In vivo Inhibits the proliferation of endothelial

cells, induces the apoptosis of tumor cells,

and recruits lymphocytes to tumor

[125]

ing

ells

EC),

man

 mice

In vitro

In vivo

Blocks VEGF induced endothelial cell

migration and tube formation, through a

PKA mediated inhibition of m-calpain,

limits new vessel growth; triggers

m-calpain, which cleaves the tail of the b3

integrin, leading to endothelial cell

dissociation and cell death; activates

caspase 3, induces vessel regression

[126,127]

In vivo A synergistic antitumor effect by CXCL11

moiety induces CXCR3+ cells chemotaxis

and CXCL10 moiety mediates anti-

angiogenesis

[128]
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of CD8+ T cells [96]. Adoptive transfer of CD8+ cells abrogated
protection of CM in CXCR3�/� mice while CXCL10�/� mice were
partially resistant to P. berghei-mediated CM. Notably, only CD8+
cells which were located in microvessels expressed perforin and
induced granule exocytosis and cytolysis [96,97], and activated
cytotoxicity by a Fas dependent pathway [96]. Proposed cellular
pathway of CXCL10-mediated severe malaria was shown in Fig. 3.
CXCL10 is elevated in association with chills, rigors, anemia [98] and
pre-chloroquine/primaquine chemotherapy and disappears after
chemotherapy against malaria. Interestingly, HIV infection increases
susceptibility to malaria when CXCL10 levels are elevated [99] while
filariasis produces resistance to malaria by down-regulating CXCL10
[100]. Recent studies suggest that altered levels of CXCL4 and
CXCL10 play a prominent role in pathogenesis of fatal CM associated
death and may be used as functional or surrogate biomarkers for
predicting CM severity [101]. This remarkable link between
increased CXCL10 and severity of parasitic diseases suggest further
studies be conducted on the mechanisms involved.

4. Therapeutic applications of CXCL10

The CXCL10–CXCR3 axis represents a potential pharmacologic
target for various human diseases such as infectious diseases and
cancer, however, current studies on therapeutic uses of CXCL10
therapy have been few. For example, application of anti-CXCL10
antibody decreased the clinical and histological manifestation of
experimental autoimmune encephalomyelitis (EAE) [102]. Singh
et al. [103] have also demonstrated that targeted blocking of CXCL10
or CXCR3 receptor with antibodies attenuated inflammatory colitis
in mice. The crucial point in relation to CXCL10/CXCR3 and colitis
pathogenesis is that Th1 cells are differentiated from precursor T
cells instead of regulatory T cells (Tr1). Th1 cells expressing CXCL10/
CXCR3, recruit polymorphonuclear cells (PMN), NK and NKT cells to
specific locations with the aid of antigen-presenting cells to initiate
colitis. Regarding malaria Nie et al. [104] found that CXCL10
neutralization either with specific antibodies or genetic deletion
(CXCL10�/� mice) protected against cerebral malaria infection and
inflammation. Passive transfer of anti-CXCL10 antibodies reduced
the recruitment of inflammatory leukocytes across the blood brain
barrier. While genetic deletion of CXCL10 not only alleviated
intravascular inflammation but also reduced pRBC sequestration in
the brain [104]. The increased resistance to parasite infection
observed in the absence of CXCL10-mediated trafficking was
associated with retention of parasite-specific T cells in the spleen.
Very interestingly, various studies recently indicate that statins
(Atovastatin) used for lowering blood cholesterol have anti-
inflammatory function and may contribute to modulation the
immune system [105]. Grip and Janciauskiene [106] in 2009
described a new in vivo function of atovastatin, which reduces
plasma levels of CXCL10 in patients with Crohn’s Disease (CD), thus
provides support for the use of statins in therapy for patients with CD
or any other CXCL10-mediated diseases. In contrast, high levels of
CXCL10 mediated protection against Leishmania amazonensis

infection in mice, delayed lesion development and reduced parasite
burden via interferon-g and IL-12 secretion [107]. The application of
CXCL10 has been extended to some other areas. An example is an in
vitro study involving kidney allograft rejection, a novel drug BXL-01-
0029 was reported to decrease the expression of CXCL10 in human
renal tubular cells and thus reduce kidney allograft rejection [108].
More promising is that Lee [109] have generated and patented the
antibody against CXCL10 and found that CXCL10 up regulated the
expression of receptor activator of NF-kB ligand (RANKL) which
plays an important role in the formation of osteoclasts. Blocking
CXCL10 using this antibody resulted in the inhibition of RANKL
expression, thus, this antibody could be utilized as a novel therapy
for preventing and treating human bone diseases. All the above
studies indicate that CXCL10 could be targeted therapeutically for
treatment of a plethora of infectious diseases that must be pursued.
Detailed translational studies on CXCL10 are summarized in Table 1.

5. Conclusion

Although CXCL10 was originally identified as a proinflammatory
chemokine mediating leukocyte trafficking, it has been found to
activate T lymphocytes (Th1) [5], NK cells, macrophages, dendritic
and B cells. All of these cells home in on target/threat areas via
CXCL10 to modulate innate and adaptive immune responses and
regulate cell growth and angiostasis. Alterations in CXCL10 mRNA
and protein expression have been associated with pathogenesis of
various infectious diseases, chronic inflammatory and autoimmune
diseases as well as cancer. The molecular characteristics of CXCL10
make it a potential candidate for therapies against the pathological
consequences of these diseases. Further research is needed to
understand the downstream and upstream signaling pathways
regulating CXCL10 and other CXCR3 receptor ligands, with the aim of
developing a class of novel interventions against infectious diseases
mediated by this chemokine.
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