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Abstract: Chronological age represents the greatest risk factor for many life-threatening diseases,
including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility
to infectious disease. Current efforts to tackle individual diseases may have little impact on
the overall healthspan of older individuals, who would still be vulnerable to other age-related
pathologies. However, recent progress in ageing research has highlighted the accumulation of
senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular
senescence is an essentially irreversible proliferation arrest mechanism that has important roles in
development, wound healing, and preventing cancer, but it may limit tissue function and cause
widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of
rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly,
a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising
treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer,
immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy,
muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors
to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is
available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent
need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the
efficacy of any healthy ageing therapy.
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1. Introduction

The greatest risk factor for all major life-threatening diseases, including cancer, neurodegeneration,
and cardiovascular disease is age. Current therapies that target each of these age-related diseases (ARD)
individually have had limited success, and a cure for one specific ARD may not greatly extend healthy
lifespan, as elderly patients would still be vulnerable to other ARDs. However, mounting evidence
suggests that it may be possible to develop broad-spectrum treatments for the diseases of old age by
targeting the underlying biological mechanisms driving ageing and its associated pathologies. Indeed,
several consistent hallmarks of ageing have been identified, including telomere attrition, epigenetic
dysregulation, altered proteostasis, decreased autophagy, mitochondrial dysfunction, and increased
DNA damage [1]. All of these processes contribute to the onset of cell senescence, a core driver
of ageing, as demonstrated by improved health and extended lifespan of middle-aged mice upon
the removal of senescent cells [2]. Furthermore, it is also possible that other hallmarks of ageing,
including stem cell depletion and remodelling of the extracellular matrix [1], are in fact consequences
of cell senescence.
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1.1. Senescence

Cellular senescence is a programme of essentially permanent proliferative arrest, induced by
stresses including replicative exhaustion, DNA damage, oncogene signalling, ER stress, and imbalances
in ribosome biogenesis [3]. At least in vitro, senescent cells show greatly enlarged cell size,
altered morphology, accumulation of lipid droplets and lipofuscin-type pigments [4], and prominent
actin stress fibres. Mitochondrial load increases in senescence, possibly to compensate for chronically
damaged mitochondria, and lysosomal stress is evident with dyes such as senescence-associated
β-galactosidase (SA-β-gal) [5]. Senescent cells exhibit chronically elevated levels of DNA damage
response proteins including 53BP1 and γH2AX indicating poor DNA repair capacity, while there
is also marked restructuring of the epigenome, such that CpG methylation patterns can be used as
an epigenetic clock to determine biological age [6]. At the biochemical level, activation of tumour
suppressor proteins p53 and/or p16CDKN2, together with cyclin-dependent kinase inhibitor p21CDKN1,
leads to cell cycle arrest and the cessation of proliferation that is characteristic of senescent cells,
together with resistance to apoptosis.

While the original evolutionary role of senescence may lie in development [7], wound healing [8],
or as a barrier to viral infection [9], it also provides a failsafe mechanism against proliferation of
tumorigenic or aged cells [10]. However, this can be detrimental to tissue integrity, as such cells
can no longer contribute to wound healing or the cell turnover necessary for tissue maintenance.
Moreover, senescent cells do not simply exist as passive but ineffective components of a tissue:
instead, they actively alter their microenvironment through a secretory programme termed the SASP
(senescence-associated secretory phenotype) [11]. This pro-inflammatory programme comprising
cytokines, chemokines, growth factors, and matrix-remodelling enzymes alerts immune cells to the
presence of senescent cells, which in younger organisms is thought to promote immune clearance [12].
However, with increasing age comes both an increasingly unbalanced and dysfunctional immune
system, and an increased rate of senescence onset via chronic exposure to extrinsic and intrinsic
damaging agents, gradual loss of homeostasis, and progressive telomere erosion. Together, these cause
the accumulation of senescent cells, observed in various tissues with chronological age [5,13,14].
Pleiotropic SASP signalling also induces paracrine senescence in neighbouring cells, amplifying
the senescent cell burden, and possibly driving the chronic and sterile inflammation observed in
old age—a contributing factor to the development of many ARDs. Components of the SASP also
participate in paracrine pro-tumorigenic signalling (e.g., IL-6, IL-8, MMP-3), promoting tumour
formation and progression [11]. Several notable experiments have provided evidence for the causative
role of cellular senescence in organismal ageing and age-related pathology; most convincingly,
the clearance of p16-expressing senescent cells in vivo rejuvenates naturally aged mice, improving
health, and extending lifespan [2].

1.2. mTOR Signalling in Senescence and Ageing

The serine/threonine kinase mTOR is a major regulatory nexus that integrates signals, including
levels of glucose, amino acids, oxygen, growth factors, and hormones to direct cell growth and
proliferation under suitable conditions. mTOR is the functional enzyme within two distinct
complexes—mTORC1 and mTORC2—where it associates with several other proteins that are either
distinct to each complex (e.g., Raptor/Rictor) or present in both (e.g., Deptor, mLST8 (mammalian lethal
with SEC13 protein 8), see Table 1). A novel mTOR complex containing GIT1 (GPCR kinase-interacting
protein 1), but lacking Raptor and Rictor, has been identified by proteomic analysis of neural stem
cells and astrocytes [15], highlighting the possible variation in mTOR complex composition between
somatic tissues.

mTORC1 regulates pathways central to cell growth, proliferation, survival, motility, autophagy,
and protein synthesis, whilst mTORC2 has a role in regulating actin organization as well as
metabolic control [16]. mTORC1 is activated by recruitment to the lysosome through the action
of Rag GTPases and regulators, such as the late endosomal/lysosomal adaptor and MAPK and
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mTOR activator (LAMTOR/Ragulator), whereas mTORC2 is ribosomally-associated on activation
by insulin-signalling, mediated through IGFR (insulin-like growth factor receptor) and IRS1/2
(insulin receptor substrate) [16], though localisation at mitochondria, the plasma membrane, ER,
and lysosomes has also been reported [17] (Table 2). There is significant cross-talk between the two
complexes through various positive and negative feedback loops (particularly through the kinase
Akt/PKB (protein kinase B)) [16], and possibly also through competition for FKBP (FK506 binding
protein) subunits [18]. Recent research using unbiased phosphoproteomics has expanded the list
of known direct mTOR substrates [19–21] and the mTOR signalling network has been reviewed
extensively elsewhere [16,22,23]. Examples of key regulators, phosphorylation targets, and biochemical
and biological outcomes for each complex are summarized in Table 2.

Table 1. mTOR complex subunits.

Contribution to Complex mTORC1 mTORC2

core

mTOR mTOR
mLST8/Gβ3 mLST8/Gβ3

Deptor Deptor
Tti1/Tel2 Tti1/Tel2

complex-specific

Raptor Rictor
PRAS40

mSIN1
Protor1/2

Table 2. Activities and localization of mTORC1 and mTORC2. Note that only a small subset of targets
and modulators is shown. Proteins are named using standard nomenclature; for full gene names,
please refer to the list of abbreviations.

mTORC1 mTORC2

localization when active lysosome
ribosome, plasma membrane,
mitochondria, endoplasmic
reticulum, lysosome

targets activated S6KT389, HIF 1α, GSK3, SOD1, Grb10,
eIF4G, Acinus L, eEF2, IMP2

SGK1, PKC, paxillin, Rho GTPases,
AktS473, IGFR, PDK1

targets inhibited 4EBP1/2, Maf1, Lipin-1, ULK1,
ATG13, TFEB, DAP1, LARP1 FBW8

activated by
insulin, growth factors, Rheb, Rag,
Akt, amino acids, high O2, cytokines,
TNFα, IkkB

PI3K, growth factors including
IGFR, Akt (on mSIN1), membrane
tension, ROS, ATM/ATR

inhibited by
AMPK, TSC1/2 (via Rheb
inactivation), low O2, low ATP,
low amino acids

S6K on both Rictor and mSIN1
TSC1/2 (via Rheb inactivation)

biochemical outcomes
of activation

protein, nucleotide, lipid and
mitochondrial biosynthesis; inhibition
of autophagy

actin reorganization,
lipid biosynthesis

overall outcomes of activation

cell growth (increase in volume and
biomass)
cell proliferation
suppression of oxidative damage

cell size (surface area increase)
cell shape (cytoskeletal changes)
survival under oxidative stresscell
cycle progression
metabolic control

