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Abstract

Coronavirus disease‐2019 (COVID‐19), the ongoing pandemic caused by severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a major threat to the

entire human race. It is reported that SARS‐CoV‐2 seems to have relatively low

pathogenicity and higher transmissibility than previously outbroke SARS‐CoV. To
explore the reason of the increased transmissibility of SARS‐CoV‐2 compared with

SARS‐CoV, we have performed a comparative analysis on the structural proteins

(spike, envelope, membrane, and nucleoprotein) of two viruses. Our analysis re-

vealed that extensive substitutions of hydrophobic to polar and charged amino acids

in spike glycoproteins of SARS‐CoV2 creates an intrinsically disordered region (IDR)

at the beginning of membrane‐fusion subunit and intrinsically disordered residues in

fusion peptide. IDR provides a potential site for proteolysis by furin and enriched

disordered residues facilitate prompt fusion of the SARS‐CoV2 with host membrane

by recruiting molecular recognition features. Here, we have hypothesized that

mutation‐driven accumulation of intrinsically disordered residues in spike glyco-

proteins play dual role in enhancing viral transmissibility than previous SARS‐
coronavirus. These analyses may help in epidemic surveillance and preventive

measures against COVID‐19.
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1 | INTRODUCTION

Novel coronavirus (2019‐nCoV or SARS‐CoV‐2) has caused ongoing

global epidemics with high morbidity and mortality. Coronaviruses

(order Nidovirales, family Coronaviridae, and subfamily Coronavir-

inae) are primarily known to cause enzootic infections in birds and

mammals; however, in the last few decades; they have crossed the

animal–human species barrier.1,2 The outbreak of severe acute re-

spiratory syndrome (SARS) in 2002–2003 and, more recently,

Middle‐East respiratory syndrome (MERS) in 2012 has confirmed the

lethality of CoVs when they crossed the species barrier and started

to infect humans. The consequent outbreak of SARS in 2003, 8096

cases and 774 deaths reported worldwide, resulting in a fatality rate

of 9.6%.3 Whereas the outbreak of MERS in April 2012 up until

October 2018, 2229 cases, and 791 associated deaths have been

confirmed globally, resulting in a case‐fatality rate of 35.5%.4 The

novel coronavirus has reported to share about 79% sequence simi-

larity with the SARS‐coronavirus, about 50% with the MERS‐
coronavirus.5 SARS‐CoV‐2 is associated with an ongoing outbreak of

atypical pneumonia (coronavirus disease‐2019 [COVID‐2019]) that
has affected 4,425,485 people and killed 302,059 of those affected in

more than 60 countries as on May 16, 2020.6 On January 30, 2020,

the World Health Organization declared the SARS‐CoV‐2 as a

pandemic.

Coronaviruses are enveloped viruses with a positive sense,

single‐stranded RNA genome. The viral genome encodes four major

structural proteins: the spike (S) protein, nucleocapsid (N) protein,

membrane (M) protein, and the envelope (E) protein, all of which are
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crucial to produce a structurally complete viral particle.7 Coronavirus

enter into host cells by using transmembrane spike (S) glycoprotein

that forms homotrimers extended from the viral envelope.8 S en-

compasses two functional subunits‐S1, responsible for binding to the

host cell receptor and S2, involved in fusion of the viral envelope and

host cellular membranes. For many CoVs, S protein is cleaved at the

boundary between the S1 and S2 subunits, which remain as a single

polypeptide in the prefusion conformation.9 The distal S1 subunit

comprises the receptor‐binding domain (RBD) and facilitates the

stabilization of the prefusion state of the membrane‐anchored S2

subunit containing the fusion machinery.10 The cleavage at S1/S2

boundary has been anticipated to stimulate the protein by irrever-

sible conformational changes for membrane fusion.11 The host pro-

teases for S protein cleavage differ among different coronaviruses,

which play crucial roles in determining the epidemiological and pa-

thological features of virus, including host range, tissue tropism,

transmissibility, and mortality. For example, a variety of human

proteases, such as trypsin, tryptase Clara, human airway trypsin‐like
protease, and transmembrane protease serine 2 are reported to