The involvement of mTORC signalling in ageing is supported by a large body of experimental
evidence. Mutations in TOR have been shown to increase the lifespan of yeast [24], C. elegans [25–27],
and Drosophila [28]. Furthermore, deletion of S6K1 (ribosomal S6 protein kinase 1), which is a
downstream target of mTOR, increases lifespan in female mice. Further, reduced mTOR signalling
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increases lifespan and reduces age-related pathologies, including motor dysfunction and loss of insulin
sensitivity [29]. Notably, such findings contrast with other reports that chronic mTORC inhibition
induces diabetes [30]. This finding has been attributed to differential effects on mTORC1 versus
mTORC2, though in some instances loss of mTORC2 signalling also increases lifespan and improves
health. For instance, in the nematode worm, reduction in mTORC2 signalling by RNAi depletion of
Rictor can increase the lifespan under conditions of stress (high temperature) or high-quality food,
whereas the opposite is seen at lower temperatures and on a less rich food source [31].

mTOR signalling is highly significant in senescence as well as in ageing. Notably, the proliferative
arrest that characterizes cellular senescence is not accompanied by a down-regulation of growth
signalling. In fact, mTOR signalling is constitutively active in senescence, resulting from
replicative exhaustion, oncogene activation, and other stresses [32], and it may drive the process of
geroconversion [33] i.e., the shift from proliferation to senescence without inhibition of growth. Inhibition
of mTOR in cells approaching senescence reverses many of the characteristic senescence phenotypes [34]
supporting a role for mTOR in driving senescence. Rather than being dramatically increased, however,
mTOR signalling may instead be dysregulated in senescence; mTORC1 activity persists despite the
removal of serum and amino acids in senescent but not proliferating fibroblasts, indicating constitutive
activation that may be attributable to depolarization of the senescent cell plasma membrane [32].

Both the molecular mechanisms behind healthspan and lifespan extension afforded by mTOR
inhibition, and the roles of mTOR signalling in senescence are likely to be multi-factorial, as mTOR
regulates a multitude of downstream signalling events (Table 2 and Figure 1). Below, we consider
major biochemical pathways that are important in ageing and cell senescence that are regulated by
mTORC signalling, and that may therefore be amenable to modulation by mTORC inhibitors.
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Figure 1. Summary of pathways targeted by mTOR signalling which are implicated in modulation
of senescence and ageing. Arrows indicate that mTORC activity positively regulates the process,
while bars indicate inhibition.

1.3. mTOR-Associated Pathways That Contribute to Senescence and Ageing

1.3.1. Transcription

mTOR signalling from both complexes can influence gene expression through interaction
with a variety of transcription factors, including many involved in stress responses. For example,
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mTORC1 can modulate both the translational and the transcriptional activity of the hypoxia response
factor HIF-1α during normoxia and hypoxia, respectively [35,36]. Furthermore, mTORC1 regulates
the ROS-responsive transcription factor Nrf2 [37], as well as the heat-shock transcription factor
HSF1 [38] and the osmotic stress transcription factor NFAT5 [39]. The effects of mTOR in modulating
p53-dependent transcription are described in Section 1.3.7 (DNA damage response), below.

1.3.2. Protein Translation

Protein translation occurs within the ribosome, a large molecular factory that is composed of
functional RNAs and proteins. Ribosomal biogenesis (and hence subsequent protein synthesis) requires
the coordination of transcription of ribosomal RNAs (rRNA) within the nucleolus by RNA polymerase I,
protein-encoding messenger RNAs (mRNA) by RNA polymerase II and transfer RNAs (tRNA) and a
further 5S ribosomal RNA by RNA polymerase III, and is positively regulated by mTORC1 signalling at
multiple stages [40]. Assembly of the ribosome from ribosomal RNAs and proteins also occurs within
the nucleolus. Interestingly, nucleoli are enlarged in premature ageing [41], while small nucleoli are
associated with longevity [42], suggesting that enhanced ribosomal production may be associated with
ageing, either as a response to imbalances in ribosomal components or as a driver through increased
protein synthesis.

Protein synthesis requires not only functional ribosomes but also coordinated activity of a
number of translation initiation and elongation factors. Two well-established phosphorylation
targets of mTORC1 signalling are 4EBP1 and S6K, which act as regulators of translation initiation.
Unphosphorylated 4EBP1 binds to and inhibits eIF4E, which is a DEAD-box helicase necessary for
unwinding secondary structures at the 5′ ends of transcripts, and that serves as a critical factor in
recruiting 40S ribosomal subunits to mRNAs for cap-dependent translation initiation (thought to
be the rate-limiting step in protein synthesis); this inhibition is relieved by mTORC1-mediated
phosphorylation of 4EBP1 [43]. S6K is activated by phosphorylation by mTORC1 [16], and S6K
then phosphorylates the S6 protein, a structural component of the 40S ribosomal subunit. S6K is also
involved in ribosome biogenesis and in regulating the translation of 5′TOP (terminal oligopyrimidine
tract) mRNAs; rapamycin and similar rapalogues attenuate translation of mRNAs with complex 5′

UTRs especially those encoding HIF1α and VEGF [44]. The impact of mTOR signalling on 4EBP1
and S6K does vary according to cell type [45], presumably allowing for the tailoring of translational
responses to a cell’s needs. Furthermore, mTOR also regulates translation elongation through activation
of eEF2, which promotes the translocation of the ribosome along the mRNA. While regulation of protein
synthesis has largely been attributed to mTORC1, recent evidence suggests a role for mTORC2 in
co-translational processing of nascent polypeptides [46,47]. Direct activation of mTORC2 by association
with the ribosome also suggests a strong link between translation and mTORC2, possibly ensuring
that mTORC2 is only active in growing cells [46].

Mutations in 4EBP1, S6K, and several other components of the translational machinery can
confer increased longevity, and mild restriction of protein synthesis by low dose cycloheximide
can prevent induction of senescence [48]. It is possible that attenuating protein translation may
prevent the production of damaged proteins by enhancing quality control to prevent translational
errors, co-translational misfolding, or ER-stress, and that mTORC inhibitors, by reducing rates of
protein synthesis, may prevent the formation of potentially toxic aggregates in the cell. mTOR is
regulated by chaperone availability to link translation with quality control [49], suggesting that
constitutively active mTOR signalling with elevated levels of translation may be detrimental to cell
health. Notably, the dysregulation of protein synthesis and accumulation of protein aggregates are
implicated in many age-related diseases, including diabetes and neurodegenerative Alzheimer’s,
Parkinson’s and Huntington’s diseases; such dysregulation is likely to occur through a combination of
high levels of translation, poor post-translational quality control, and a failure of protein breakdown
through autophagy.
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1.3.3. Autophagy

Autophagy is a selective homoeostatic degradation pathway for cellular components, which are
directed via double-membrane vesicles (autophagosomes) to lysosomes for degradation. Autophagy is
activated in response to nutrient limitation and is suppressed by mTOR activity, through the inhibitory
phosphorylation of the autophagy-initiating kinase ULK1 (ATG1) [50], ATG13, and lysosomally-located
TFEB (reviewed in [51]).

The published literature contains some discrepancies about the association between autophagy
and ageing. In acutely triggered oncogene-induced senescence, autophagy activation has been
observed [52], possibly to rebalance the proteome for transition into a senescent state. However,
in almost every other model described, decreased autophagy is linked to ageing. For instance,
several proteins that are required for autophagy (Atg5, Atg7 and Beclin 1) are downregulated in
normal human brain ageing [53] and in osteoarthritis (ULK1, Beclin 1 and LC3) [54], while knock-in
of an activated form of Beclin 1 delays the onset of cardiac and renal fibrosis in normally ageing
C57/BL6 mice, and even rescues the short lifespan of Klotho mutant mice [55]. Reduced autophagy
has also been observed alongside mTOR activation in senescence resulting from treatment with
the genotoxin adriamycin, and co-treatment with the autophagy inhibitor Bafilomycin A1 further
increased the proportion of cells that are positively stained for SA-β-gal, a marker of senescence [56].
Increased autophagy has been suggested to mediate the pro-longevity effects of caloric restriction (CR),
as inhibition of autophagy prevents CR-mediated anti-ageing effects [57]. Activation of autophagy
by spermidine decreases immunosenescence and improves the response to influenza vaccination in
mice [58]. Decreased autophagy in ageing may limit the removal of dysfunctional organelles, such as
mitochondria, and lead to the accumulation of protein aggregates in neurodegenerative disorders.
Autophagy has also been implicated as a mechanism for the antagonistic effects of SIRT6 expression
on senescence in rat nucleus pulposus (NP) cells in a model of invertebral disc degeneration (IDD);
SIRT6 expression declines in senescent NP cells, but when overexpressed, it attenuates senescence,
with this effect being dependent on activation of autophagy and mTOR inhibition [59]. Furthermore,
an acetylcholine esterase inhibitor designed as a potential Alzheimer’s treatment was shown to induce
senescence in MCF-7 breast cancer cells, while simultaneously inducing the onset of autophagy
but blocking autophagic flux, leading to the production of single-membrane autolysosomes with
non-degraded cargo [60]. Hence, initiation of autophagy with failure of autophagosome fusion with
lysosomes for complete protein and organelle recycling may contribute to cell stress and senescence.
These results taken in combination underline the complex role of mTOR signalling in regulating
autophagy in senescence, and additionally highlight the inadequacy of usual markers of autophagy
(autophagosome number or LC3-II/LC3-I ratio) as readouts for activation of such a complex pathway
that is subject to further downstream regulation. On balance, we suggest that reactivation of autophagy
through mTORC1 inhibition is likely to be beneficial in many different diseases that are associated
with ageing, as discussed in Section 2 below.

1.3.4. Mitochondrial Function and Biogenesis

The progressive decline of mitochondrial efficiency in senescence represents a key hallmark of
ageing [1]. Senescent cells accumulate dysfunctional mitochondria, with both reduced oxidative
phosphorylation efficiency and increased ROS production [61,62]. Mitochondrial dysfunction is itself a
driver of cell senescence, with senescent cells exhibiting an increased mitochondrial load and increased
oxygen consumption [63]. The relationship between mitochondrial dysfunction and senescence may be
inter-dependent, as the chronic DNA damage response of senescent cells also promotes mitochondrial
dysfunction [64]. Furthermore, mitochondrial fission and fusion events are altered in senescence,
resulting in increased connectivity of the mitochondrial network [65]. As well as the oxidative stress
that is caused by dysfunctional mitochondria, mitochondrial nitrosative stress (excess S-nitrosylation)
is implicated in senescence, through enhanced S-nitrosylation of proteins regulating mitophagy and
mitochondrial dynamics [66].



Int. J. Mol. Sci. 2018, 19, 2325 7 of 33

mTOR provides a critical link between the energy balance of the cell and mitochondrial load,
regulating both mitochondrial biogenesis and mitophagy. Biogenesis is controlled through several
mechanisms, including PGC-1-β-dependent mitochondrial biogenesis and preferential translation of
nuclear-encoded mitochondrial-related mRNAs via the relief of 4EBP inhibition [67], with mitochondrial
oxidative function controlled through the YY1-PGC-1α transcriptional complex [68].

1.3.5. Hypoxia

The transcription factor HIF-1, active under hypoxic conditions, has been linked to ageing in
C. elegans, with increased and reduced activity both causing lifespan extension, dependent on context.
mTORC1 signalling is inhibited on HIF-1 activation, through transcription of REDD1, which activates
the TSC1/TSC2 complex, resulting in mTORC1 inhibition. Conversely, high oxygen tensions lead to
mTORC1 activation, while reactive oxygen species (ROS) may specifically activate mTORC2 [69,70]
to promote survival under oxidative stress. However, high Rheb activity in many cancers leads to
hyperactive mTOR signalling and increased HIF1 activity, resulting in the upregulation of VEGF
and high vascularisation of the tumour [71]. Hence inhibition of mTORC through rapalogues or
second-generation mTOR inhibitor ATP mimetics may have a beneficial impact on cancer through
blocking this pathway. Whether this has direct relevance to ageing remains to be determined, though it
has been suggested that ageing induces an mTOR-dependent pseudo-hypoxic state with high HIF1
and lactate production under normoxic conditions [72,73], which may be amenable to modulation by
mTORC inhibition.

1.3.6. Immunomodulatory Signalling

A common feature of age-related pathologies is chronic sterile inflammation. The secretory
phenotype (SASP) of senescent cells, through which pro-inflammatory mediators are released to
stimulate clearance by immune cells, may be the source of such inflammation. The SASP has pleiotropic
signalling effects, exhibiting not only paracrine immunomodulatory signalling, but also autocrine
and paracrine pro-senescence, and paracrine pro-tumorigenic signalling. Therefore, the SASP may
amplify the senescent cell burden of an elderly individual, exacerbate tissue dysfunction, and stimulate
age-related tumorigenesis. The SASP is at least partially regulated by mTOR, possibly through feedback
loops of IL1A translation or MAPKAPK2 signalling, and it can be suppressed while using rapamycin
or Torin [74,75], or MAP kinase inhibitors [76]. These findings conflict with earlier studies showing the
central importance of mTOR in innate immunity, specifically in the production of anti-inflammatory
IL-10 and the suppression of pro-inflammatory cytokines IL-21 and IL1β. Rapamycin and Torin are
also reported to suppress the anti-inflammatory effects of circulating glucocorticoids [77]. Furthermore,
transplant patients receiving mTORC inhibitors showed more than double the expected rate of
non-infectious fever [78], suggesting excess inflammation. It is possible that these important and
marked discrepancies relate to dosage, with pro-inflammatory effects of mTORC inhibition being
caused by high dosage, while anti-inflammatory suppression of the SASP may be achievable at much
lower doses.

1.3.7. DNA Damage Response

Following DNA damage, cell cycle progression is halted through the activation of multiple
checkpoints and cyclin-dependent kinase inhibitors. The damage-responsive ATM/ATR kinases
phosphorylate and activate mTORC, which can then phosphorylate Chk1, leading to proliferative
arrest at either S phase or G2/M; mTORC2 is specifically implicated in this arrest, at least in breast
cancer cells [79]. In addition to Chk1, components of the mTOR/S6K axis are also phosphorylated by
p38α MAPK following DNA damage. While mTOR activity can itself be modulated by the tumour
suppressor protein p53 (e.g., through p53 transcriptional targets such as TSC2, AMPK, and REDD1 [80]),
p53 activity is sensitive to mTOR signalling; mTORC1 can enhance the translation rate of p53 [81,82]
or activate p53 through S6K1-dependent phosphorylation of and binding to MDM2, which releases
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p53 from inhibition [83] so that it can act as a transcription factor for repair factors, such as Gadd45
or pro-apoptotic factors Bax and PUMA (reviewed in [84,85]). Moreover, mTOR activity enhances
p53-dependent transcription of p21CDKN1 and induction of senescence [86], a possible molecular
explanation for the importance of mTOR in geroconversion.

The importance of mTORC in DNA damage responses suggests that mTORC inhibitors may be
beneficial in cancer by sensitizing cells to genotoxic agents, though conflicting results have also been
reported [21]. Very recent work suggests that the DNA damage response is defective in cells with
hyper-activated mTORC1 signalling that lack the LKB1 tumour suppressor [87]. Chronic persistent
DNA damage—and constitutively active mTOR—are also features of senescent cells. Hence,
mTOR inhibitors may alleviate the burden of DNA damage on ageing, though their impact on cell
cycle control should be closely monitored.

1.3.8. Lipid Metabolism

As a central regulator of cellular growth, mTOR also regulates lipid metabolism, through affecting
lipogenesis as well as lipolysis and lipophagy. mTORC1 signalling activates SREBP transcription
factors that drive fatty acid (FA) biosynthesis for lipogenesis [88] through an indirect mechanism,
whereby mTORC1-phosphorylated Lipin-1 is no longer translocated to the nucleus [89,90]. (Lipin-1 is
itself a phosphatidic acid phosphatase that is involved in triacylglycerol synthesis). Furthermore,
PPARγ is a SREBP transcriptional target and mTORC1 may also regulate PPARγ activity [91], as well
as inhibiting PPARα and PGC1α, which further regulate fatty acid oxidation [92]. PPARα activity
is reduced in aged mice (alongside increased mTORC1 activity), but the inhibition of mTORC1 is
sufficient to prevent the loss of PPARα activity [93]. The autophagic recycling of lipid droplets for
degradation (lipophagy) is suppressed by mTORC1 signalling. Furthermore, decreased lipolysis and
triacylglycerol accumulation are observed following the knockdown of 4EBP1 and 4EBP2, suggesting
a role for mTORC1 signalling in lipolysis [94].

Senescent cells exhibit dysregulated lipid metabolism, characterized by increased uptake and
accumulation of lipids, with coincident increase in oxidative damage to lipids. Notably, the addition of
specific lipids such as triglycerides and cholesterol to delipidized media can induce senescence in vitro.
This finding suggests altered lipid metabolism as a possible driver of senescence [95], potentially
through adding to the ROS burden via β-oxidation of fats, and through lipid peroxidation producing
aldehyde end-products, which can cause DNA and protein adducts [95]. Treatment with mTOR
inhibitors in vitro has been shown to reduce lipid droplet accumulation in senescent cells [33].

1.4. Rapamycin and Other mTOR Inhibitors

Rapamycin is the natural macrolide antibiotic lactone that is produced by Streptomyces hygroscopius,
discovered in soil samples from Easter Island, and initially noted for inhibiting the proliferation of
yeast [96]. At high doses (e.g., 5 mg/day), rapamycin has immunosuppressive effects and it is
FDA-approved for prevention of transplant rejection [97]. It is also in clinical use or in trials for a large
number of cancers where mTORC signalling appears to be a key factor in promoting and/or sustaining
oncogenic transformation (see Section 2.8 below). Reported side-effects of chronic administration
include ulceration of mucosal tissues, haematological abnormalities, induction of insulin insensitivity,
obesity, and diabetes, though these adverse effects may be largely dose-dependent.