cleave and activate the S protein of SARS‐CoV.12,13 Depending on

the viral species, coronaviruses recognize a variety of entry receptors

to infect the host. SARS‐CoV and several SARS‐related coronaviruses

(SARSr‐CoV) interact directly with angiotensin‐converting enzyme 2

via S protein to enter into the target cells.14 Recently, it is reported

that mutation in the RBD in SARS‐CoV‐2 renders more efficient

human‐human transmission.15 Scientists have found that SARS‐CoV‐2
S glycoprotein possesses a furin cleavage site at the boundary

between the S1/S2 subunits which helps in activating the fusion

machinery of the virus.16,17 These two distinctive features in

SARS‐CoV2 could partially explain the efficient transmission of

SARS‐CoV‐2 in humans.

A recent study by Zhao et al.18 has estimated basic reproduction

number (R0) for 2019‐nCoV in the early phase of the outbreak and

revealed that mean R0 for SARS‐CoV2 is ranging from 3.3 to 5.5

which is higher than those of SARS‐CoV (R0: 2–5). The higher

transmissibility of this virus turns the outbreak into a pandemic.

Thus, it is of the prime interests of the researchers to untangle all the

uniqueness of this newly emerged coronavirus by comparing with the

previous human infecting SARS‐CoV for designing protective mea-

sures against it.

We have studied an in depth mutational spectra and evolu-

tionary dynamics of these four structural proteins by comparing

SARS‐CoV2 and human infecting SARS‐CoV. Analyzing the impact of

a mutation in proteins we have found that an intrinsically disordered

region is acquired at the beginning of fusion protein (S2) which offers

furin cleavage site in SARS‐CoV2. Moreover, higher predisposition of

intrinsically disordered residues in S2 observed to contain three

molecular recognition features (MoRFs). We here hypothesized a

unique fusion mechanism favored by the MoRFs present in the fusion

peptide of the novel coronavirus. Thus, our study provides new in-

sight into the genomic feature responsible for the rapid transmission

of SARS‐CoV2 as well as it could help in designing preventives

against COVID‐19.

2 | MATERIALS AND METHODS

2.1 | Sequence retrieval

Up to date, 1590 genome sequences of SARS‐CoV2 are deposited in

ViPR database (https://www.viprbrc.org).19 Complete genome is

available for 1017 isolates from different geographical regions. We

have retrieved 1017 coding sequences of SARS‐CoV2 structural

proteins (S, E, M, and N) and human infecting SARS‐CoV three iso-

lates from China, Germany, and USA. Genome accession numbers for

all genome studied here are provided in Table S1.

2.2 | Calculation of evolutionary rate

Coding sequences of S, E, M, and N of SARS‐CoV and SARS‐CoV2
were aligned by CLUSTAL W, then Pairwise synonymous (ds) and

nonsynonymous (dn) distances between the orthologous genes were

calculated using the Phylogenetic Analysis Using Maximum Like-

lihood20 package (PAML, yn00) to identify regions and sites under

evolutionary selection.21

Pairwise amino acid residues of all proteins between SARS‐CoV
and SARS‐CoV2 and within different strains of SARS‐CoV2 were

aligned by CLUSTAL omega and amino acid substitution were cal-

culated by house‐build Perl program.

Mutation analysis was done by PROVEAN (http://provean.jcvi.

org/index.php) and SIFT (https://sift.bii.a-star.edu.sg/). PROVEAN is

very much useful for filtering sequence variants to identify non-

synonymous or indel variants that are predicted to be functionally

important22 and in SIFT algorithm for sorting Intolerant from Tol-

erant could efficiently predict whether an amino acid substitution

affects protein function or not.23

2.2.1 | Prediction of IDR and MoRF

Coordinates of S1 and S2 subunits of S proteins in SARS‐CoV and

SARS‐CoV‐2 were retrieved from Pfam (https://pfam.xfam.org/).