As discovered through S. cerevisiae genetic screens [98], rapamycin mechanistically acts by binding
the protein FKBP12, producing a complex that can bind the FRB region of mTOR and partially
occlude the active site of mTOR kinase in the mTORC1 complex [99]. This induces cellular effects,
including a decrease in protein synthesis, increase in autophagy, and inhibition of cellular growth [100].
Rapamycin does not inhibit the phosphorylation of all mTORC1 substrates equally—it completely
inhibits S6K1 phosphorylation, while only partially blocking 4EBP1 phosphorylation [45]. A crystal
structure of mTOR, rapamycin, and FKBP12 [101] suggests that this may be due to differential substrate
access to the kinase active site, controlled by the mTOR FRB domain, though differential substrate
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quality (i.e., degree of divergence from the consensus sequence of the phosphorylation site) could also
be important.

Structural and functional analogues of rapamycin (known as rapalogues) that also act
by allosterically modulating the enzyme have been developed to improve bioavailability and
pharmacokinetics, including drugs such as everolimus (RAD001). These agents also act by recruiting
the immunophilin/prolyly isomerase FKBP12 to mTORC1.

By contrast to mTORC1, mTORC2 is not particularly sensitive to inhibition by rapamycin or
rapalogues, though chronic administration does impact mTORC2 signalling [102], either through
feedback via the insulin signalling pathway, and/or through competition for key subunits FKBP12,
51 and 52, which may set different thresholds for rapamycin sensitivity between the two complexes [18].
In human cells in culture, the ‘chronic’ effect on mTORC2 is observed as little as 24 h after
drug treatment, though metabolic effects in animals and human patients require more prolonged
treatment (over weeks or months). mTORC2 inhibition is implicated in impaired glucose homeostasis,
insulin insensitivity, and diabetes, though studies on worms with tissue-specific RNAi have suggested
that it is loss of mTORC2 activity, specifically in the intestine that results in the dysregulation of
glucose metabolism [31]. It is important to note that such studies often rely on phosphorylation
of mTORC2 target Akt on S473 as a readout of mTORC2 activity, but this site on Akt may also be
targeted by kinases IKKε, TBK1 [103], and DNA-PK [104], potentially skewing the interpretation of
mTORC2-specific effects.

Second-generation mTOR inhibitors have been developed, primarily as anti-cancer agents to target
the hyperactive mTOR observed in many cancers [105]. These drugs compete with ATP for the active site
of the mTOR kinase, and hence are effective in inhibiting both mTORC1 and mTORC2. Some agents have
extremely high specificity and selectivity for the mTORC kinase. For example, AZD8055 has 1000-fold
greater inhibitory effect on mTORC than on other PI3 kinases [106], whereas others (e.g., BEZ235) have
dual inhibitory effects on both mTORC and PI3K [107], with a 3–5 fold higher Kd for damage response
kinase ATR [108]. While these ATP-competitive inhibitors exhibit more potent apoptotic effects in vitro
compared with rapalogues, and a number of such agents have been tested in clinical trials for safety,
larger scale trials have not yet demonstrated greater efficacy than current best treatment regimens [105].
Therefore, drugs such as AZD8055, AZD2014, and WYE354 have not yet received FDA approval.
The differential specificities of rapalogues and second generation mTORC inhibitors have proven
useful in primary research to dissect the effect in senescence of mTORC1 inhibition (rapalogues) versus
dual mTORC1/2 inhibition (competitive ATP mimetics) [34]. The major classes of mTOR inhibitors
and other pathway modulators are listed in Table 3.

Table 3. Classes of mTOR pathway modulators with examples of each class.

Drug Class Mode of Action Drug Name Ki or IC50 Status

mTORC1 inhibitor

Binds FKBP12 which
then associates with
mTORC1 and partially
occludes kinase active
site; mTORC2 inhibited
on chronic treatment
(possibly through
feedback loops)

Rapamycin (sirolimus) mTORC1 IC50 0.1 nM
(in HEK293 cells)

FDA-approved for cancer and as
immunosuppressant to prevent
rejection in renal transplant; eluting
stents in cardiovascular disease
Delays senescence in cell culture [109];
extends lifespan and health in lab
animals and improves cardiovascular
health in companion dogs (see text)

Everolimus (RAD001)
mTORC1 IC50
1.6–2.4 nM
(cell-free assay)

FDA-approved for cancer (e.g.,
monotherapy against advanced renal
cell carcinoma, neuroendocrine
tumours of pancreatic, gastrointestinal
or lung origin, and SEGA associated
with TSC, and as combination therapy
with exemestane for HER2-negative
breast cancer).
Clinical trials show immune system
rejuvenation [110,111]

Temsirolimus;
(CCI-779, NSC 683864)

IC50 0.3–0.5 nM in
cell culture

FDA approved, used at 10 mg/kg/day
in acute lymphocytic leukaemia
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Table 3. Cont.

Drug Class Mode of Action Drug Name Ki or IC50 Status

Pan-mTOR
inhibitor (inhibits
both mTORC1
and mTORC2)

ATP-competitive
mTORC1/2 inhibitor

AZD8055

mTOR IC50 0.8 nM
(MDA-MB-468 cells);
1000-fold selectivity
against PI3K isoforms
and ATM/DNA-PK

Acceptable safety profile for treatment
of advanced solid tumours and
lymphoma in phase I trial [112];
reverses phenotypes of senescence in
cell culture [34]

Sapanisertib
(AK-228, INK 128,
MLN0128)

mTORC1 and mTORC2
1 nM (PI3K isoforms
~200 nM)

Phase 1 trials (cancer)

OSI-027
22 nM mTORC1, 65 nM
mTORC2 (>100×
selectivity over PI3K)

Phase 1 trials; in experimental
colorectal xenograft, OSI-027 (65
mg/kg) more effective than rapamycin
[113], reviewed [114]

mTORC2-specific
inhibitor

Prevents interaction of
Rictor with mTOR hence
blocking mTORC2

JR-AB2 Experimental, xenograft tumour
models [115]

Dual PI3K and
mTOR inhibitor

ATP-competitive
dual PI3K and
mTORC1/2 inhibitor

Apitolisib
(GDC-0980, RG7422)

Dual PI3K/mTOR
5–14 nM Ki, 17 nM
mTOR

Phase 2 trials (cancer)

Dactolisib
(NVP-BEZ235, BEZ235)

mTOR IC50 6 nM,
PI3K p110α/γ/δ IC50
4/5/7 nM respectively;
IC50 ATR 21 nM
(cell-free assays)

Passed phase I initial dose discovery
trial [116]; modest efficacy in advanced
or metastatic carcinoma in phase II
[117] but poorly tolerated in advanced
pancreatic neuroendocrine tumour
patient phase II study [118]; beneficial
outcomes in trial with everolimus for
reversal of immune senescence [110]

PF-04691502

PI3K(α/β/δ/γ)/mTOR
dual inhibitor with Ki of
1.8/2.1/1.6/1.9 and
16 nM (respectively)

Phase 1 clinical trials

PI3K, DNAPK and
mTOR

ATP binding site
competitor PI-103 PI3K 2–15 nM, mTOR

and DNAPK 30 nM Experimental [119]

Other components of
signalling pathway

PI3K and BRD
bromodomain proteins SF2523

DNAPK 9, 34–158 nM;
BRD4 241 nM, mTOR
280 nM

Blocks Brd4; blocks Brd2 to overcome
insulin resistance—may be useful as
adjunct to prevent diabetic
complications of mTOR inhibitors [120]

Highly selective
GSK3 inhibitor;
ATP binding competitor

CHIR-98014 GSK3α 0.65 nM
GSK3β 0.58 nM Experimental [121,122]

mTOR activator FKBP1A 3BDO N/A

Experimental; inhibits autophagy;
provides vascular protection [123];
improves neuronal function in App and
Psen1 transgenic mice [124]

IC50 and Ki data derived from [125].

2. Ageing and Age-Related Pathologies Amenable to Treatment by mTOR Inhibition

2.1. Ageing

A landmark study from 2009 in which rapamycin was fed to middle aged mice provided the
first evidence that any small molecule drug, taken orally, could significantly extend both the mean
and maximum lifespan in mammals [126]. In this multi-centre, large cohort study of genetically
heterogeneous (UM-HET3) mice, rapamycin delayed the ageing of 20-month old male and female
mice. Further studies have not only validated these results, but have demonstrated that rapamycin
improves health, in terms of lower incidence or decreased severity of age-related disease, as well as
prolonging life [127]. Below, we assess the impact of mTOR inhibition on a number of age-associated
diseases and pathologies, collating findings from model systems and human clinical trials.