Intrinsically disordered region (IDRs) of all four proteins of

SARS‐CoV and CoV2 were predicted by PONDR® VLXT (http://

www.pondr.com/), predictors of natural disorder region. PONDR®

VLXT applies three different feedforward neural networks (VL1, XN,

and XC). XN and XC [22] for N‐ terminal and C‐terminal region,

respectively and VL124 for the internal region of the sequence. This

method is frequently used for disorder calculation in virus.25–27

MoRF was predicted by MoRFchibi (https://morf.msl.ubc.ca/

index.xhtml). This tool is used for its high accuracy predictions and

it provides more than double the precision of other predictors.28

2.3 | Statistical test

All the statistical tests were performed using the SPSS package.
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3 | RESULTS

3.1 | Mutational spectrum in the structural protein‐
coding genes in SARS‐CoV2 arisen during evolution

Bayesian evolutionary rate and divergence date estimates were shown

that nonsynonymous‐to‐synonymous substitution rate ratio is decreasing

from SARS (1.41) to MERS (0.35) and MERS to HCoV‐OC43 (0.133).29

Here, we have measured evolutionary distance between 1017 strain of

SARS‐CoV2 spreading throughout the world with human infecting SARS‐
CoV predominantly had spread in three different geographical regions

(USA, China, and Germany) in 2003–2004. For this, we have calculated

nonsynonymous substitution per nonsynonymous site (dn) and synon-

ymous substitution per synonymous site (ds) among the four structural

protein‐coding sequences (S, M, E, and N) of orthologous genes present in

SARS‐CoV and SARS‐CoV‐2. We have noticed significantly (p= .001)

higher nonsynonymous substitution rates and synonymous substitution

rates in S protein compared with the other three proteins (Table 1).

A similar observation is also documented in the recent study of Tang

et al.30 Pairwise alignment by Needleman–Wunsch algorithm between

the four structural proteins of SARS‐CoV and SARS‐CoV2, have shown

that average percentages of amino acid substitutions occurred in S, M, N,

and E proteins are 21.9, 9.5, 8.76, and 4, respectively. These results imply

that significantly (p= .001) higher amino acid substitutions have occurred

in S proteins than the other three proteins during evolution which is

reflected in the higher dN value of S proteins. Analyzing the effects of

amino acids substitution in proteins by PROVEAN and SIFT, we revealed

five deleterious mutations, that is, the mutations may cause protein

structural destabilization (C19T, L54S, L286T, P335A, and Y1070H) have

occurred in S protein whereas no such deleterious mutations were ob-

served in other three proteins. S protein is very much crucial for virus

entry since it interacts with receptor and fuse with host membrane. It

was evident from different studies that genes which crucial for the sur-

vival of the organisms are remained conserved (low dN/dS) over the

evolutionary time scale.30 Thus, according to the neutral theory of evo-

lution31 higher nonsynonymous substitution rate compelled S proteins to

experience significantly (p= .001) higher synonymous substitution rates

than other proteins to retain overall conservation of the S proteins

(Table 1).

Though, it was well evidenced that RNA viruses accumulate

more mutation rates than DNA viruses due to lack of proofreading

activity in RNA polymerase they have encoded.32 However, it would

be interesting to investigate whether the accumulation of non-

synonymous mutation preferentially in S proteins than others offer

any benefits to the virus for enhancing their potency of infectivity.

3.2 | Effects of mutations on the protein structural
features in SARS‐CoV2

We have analyzed the properties of substituted amino acids in the

four structural proteins during evolution from SARS‐CoV to SARS‐
CoV2 to investigate whether the amino acids substituted with a si-

milar group of amino acids or not. We have detected extensive hy-

drophobic (Hy) to polar (P) and charged (C) amino acids exchange in

S proteins than other three structural proteins (S: Hy‐P/C = [51/

91] = 56.1% and P/C‐Hy = [40/91] = 43.9% [p‐value = .02]; M: Hy‐P/
C = [4/7] = 57.2%, P/C‐Hy = [3/7] = 42.8% [p‐value = .59]; N: Hy‐P/
C = [7/15] = 46.6%, P/C‐Hy = [8/15] = 53.3% [p‐value = .71]). In E

proteins, no substitution of amino acid with the different groups has

found. The details of amino acid mutations of S, M, and N proteins

which took place during evolution from SARS‐CoV to SARS‐CoV2
have delineated in Table 2. Several high throughput studies on pro-

tein structure have evidenced that regions in a protein‐enriched with

polar and charged amino acids have a tendency to conform IDR.33

Moreover, IDRs in virus endure several structural features asso-

ciated with viral pathogenicity.34 Thus, we have predicted IDR in all

structural proteins in SARS‐CoV2 by PONDR‐VLXT and compared

the predisposition of IDR with the corresponding proteins present in

SARS‐CoV. Here, we have found that M and E proteins of both SARS‐
CoV and SARS‐CoV2 do not contain any IDR (consecutive disordered

residues > 30 amino acids) in their proteins (Table 3). N proteins

contain three IDRs and percentages of intrinsically disordered re-

sidues in their proteins are remarkably high. However, the enrich-

ment of IDR in N proteins is similar for both viruses (Table 3).

Interestingly, we have revealed an IDR (671–708) in S proteins of

SARS‐CoV‐2 but no IDR is found in their previous orthologous SARS‐
CoV (Figure 1A, Table 3). Moreover, percentages of disordered re-

sidues (PID) are significantly (p = .035) increased in S proteins of

SARS‐CoV2 compared with SARS‐CoV which implies more disorder

residues become enriched in S proteins after evolution (Table 3).

Genomic analysis of S genes deduced that out of 1017 genome of

SARS‐CoV2, 491 viral strains are 100% similar and 526 strains have

differed from each other. Multiple alignments of Spike protein se-

quences from 526 different isolates with one of the similar isolates

have revealed a total of 31 Single Amino Acid Polymorphisms (SAPs)

but none of them has occurred in the predicted IDR (671–708) which

indicates the region is conserved among all of them (Figure 2A). We

also noticed D614G mutation is predominant in 504 isolates

(Figure 2A; Table S1). Next, comparing the IDR between SARS‐CoV/
CoV2, we have traced an insertion mutation which allows to in-

corporate three new disorder promoting amino acids serine, proline,

and arginine in S proteins of SARS‐CoV2 (Figure 2A). Along with this,

the substitution of order promoting to disorder promoting amino

TABLE 1 Comparison on average nonsynonymous (dN) and
synonymous (dS) substitution rates of four structural proteins in
SARS‐CoV‐2

Protein name Average dN (n = 1017) Average dS (n = 1017)

S 0.156 1.262

M 0.067 0.551

N 0.057 0.368

E 0.031 0.136

Abbreviations: E, envelope; M, membrane; N, nucleocapsid; S, spike,

SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2.
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acids in five positions (H661Q, V663Q, L665N, L666A, and D684E)

help to create the new IDR in SARS‐CoV2 (Figure 2B). These results

imply that the novel coronavirus acquired a new intrinsically dis-

ordered region in their spike glycoprotein which is crucial for entry

into the host. Thus, it is imperative to explore the connection

between IDR and elevated transmissibility in SARS‐CoV2.