2.2. Immunosenescence

The immune system undergoes a functional decline with age that both contributes to organismal
ageing through decreased senescent cell clearance, and also compromises its ability to fight infection.
The term immunosenescence is specifically associated with a decline in the haematopoietic stem
cell proliferation compartment, a higher proportion of exhausted, PD-1+ lymphocytes, an inverted
CD4/CD8 ratio (<1), a low number of B cells, and seropositivity for cytomegalovirus (CMV) [128].
Age is associated with a high mortality rate from infectious disease, thought to be a direct consequence
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of loss of immune function. Activation of autophagy has been shown to rejuvenate the immune system
in mice [58]; since mTOR activity inhibits autophagy, it follows that mild inhibition of mTOR could be
beneficial for immune function with increasing age. Deriving an appropriate dose is critical, as at high
doses rapamycin is immunosuppressive, blocking both the protein synthesis and cell division that are
required to mount an adaptive immune response.

In mouse models, increased immune activity against both viral and bacterial pathogens has been
observed on mild mTOR inhibition [129], suggesting that it is possible to improve at least some aspects
of the ageing immune system with low dose mTOR inhibitors. Furthermore, a placebo-controlled,
randomized, double-blind human clinical trial of over 200 elderly volunteers has shown similar
results [110]. Volunteers were assigned to one of three regimes of the mTORC1 inhibitor RAD001
(everolimus—low: 0.5 mg daily or 5 mg weekly; high: 20 mg weekly) for a six-week period, followed
by a two-week drug-free interval. These volunteers were then challenged with the seasonal influenza
vaccine. Though the relatively small size of the study impeded powerful statistical analysis, the two
low-dose RAD001 regimens improved immune function without causing serious side effects. Patients
produced a broader and more powerful immune response, with improved HSC function and a
decreased proportion of PD-1+ lymphocytes. The increased breadth of the immune response was
particularly promising; older individuals are more likely to die from influenza than younger people,
but they generally produce a narrow, weak response to vaccination. Despite the lack of a young
control population in the study, the improved response is thought to correspond to a rejuvenated
immune system. In a subsequent follow-up study using combined BEZ235 and RAD001 treatment,
again for just six weeks, better infection control was reported in older adults for a year after treatment
ended [111]. Given the important role of the immune system in cancer surveillance and senescent cell
clearance, it would be very interesting to test whether such a rejuvenated immune system is better
equipped to clear senescent or tumorigenic cells in vivo.

2.3. Age-Related Neurodegeneration

mTOR hyperactivation is associated with cognitive deficit and brain dysfunction, as seen in
Tuberous Sclerosis (TS), where the loss of TSC1/2 prevents negative regulation of mTOR. Hence,
mTOR inhibition is being trialled for TS treatment, with beneficial results being reported (reviewed
in [130]). Lifelong rapamycin administration to mice prevents the usual age-related decline in cognitive
function, thought to be through suppression of IL1β [131]. Neurodegenerative diseases that are
characterized by accumulation of abnormal protein aggregates (Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease) are further candidates for treatment with mTOR inhibitors.
Not only does mTORC1 exert tight control over protein synthesis and degradation (autophagy)
through 4EBP1/S6K, ULK1, and SCF/FBW8, but the mTOR pathway is involved in regulating the
inflammatory responses that are known to be involved in the progression of neurodegeneration;
it may also contribute to an energetic deficiency observed in such diseases. Conversely, however,
the mTOR pathway has been proposed to regulate synaptic plasticity and memory consolidation,
through the control of actin reorganization by mTORC2 [132], and neuronal Rictor knock-out mice
do indeed show cognitive effects due to alterations in actin reorganisation needed for dendritic spine
growth and formation of memories [133]. However, human trial data suggest that pharmacological
inhibition, which is not equivalent to total loss of mTORC2, is if anything supportive of brain function
since patients taking everolimus for immunosuppression after heart transplantation actually showed
improvements in memory and concentration in comparison to those on calcineurin inhibitors [134].

2.3.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, which is characterized
by accumulation of aggregated extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary
tangles composed of tau protein. Neuronal loss and brain atrophy worsen with disease progression.
mTOR signalling has been implicated in AD pathogenesis: evidence from human post-mortem exams
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suggests that mTOR activity is upregulated in AD brains compared to age-matched controls, as levels
of phosphorylated mTOR, p70S6K and eIF4E are all increased in AD [135]. This upregulation of mTOR
signalling could be mediated via Aβ accumulation, which may activate the PI3K/AKT pathway,
and in turn, increased mTOR signalling has been linked to the development of tau pathology [136].
Aβ upregulates mTOR and mTOR is thought to increase levels of Aβ (reviewed in [137]), potentially
generating a positive feedback loop in disease progression.

Rapamycin has been shown to prevent cognitive decline in the AD-Tg mouse model of
Alzheimer’s disease [138–140], and even to reverse already established memory deficits [141],
though these effects were limited to mild cognitive decline before widespread plaques and tangles
were observable. Improvements in memory and cognition with rapamycin or tersolimus treatment
correlated with improvements in the three major hallmarks of AD (Aβ plaques, tau tangles,
and microglia activation) [139–141]. A genetic mouse model lacking one mTOR gene copy in the
brain exhibited reduced Aβ deposits and rescued memory deficits [142], hence reduced mTOR
activity associates with cognitive improvement. It is likely that treatment must happen prior to
major amyloid or tau deposition, as cognitive improvements are seen in mice on whole-life but not
late-life administration of rapamycin—i.e., a therapeutic window exists, though it is not yet known
what constitutes the point of no return.

Though the mechanism of improvement is still unclear, it is possible that decreased protein
synthesis may avoid the build-up of toxic Aβ, or that the induction of autophagy through mTORC1
inhibition may result in the removal of protein aggregates. Healthy neurons have highly efficient
and active autophagy, but this decreases with age (reviewed in [143]). In the mouse models where
rapamycin was shown to decrease levels of Aβ, autophagy induction was necessary [138]. Further,
in rapamycin-treated AD-Tg mice brains, increased localization of Aβ into lysosomes was detected,
suggesting a more active degradation of these peptides [138], and the decrease in Aβ levels induced by
rapamycin could be prevented by blocking autophagy. Hence, mTOR inhibition leading to increased
autophagy may be beneficial in treating neuropathies that are associated with protein aggregation.
Other components of the mTOR signalling cascade are also implicated in neurodegeneration, including
GSK3, overactivity of which results in decreased lysosomal acidification. Hence, GSK3 inhibitors
(such as peptide L803-mts) present a novel alternative to mTORC inhibition in AD, and appear to be
active in the 5xFAD mouse model of AD [144].

2.3.2. Huntington’s Disease

Huntington’s disease (HD) is a neurodegenerative disorder where a genetic mutation causes
an expansion of the polyglutamine tract within the Huntingtin protein (HTT), resulting in protein
aggregation. As mTORC1 signalling suppresses autophagy, which is responsible for recycling protein
aggregates, it has been implicated in HD pathology. Counter-intuitively, however, mTORC1 activation
may actually be beneficial: in HD mouse models with increased mTOR activity, motor performance
was improved relative to controls, coincident with improved mitochondrial function, cholesterol
synthesis, and decreased HTT abundance. Further, phosphorylation of S6 was actually decreased in
human HD patients as compared to controls, further suggesting a complicated association between
mTOR signalling and HD [145].

2.3.3. Parkinson’s Disease

Parkinson’s disease (PD) is a progressive age-associated neurodegenerative disorder associated
with the death of neurons in the substatia nigra. It manifests as loss of motor coordination,
often associated with mood disturbance and in many cases followed by dementia. Current treatment
is symptomatic, using L-DOPA to reinforce failing dopaminergic signalling. Though a number of
genes are associated with PD, there is little overall understanding of the etiology, but lysosomal
dysfunction (allowing for a build-up of intracellular α-synuclein as Lewy bodies) is implicated.
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Failure of mitophagy, through defects in PINK1/Parkin, may also be important, and defective
mitochondria are observed in PD [146].

mTORC1 has been suggested to be neuroprotective in PD, and consistent with this, suppression
of mTORC1 signalling by several routes (AMPK, PTEN, or REDD1 activation, or rotenone treatment)
results in neuronal cell death in models of PD [147,148]. Moreover, L-DOPA, the current symptomatic
treatment of PD, activates mTORC1, supporting the idea that mTORC1 activity is beneficial. However,
the opposite has also been reported: elevated mTORC signalling (by deletion of the gene Engrailed,
or exposure to paraquat) leads to neuronal apoptosis, suggesting that a balance of mTORC activity is
required for neuronal health.