3.3 | Role of IDR in S protein in the rapid
transmission of SARS‐CoV‐2

S proteins contain two subunits–S1 and S2. Pfam prediction on

S proteins of two viruses depicted two domains: (i) Receptor binding

domain (321–556 in SARS‐CoV and 330–583 in SARS‐CoV‐2); (ii) S2
domain (635–1240 in SARS‐CoV and 671–1270 in SARS‐CoV‐2).
Thus, it is clearly observed that the IDR (671–708) has enriched in

membrane fusion domain (S2) of spike glycoproteins in SARS‐CoV‐2
(Figure 1A). Recently, two research groups have reported that fusion

protein acquired a new furin cleavage site (682–685) at the upstream

of fusion peptide (S2').16,17 We have found that this cleavage site

actually resides in the IDR. Since, intrinsically disordered proteins

(IDPs)/IDPRs lack stable well‐folded three‐dimensional structures,

the structural instability renders exceptional sensitivity to proteo-

lysis.35 Thus, the new IDR offers the cleavage site of furin protease as

well as assists in efficient proteolytic cleavage of S proteins to acti-

vate the fusion peptide in SARS‐CoV‐2.T
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TABLE 3 Comparison on the intrinsic disorder content of four
proteins between SARS‐CoV and SARS‐CoV‐2

Disorder features SARS‐CoV‐S SARS‐CoV2‐S

Total disorder residues 65 98

No of disorder region (>30a.a) NIL 1

PID 5.18 7.70

SARS‐CoV‐M SARS‐CoV2‐M

Total disorder residues 14 13

No of disorder region (>30a.a) NIL NIL

PID 6.28 5.86

SARS‐CoV‐E SARS‐CoV2‐E

Total disorder residues 10 9

No of disorder region (>30a.a) NIL NIL

PID

SARS‐CoV‐N SARS‐CoV2‐N

Total disorder residues 212 208

No of disorder region (>30a.a) 3 3

PID 50.74 49.6

Note: PID indicates the proportion of disorder residues to the total length

of amino acids predicted by PONDR‐VLXT.
Abbreviations: E, envelope; M, membrane; N, nucleocapsid; PID,

percentages of disordered residues; S, spike, SARS‐CoV‐2, severe acute

respiratory syndrome coronavirus 2.
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F IGURE 1 Comparison on IDR and MoRF between SARS‐CoV and SARS‐CoV2. (A) Comparison on the intrinsic disorder tendency of the
amino acid residues in spike glycoproteins of SARS‐CoV and SARS‐CoV2. Disorder score above 0.5 is considered as cut‐off value.
(B) Comparison between MoRF content in SARS‐CoV and SARS‐CoV2. MoRF propensity score 0.5 was considered as cutoff. Circle shows

the enrichment of additional MoRF in SARS‐CoV2. IDR, intrinsically disordered region; MoRF, molecular recognition feature; SARS‐CoV‐2,
severe acute respiratory syndrome coronavirus 2

F IGURE 2 Conservation of IDR in all isolates of SARS‐CoV2. (A) Pairwise alignment of IDR of S proteins in three strains of SARS‐CoV
and different strains of SARS‐CoV‐2 having change in amino acid level shows the amino acid substitutions between the two viruses as well as
the conservation of this region (indicated by black box) in all SARS‐CoV‐2 isolates. (B) IDR in S2 subunits of spike glycoprotein in SARS‐CoV‐2
(PDB Id: 6VSB) represents in purple color and other disorder residues in green color. IDR, intrinsically disordered region; SARS‐CoV‐2,
severe acute respiratory syndrome coronavirus 2
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Moreover, analyzing the PID separately in S2 domains of SARS‐
CoV and SARS‐CoV‐2, we have found that PID of S2 is significantly

(p = .025) higher in SARS‐CoV‐2 (13.83) than SARS‐CoV (8.75). Ear-

lier it was reported that the enormous flexibility of intrinsically dis-

ordered regions in the membrane proteins imposes the potentiality

to involve in the membrane remodeling process.36,37 The membrane

remodeling is essential for efficient fusion of the enveloped virus

with host cellular membrane. Subsequently, it was also described that

IDRs mediated remodeling of the membrane depends on the pre-

sence of MoRFs and posttranslational protein modifications.38 The

MoRF is a short peptide (10–70 residues) present in the disordered

region and the flexibility of this facilitates membrane curvature.

MoRF prediction by MoRFchibi has revealed the three MoRFs

(804–823, 1147–1159, and 1249–1272) in the fusion peptide of

SARS‐CoV‐2, whereas in SARS‐CoV it was two (1129–1142 and

1232–1255; Figure 1B). In an earlier study,38 it was elucidated that

the membrane curvature increases with two factors: the size of the

inserted MoRF and surface density of the disordered protein. Thus,

the acquisition of one additional MoRF in SARS‐CoV‐2 escalated

MoRF and disorder residue density on the viral protein which could

able to trigger more rapid fusion with host membrane than the SARS‐
CoV. Together these results have deduced that preponderance of

intrinsically disordered residues in S2 domain offers protease‐
sensitive region for prompt activation of fusion peptide and enrich-

ment of MoRFs for efficient fusion with host membrane. So, it could

be treated as a novel feature observed exclusively in 2019‐nCoV
distinguishing this virus from SARS‐CoV.

4 | DISCUSSION

The protein expressed on the surface of a pathogen is supposed to be

more accessible to surveillance by the immune system than one

within the interior of a pathogen.39 Thus, more genetic variations in

surface proteins are the signatures of host‐pathogen coevolution. In

this study, we have found that amongst the four structural proteins,

an extensive higher rate of nonsynonymous substitution is occurred

in spike glycoproteins of SARS‐CoV‐2 when compared with the hu-

man infecting SARS‐CoV strain. Along with the amino acid substitu-

tion having neutral effects on virus fitness, S proteins also

experienced five deleterious mutations that may cause destabiliza-

tion of viral structure. The neutral theory of molecular evolution

suggested that the mutations decreasing the carrier's fitness tend to

disappear from populations through the process of negative or pur-

ifying selection (dN/dS < 1).40 Thus, S protein has also experienced

higher synonymous substitution rate to balance overall selection

pressure on it. Now, it was also depicted that slightly deleterious and

slightly advantageous mutations are engulfed by neutral mutations.

Thus, the ratio of dN and dS is frequently used to study positive

Darwinian selection operating at highly variable genetic loci, but it

could not able to detect adaptively important codons offering ben-

efits to the organism for adaptation.41 Thus, we have extensively

studied amino acid changes in all the structural proteins of

SARS‐CoV‐2 occurred during evolution from SARS‐CoV to search out

the mutation posing advantages to the novel virus for their

systematic infection in the human body.

We have revealed that mutations in the four structural proteins of

SARS‐CoV‐2 prompt a significant hydrophobic to polar and charged

amino acids exchange in S proteins compared with E, M, and N proteins

(Table 2). This trend of amino acid exchange in S proteins is observed to

generate an intrinsically disordered region (38 residues) at the upstream

of fusion peptide in S2 domain which is embedded inside the envelope

of SARS‐CoV‐2. However, amino acid substitution in M, E, and N pro-

teins did not show any enrichment of new IDR in SARS‐CoV‐2 com-

pared with SARS‐CoV. Though, it was earlier reported that N proteins

of SARS‐CoV extensively enriched with intrinsically disordered re-

sidues.42 We found that the propensity of disordered residues in

N proteins of SARS‐CoV‐2 (49.6%) is nearly similar with SARS‐CoV
(50.7%). The enrichment of disordered residues in N proteins has sug-