To achieve this balance, mTORC inhibition is being explored as a possible treatment route for PD.
Rapamycin has been shown to overcome dyskinesia in mice, which is a major side effect of treatment
with L-DOPA, without interfering with the therapeutic effects of L-DOPA [149], while a number of
other studies have also demonstrated benefits of rapamycin use in PD (reviewed in [150]). As in
AD, other mTOR pathway factors, such as GSK3, might present therapeutic targets, particularly as
lysosomal function appears important. It will be interesting to determine if mTORC inhibition promotes
autophagic clearance of aggregated α-synuclein and/or dysfunctional mitochondria, and whether this
is enhanced by co-treatment with GSK3-inhibiting peptides. However, it has been argued that specific
pro-autophagic interventions may provide an even better therapeutic outcomes than global autophagy
stimulation [151].

2.4. Age-Related Blindness: AMD

Age-related macular degeneration (AMD) is the most common cause of blindness in the Western
world, whereby retinal damage leads to loss of vision in the centre of the visual field (macula).
In senescence-accelerated OXYS rats, rapamycin administration in food decreased the incidence
and severity of AMD-like retinopathy and prevented the destruction of ganglionar neurons in the
retina [152]. These promising results accelerated rapamycin as an AMD therapeutic through to clinical
trials, however conflicting results have since been produced, potentially because of dosing issues.
For example, one small phase II clinical trial administered 440 µg rapamycin to one eye every three
months for 24 months to eleven patients with an advanced form of dry AMD, but it was terminated
early after finding that treatment may be detrimental to visual acuity [153]. High dose rapamycin
is known to elicit unwanted side effects, so it is unfortunate that such high dosage trials have been
designed and conducted, with negative outcomes, as they are likely to reinforce clinical prejudice
against use of mTOR inhibitors for non-life-threatening illness. Full dose-response trials to obtain
maximal benefit with minimal side effects are still needed, particularly as AMD treatment options are
limited and pharmacological therapies should provide a cheaper and more accessible option to the
successful stem cell treatments recently reported [154].

2.5. Musculoskeletal Disorders

2.5.1. Sarcopenia and Muscle Wasting

Structural and functional remodelling of skeletal muscle throughout ageing causes sarcopenia,
a muscle-wasting syndrome that results in frailty. Muscle loss is consistently observed in
premature ageing syndromes and associated with mTOR signalling. For example, muscle-derived
stem/progenitor cells (MDSPCs) from the premature ageing Ercc1−/∆ mouse show upregulated
mTOR signalling and are defective in differentiation. Treatment with rapamycin improved myogenic
differentiation, with increased levels of autophagy being detected in the isolated cells [155].
Hutchinson-Gilford progeria syndrome (HGPS), which is a human early onset premature ageing
syndrome, is also associated with musculoskeletal abnormalities. HGPS results from a splice site
mutation in the lamin A (LMNA) gene, leading to the production of an aberrant lamin protein termed
progerin, though even in normal individuals, progerin accumulates during ageing, and is associated
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with vascular pathology. Rapamycin treatment can induce autophagy and reduce phenotypes of
senescence induced by progerin in cell culture models of HGPS [156]. Based on such studies,
everolimus has now been included in a clinical trial for 17 children with HGPS [157].

The muscle loss in premature ageing HGPS is highly similar to that seen in various other
laminopathies, including Emery-Dreifuss muscular dystrophy, Limb-girdle muscular dystrophy, and
dilated cardiomyopathy. mTORC1 is implicated in these LMNA-related dystrophies: both LmnaH222P/H222P

and Lmna−/− mice show aberrant mTORC1 signalling [158]; Lmna−/− mice specifically showed increased
mTORC1 signalling in cardiac and skeletal muscle, with impaired cardiac autophagy, while rapamycin
treatment enhanced cardiac and skeletal muscle function and survival in the mutant mice [159].

Targeting mTORC1 signalling is the only therapeutic avenue yet explored for laminopathies that
has promise against both dystrophic and progeroid laminopathies [160], but it has yet to be tested in
sarcopenia. However, as a note of caution, patients taking rapamycin for more than six months for
the treatment of renal cell carcinoma or paracrine neuroendocrine tumours demonstrated an increase
in sarcopenia [161], a worrying finding as sarcopenia is predictive of outcomes in cancer patients.
Longitudinal rapamycin studies in healthy subjects, such as those that are ongoing in companion
dogs [162], are needed to inform on whether low dose mTOR inhibition may be able to delay or even
prevent the onset of sarcopenia.

2.5.2. Osteoporosis

Osteoporosis is a common ARD that is characterized by loss of bone density, causing fragility.
Falls, as a consequence of co-morbid sarcopenia and age-associated changes to vision and balance
perception, often result in hip fractures, and a high number of elderly fracture patients die within six
months of pneumonia (exacerbated by co-morbid immunosenescence) [163,164]. Increased activity of
osteoclasts, which mediate bone resorption, together with decreased osteoblast activity, is frequently
seen in multiple forms of bone loss (osteoporosis, rheumatoid arthritis, and cancer-induced bone
loss). mTOR signalling regulates osteoclast differentiation by altering ratios of the LIP/LAP isoforms
of transcription factor C/EBPβ [165], which enhances osteoclastogenesis. In mouse models and
human cells, inhibition of mTORC1 signalling lowers the activity of the translation initiation factor
eIF4E, in turn diminishing expression of the LIP isoform by inhibiting translation re-initiation.
This increases the LAP to LIP ratio and inhibits osteoclastogenesis, hence rapamycin treatment limits
bone resorption [166,167]. Furthermore, the mTORC1 inhibitor everolimus inhibits bone loss in an
experimental rat model of osteoporosis induced by ovariectomy [168].

2.5.3. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation in
joints. Highly effective treatments for RA include methotrexate and infliximab, but these have limited
utility in elderly patients because of underlying renal insufficiency; factors such as transport/mobility
difficulties also limit attendance at treatment centres for regular antibody infusion. Hence, a safer
therapy is required in this patient cohort, which may be provided by mTOR inhibitors. Active mTOR
signalling has been detected in synovial tissue from RA patients, and is crucial for joint destruction
in experimental arthritis [169]. Such results appear to be relevant to human joints: in a recent
proof-of-concept study (a multi-centre, randomized, double-blind study of 121 patients with RA), 6 mg
everolimus daily for six months, in combination with methotrexate, showed improved clinical efficacy
when compared with methotrexate alone, as well as causing few side effects [170].

Osteoarthritis (OA) is another ARD also characterized by joint inflammation but is thought to
be caused by mechanical stress. Senescent cells have been detected in OA joints (Clinicaltrials.gov
identifier NCT03100799), and SASP secretion of collagenase and other metalloproteases is likely
to impact significantly on joint integrity. Hence, mTOR inhibition could also be beneficial in OA,
by targeting constitutively active mTOR in senescent cells. Intraperitoneal administration of rapamycin
reduced cartilage destruction and synovitis in experimentally-induced osteoarthritis in mice [171];
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this may occur at least in part through increased ULK1-mediated autophagy and through the
suppression of MMP secretion by chondrocytes (reviewed in [172]). OA presents an ideal opportunity
for intervention as intra-articular drug administration should avoid potential side-effects associated
with systemic mTORC inhibitor treatment.

2.5.4. Diabetic Bone Fragility

Increased bone fragility is also seen in Type 1 and Type 2 diabetes mellitus (T1DM and T2DM),
with increased cortical porosity and decreased cortical area in T2DM. Unlike other age-related bone
pathologies, such as osteoporosis, diabetic bone fragility is not associated with decreased bone mineral
density, nor does it impact on the balance between bone formation and bone resorption, but instead
both bone remodelling and turnover are compromised (reviewed in [173]). This appears to arise
from a combination of factors, including alterations in stem cell differentiation, glycation of collagen
leading to decreased bone toughness [174], calcification of vascular smooth muscle cells though a
RAGE-mediated MAPK-TGFβ-NFκB axis that increases fracture risk (at least in T1DM) through
defective bone microvasculature [175], and deficits in muscle-dependent production of IL-6 on exercise
that usually allow for bone to adapt to mechanical loading [176]. The decrease in bone turnover is
likely to diminish capacity for microfracture repair, leading to a higher incidence of overt fractures.
Notably, it has been suggested that the anti-diabetic drug metformin is protective of bone in diabetes
by inhibiting adipogenesis that would otherwise be driven by mTOR/S6K signalling [177] and by
lowering RAGE signalling [178]. Hence, metformin may support bone strength by acting as an mTOR
pathway inhibitor, albeit indirectly.

2.6. Cardiovascular Disease

Cardiovascular disease is the leading cause of death in developed nations and its incidence
increases with age. A number of studies have shown beneficial effects of rapamycin on cardiovascular
disease in mice: for example, rapamycin has been shown to attenuate pressure overload-induced
cardiac hypertrophy [179], to regress established cardiac hypertrophy and improve cardiac
function [180], and to suppress experimental aortic aneurysm growth [181]. Recent studies have
elaborated on this research. In female 24 month-old C57BL/6J mice fed rapamycin for three months,
the greatest benefit measured was in cardiac health, with reversal or attenuation of age-related
cardiac decline. Specifically, rapamycin appeared to slow or reverse the progression of age-related
hypertrophy, and ventricular function of the ageing heart was also improved [182]. Through
RNA-seq analysis, validated at the protein level and with bioinformatics analysis, it appeared that
rapamycin reduced age-related sterile inflammation in the heart, while promoting the expression
of RAD (Ras associated with diabetes), which mediates anti-hypertrophic signalling and enhances
cardiomyocyte excitation-contraction coupling [183]. Caloric restriction and rapamycin treatment
(both for 10 weeks) were also shown to rejuvenate the ageing mouse heart [184], with quantitative
comparative proteomics revealing an age-dependent decrease in proteins that are involved in
mitochondrial function, together with an increase in glycolytic enzymes, which could be reversed
by either CR or rapamycin treatment. Improvements in mitochondrial function were implicated
in the mechanism, as the mitochondrial proteome was rejuvenated [184], which is consistent with
the known action of mTORC1 in mitochondrial biogenesis, and the contribution of mitochondrial
accumulation to senescence. Hence, rapamycin could act both to suppress excessive mitochondrial
biogenesis and to activate mitophagy. The authors did not observe any increase in autophagy by
rapamycin or CR; instead, they observed a reduction in protein oxidative damage, alongside reduced
protein turnover. Better preserved protein quality and slower turnover following CR or rapamycin
treatment may therefore re-balance the oxidative phosphorylation to glycolysis shift usually seen in
aged mice, though the impact of either treatment on cardiomyocyte senescence has not been analysed.
It is of note that improved cardiovascular function was also the most marked outcome of the first year
of a trial feeding rapamycin to companion dogs [162], thus reinforcing the potential for rapamycin to
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treat cardiovascular disease. It is possible that the mechanism here is through induction of autophagy
by ULK1 upregulation on mTORC inhibition, as cardiac fibrosis is also decreased in older mice on the
activation of autophagy by disrupting the Beclin 1-Bcl2 interaction [55]—alternatively or in addition,
decreased inflammation by suppression of the SASP is also a potential mechanism.

mTOR inhibitors are also promising treatments for myocardial ischaemia/reperfusion (I/R) injury,
for which diabetic patients are at especially severe risk. While the dosage and timing of administration
may be critical for beneficial effects, rapamycin treatment has been shown to reduce infarct size after
I/R injury in diabetic mice, through facilitating opening of mitochondrial ATP-sensitive potassium
channels [185] with the effect also being dependent on STAT3 (signal transducer and activator of
transcription 3) [186,187]. Improvements in oxidative stress, cytoskeleton organization, and glucose
metabolism on rapamycin treatment have also been implicated in the mechanism [188].

Furthermore, rapamycin-eluting stents are now in widespread clinical use in coronary angioplasty
to treat cardiovascular disease, after being approved in Europe in 2002 on the basis of very promising
clinical trial results [189]. In this context, rapamycin may benefit coronary function by restricting cell
proliferation and thus preventing fibrosis that could block the artery; everolimus is now also in clinical
trials for this use. To date, therefore, mTOR inhibition appears to be a safe and effective intervention to
improve cardiovascular function during ageing.

2.7. Kidney Disease

2.7.1. Adult Polycystic Kidney Disease

Age-related incontinence is a common cause of depression and isolation in the elderly. A possible
heritable disease model for this condition, adult polycystic kidney disease, which is also known
as autosomal-dominant polycystic kidney disease (ADPKD), is the most common heritable kidney
disorder, with a prevalence of between 1/400 and 1/1000. Mutations in two genes are responsible
for the condition: PKD1 (85% of cases—severe, early onset) and PKD2. PKD1 codes for polycystin-1,
a membrane receptor protein, while PKD2 codes for polycystin-2, a Ca2+-permeable channel that binds
PKD1. Polycystins are involved in maintaining a differentiated epithelium in the kidney, liver and
pancreas, but when mutated, excessive epithelial proliferation results in renal cysts. Mechanistically,
they play a role in signalling—there are direct physical interactions between the cytoplasmic tail of
polycystin-1 and tuberin, the product of the TSC2 gene, which regulates mTOR [190]. As mTOR
signalling is therefore regulated by polycystin-1, and mTOR signalling is increased in murine models
and in human ADPKD, mTOR activation may contribute to renal cyst expansion through excessive
tubular epithelial cell proliferation. Hence, mTOR inhibition may be beneficial, and rapamycin has
been shown to decrease proliferation in cystic and non-cystic tubules, to inhibit renal enlargement and
to prevent the loss of kidney function in the Han:SPRD rat model of ADPKD [191–193]. While this
model results from mutations in genes other than PKD1 and PKD2, rapamycin treatment was also
effective in a more human-orthologous mouse model of conditional inactivation of PKD1 [194]. Still,
both models exhibit early-onset, rapidly progressive disease, whereas human ADPKD is characterized
by complex, slow, and heterogeneous progression. Therefore, retrospective analyses of human ADPKD
patients after renal transplantations have been very informative. Using MRI-determined increases in
kidney volume as a marker of disease progression, rapamycin-based regimens showed significantly
reduced cystic kidney volumes when compared to alternative treatments [190,195,196]. Clinical trials
using rapamycin to treat ADPKD have however produced varied results [197–199], though they may
have been impeded by small sample size, reliance on poor markers of clinical progression, short follow
up time for such a slow-progressing disease, and insufficient rapamycin doses [200].

2.7.2. Diabetic Nephropathy

High doses of rapamycin used for immunosuppression in renal transplantation and cancer are
associated with type II diabetes [30]. However, there is some evidence that low doses of rapamycin
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may have therapeutic benefit in the treatment of diabetic nephropathy (DN), which is one of the major
complications of both type I and II diabetes [201] that currently has very limited treatment options.

In diabetes, hyperglycaemia increases mTOR activity through activation of Akt and inhibition
of AMPK, which has consequences for the development of podocytes, critical in production of the
renal filtration barrier. Experimentally increasing mTORC1 activity in mouse podocytes induces DN
phenotypes, podocyte loss, and mis-localization of Nephrin, a cell surface protein that is important
in production of the renal filtration barrier [202], while reduced mTORC1 activity prevents DN
progression [202]. Rapamycin and everolimus treatment has also shown therapeutic benefit for DN in
other models, including rats with STZ-induced diabetes [203–207]. Some caution is required, however,
as mTORC1 activity appears to protect diabetic livers from steatosis [208], though active mTORC2
promotes steatosis through induction of fatty acid and lipid synthesis [209], hence any treatment with
mTORC inhibitors in diabetic patients must include close monitoring of a number of biomarkers for
liver and kidney function as well as glucose homeostasis.

2.8. Age-Related Cancer

Consistent with its role as a central regulator of cell growth, proliferation, and angiogenesis,
many oncogenic mutations activate mTOR signalling [210], meaning that the pathway is a key target
in anti-cancer therapy. Elderly patients are particularly vulnerable to tumorigenesis; their inflamed
tissue microenvironment and the paracrine pro-tumorigenic signalling in the SASP of accumulating
senescent cells can drive progression of age-related cancer. In parallel, DNA-damaging chemotherapies
given to cancer patients of any age can induce senescence (and the resulting SASP) in both cancerous
and healthy collateral cells. This is thought to underlie the increased occurrence of secondary tumours
as a side effect of chemotherapy [11,211,212]. Since the SASP is under the control of the mTOR
pathway, treating senescent cells with mTOR inhibitors can suppress the secretion of inflammatory
cytokines [74,75]. Notably, rapamycin treatment can prevent the stimulation of prostate tumour
growth by senescent fibroblasts in mice [74]. Thus, rapamycin may be useful not only as an anti-cancer
treatment but also as a preventative therapeutic against age-related cancers or those arising after
genotoxic chemo- or radio-therapy.

Despite promising early findings, mTOR inhibitors have not fulfilled their potential as
monotherapies against cancer. Combination regimens of mTOR inhibitors together with current
best-in class chemotherapeutics do however show efficacy against a range of cancers. For example,
combination treatment with rapamycin and resveratrol may be effective in inducing cell death in
bladder cancer cells [213], with resveratrol blocking the Akt activation as induced by rapamycin.
Similarly, rapamycin has been shown to enhance mitomycin C-induced apoptosis in peritoneal
carcinomatosis [214]. In combination with anti-cancer agents, such as trastuzumab or exemestane,
mTOR inhibitors exhibit promising anti-tumour activity, even against aromatase inhibitor-resistant
breast tumours [215]. Rapamycin may also be beneficial in combination with radiotherapy treatment,
for example inducing a significant decrease in tumour metabolic activity of rectal cancers before
surgical resection, as assessed by positron emission tomography (PET)-scanning [216].