gested as a crucial phenomenon for their transmission in respiratory

routes.42 Whereas, lower content of disordered residues in shell pro-

teins (E and M) of SARS‐CoV as well as SARS‐CoV‐2 eliminate the

chances of transmission via oral–fecal routes.42 Since, the intrinsic dis-

order content in E, M, and N proteins already reported to regulate the

behavior of viral transmission, it is a prerequisite to illustrate the impact

of IDR in S proteins. Viral entry is mediated by S proteins containing

RBD and fusion domain (S2). The IDR which is exclusively found in

SARS‐CoV‐2 is located in S2 domain. The IDR in this domain offers the

furin cleavage site (682–685). Furin protease is ubiquitously expressed

in a wide range of organs and tissues, including the brain, lung, gas-

trointestinal tract, liver, pancreas, and reproductive tissues. The struc-

tural flexibility of IDR stimulates this region sensitive to proteolysis.35,43

Similar kind of observation was also reported in Zika virus where the

prefusion protein prM contains IDR with a protease cleavage site.44

Thus, the acquisition of a disordered region imposes efficient proteolytic

cleavage of S2 which in turn activates fusion peptide to fuse with the

host membrane. Moreover, in comparison with the structured proteins,

disordered proteins of similar length have large volumes and flexibility,

so that they are able to furnish different coupled binding‐folding reac-

tions.45 The highly flexible nature of IDR is frequently exploited by

eukaryotic cells including viruses for modulating membrane properties

during membrane trafficking.37 Viral envelopes are made up of lipid

bilayer where a number of spike proteins with considerable disordered

regions are observed to be anchored. They are free to diffuse in the lipid

leaflets. According to the hypothesis described in Fakhree et al.,39 we

could explicate our observation in a way that the free movement of

intrinsically disordered residues containing in the fusion peptide will

result in collisions with other membrane‐anchored macromolecules. The

collisions generate a lateral pressure on the membrane. The presence of

a large fraction of charged and polar amino acids in disordered proteins

makes them more efficient in generating lateral pressure. This pressure

is consequently used to incite membrane curvature. It has been seen

that many IDRs induce membrane curvature by recruiting MoRFs.46

MoRFs are relatively short (10–70 residues) and typically possessing

higher numbers of hydrophilic amino acids and prolines.47,48 Thus they

could play a vital role in protein–protein interactions, metal binding, and
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cellular communications.49 Several roles of MoRFs are also documented

in Chikunguniya virus.50 We have noticed that an abundance of dis-

ordered residues in SARS‐CoV‐2 generates three MoRFs in the fusion

peptide. It was explained in an earlier review 38 that the presence of

MoRF result in a unilateral increase in the surface area of the mem-

brane. This changes the ratio between the outer and inner surface area

of the membrane and subsequently to adopt topography with this new

ratio, the membrane remodels by increasing its curvature.38,51 Thus, it

could be interpreted that MoRFs help for curving the lipid bilayer of the

virus and initiate efficient fusion with the host cell membrane (Figure 3).

Such ability of intrinsically disordered domains to create steric pressure

on membrane surfaces to drive its curvature was depicted in endocytic

adapter proteins, Epsin1 and AP180 by a combination of in vitro bio-

physical studies and quantitative experiments in live cells.52 Another

couple of examples of membrane curvature by the MoRF motif of was

established in an IDP ArfGAP1 (ADP‐ribosylation factor GTPase‐
activating protein 1)53 and α‐synuclein, by site‐directed mutagenesis,

limited proteolysis, circular dichroism experiments,54 and FRET micro-

scopy study in live cell,55 respectively. Hence, we have hypothesized

that the acquisition of disordered residues in SARS‐CoV‐2 makes them

highly competent for systematic infection in human. Nowadays, IDPs

are becoming attractive candidates for therapeutic intervention by

small drug‐like molecules. Thus, this study will help in epidemic sur-

veillance and designing drug targets to battle COVID‐19.
In summary, these analyses provide insights into the mutational

effects in originating intrinsically disordered residues in the S2 sub-

units of spike glycoprotein present in SARS‐CoV‐2. We have also

hypothesized a unique fusion mechanism of the viral envelope and

host membrane by MoRF. However, these propositions are mainly

based on our sequence studies and experimental evidence in other

organisms, thus further experimental validations are required to

confirm this mechanism in coronavirus.
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