Currently (June 2018), 461 clinical trials are listed on Clinicaltrials.gov involving the use of mTOR
inhibitors in cancer, in a range of tissue types, including breast, cervix, prostate, ovary, pancreas, lung and
colon carcinomas, various sarcomas, and lymphomas, while PubMed lists 601 publications for the search
terms “mTOR inhibitor cancer clinical trial”. The reported outcomes are highly variable, with some
suggesting markedly better outcomes (e.g., Hodgkin’s lymphoma on mTOR inhibition [217,218]),
while others showed no improvement or even faster disease progression. It is likely that the variability
represents both the stage and grade of cancer, and mTOR status, which should be assessed by
‘personalised medicine’ prior to the use of mTOR inhibitors in cancer treatment, as not all will be
driven by hyperactive mTOR, and even those that are may not be sensitive to rapalogue inhibition
(e.g., if mutated in the FKBP12 binding site). For those tumours with activated drug-sensitive mTOR,
however, mTOR inhibition can give remarkably good outcomes; with the complete response to therapy
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being reported in one patient during a Phase I trial of everolimus in combination with pazopanib [219].
Use of specific mTORC2 inhibitors has been suggested as route to overcoming the pro-survival effect
of PI3K/PDK1/Akt feedback loops [220], though pan-mTOR inhibitors may be equally valuable in
this context. The choice to test any drug in aggressive and treatment-refractory or relapsing tumours
would present significant challenges, as the cancers by this stage will be genetically heterogeneous
and hard to treat; the use of mTOR inhibitors in many such late-stage/refractory cancer trials may
therefore not reveal their true potential. It is possible that earlier intervention with mTOR inhibitors,
and in combination therapies, may provide more reliable anti-cancer activity. However, a major goal
would instead be prevention. In this context, mTOR inhibitors used to intervene in other age-related
disease may, in fact, serve a preventative role in cancer, possibly by blocking the deleterious SASP.

3. Perspectives

3.1. Balancing Efficacy Against Side Effects

Treating otherwise healthy ageing individuals with mTOR inhibitors to treat or prevent
progression of age-related disease is only viable if the treatment does not induce unacceptable or
undesirable side effects. The studies of immunosenescence from Mannick et al. [110,111] may provide
critical insights into side effect profiles of low-dose mTOR inhibition in ageing humans. These studies
showed that everolimus and BEZ235 were generally well tolerated, although with an increased
incidence of mouth ulceration. Particularly promising is the finding that the two lowest dose regimens
of everolimus (0.5 mg daily or 5 mg weekly [111]) proved both the most effective and the best tolerated,
with the fewest overall adverse events per cohort. Hence, using as low dose as possible whilst retaining
efficacy is critical in minimising side effects.

High dose rapamycin (~20 ng/mL blood) that is used for immunosuppression after transplant
or cancer treatment is associated with deleterious side effects, such as the development of type II
diabetes [30], though evidence from experimental models produces conflicting results. For example,
two short-term studies in mice found that chronic rapamycin treatment induced deleterious metabolic
side effects such as weight gain, glucose intolerance [221], and progression of type II diabetes [222],
while a longer study showed that these effects could be transient [182]. The dose of rapamycin used
may be of critical importance in determining the side effect profile; far lower doses are required for
anti-ageing effects than for cancer treatment or immunosuppression and as doses decrease, so do
serious adverse events. Disruption of mTORC2 may be behind the metabolic side effects of rapamycin
treatment, since it is widely considered that mTORC2 primarily drives the response to insulin signalling
and causes lipid biosynthesis (though note the caveats above concerning AktS473 phosphorylation
as a sole readout of mTORC2 activity). Carefully considered intermittent treatment regimens may
minimize the undesirable effects of rapamycin treatment, such as impaired glucose tolerance [223].
A further alternative strategy to circumvent high dose rapalogue-induced glucose intolerance is to use
mTOR inhibitors in combination with anti-diabetes medicines, such as metformin—another promising
longevity therapeutic in its own right. Indeed, this strategy has been shown to be highly effective in
HET3 female mice treated with both rapamycin and metformin, where glucose tolerance readings
were indistinguishable from control mice, though the protective effect was not seen in males [224].
Hence complex-specific mTORC inhibitors, with additional agents to counteract adverse side effects,
could retain treatment efficacy over the long-term, a necessary requirement for anti-ageing medicines.

An alternative approach to minimising side effects would be to use a topical application of mTOR
inhibitors. This is possible in age-related diseases that occur in discrete compartments, such as OA
and AMD, where injection into the affected site is possible. However, as ageing affects the entire body,
systemic therapies should be more effective at treating aging per se, and hence in minimising the onset
of multiple age-related diseases. mTOR inhibitors currently provide a promising avenue for further
research and development, and may promote healthy ageing by modulating the harmful aspects of
senescent cells, but they should be considered in combination with other treatment approaches.
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In this context, alternative anti-ageing therapies are also being developed—notably the growing
field of senolytic drugs that are designed to selectively target and kill senescent cells. These agents
exploit the reliance of senescent cells on survival pathways, and they can induce apoptosis specifically
in senescent cells, for example, by inducing p53 or disrupting Bcl2. Treatment of aged mice with
senolytic agents has been shown to rejuvenate tissues and reverse several age-related pathologies
(e.g., [225,226]) and a human clinical trial for senolytic treatment of OA is currently recruiting
(Clinicaltrials.gov identifier NCT03513016). However, while senolytics are indisputably exciting,
it is well established that senescent cells are beneficial in various instances, such as in wound healing
and regeneration. Furthermore, a recent study investigating the senescent cell burden of several tissues
of old mice found that up to 14% of cells were senescent [13], with estimates of 20–60% senescent
cells in aged primate skin [14,227]. It is therefore important to investigate whether killing a significant
proportion of cells in the tissues of elderly patients is safe, whether stem cells are able to refill this empty
niche to restore structural and functional tissue integrity, and to assess whether wound healing and
regeneration are compromised by senolytic agents. Furthermore, senescent cells from different tissues
and in different contexts rely on different survival pathways to avoid apoptosis and are therefore only
vulnerable to specific senolytic agents, meaning that a range of senolytics will be required to treat
different ARDs. Modulation of the antagonistically pleiotropic and highly heterogeneous state that is
cell senescence undoubtedly requires careful and context-dependent consideration.

3.2. Monitoring Therapeutic Outcomes: The Need for Ageing Biomarkers

There is an urgent need for reliable, non-invasive, and quantitative biomarkers of senescence and
ageing to both measure disease susceptibility or progression, and promptly monitor the outcome of
any intervention. It is highly likely that single factors will not be able to adequately reflect the panoply
of changes that is associated with ageing and that instead a panel of biomarkers will be required to
account for the multi-factorial and complex nature of pathological ageing. Molecular markers that are
currently in use include telomere length analysis, DNA methylation patterns, and SAβGAL staining,
while functional and morphological markers are also available. The choice of marker may depend on
the trial to be conducted—for example, PET scanning for amyloid deposition may be necessary in AD
trials, though a recently described blood test for amyloid could substitute [228]. Notably, a number
of simple biochemical biomarkers (e.g., glycated haemoglobin) that are selected for inclusion in UK
Biobank appear to be valid for assessment of age-related changes, while functional readouts including
hand grip strength produce reliable measures of frailty. Clinical trials and any licensed treatments
may thus require the development and validation of a panel of biomarkers that could be analysed in a
low cost, straightforward, and quick in-house procedure from readily available patient material e.g.,
urine or blood.

In conclusion, ageing and age-related diseases that arise from hyperactive mTORC signalling
may benefit from the use of mTORC inhibitors. However, any such treatment strategy must consider
both of the beneficial effects, such as those that are afforded by activation of autophagy and improved
quality control of protein synthesis, as well as potential detrimental effects from modifying cellular
or organismal metabolism. We believe that mTORC inhibitors hold much promise in the field of
anti-ageing medicine, and that clinical prejudice against their use needs to be overcome by careful
dosage trials. To obtain maximal therapeutic benefit, whilst minimising side-effects, combinatorial
therapies may prove useful. Overall outcomes on ageing and age-related diseases require the use of a
panel of robust biomarkers that should provide rapid readouts of age-associated factors in a minimally
invasive and cost-effective format. Biochemical pathways that intersect with mTORC signalling may
also provide fruitful avenues for anti-ageing drug discovery.
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Abbreviations

4EBP1 eIF4E binding protein
53BP1 p53 binding protein 1
Aβ amyloid beta
AD Alzheimer’s disease
ADPKD adult polycystic kidney disease
Akt/PKB protein kinase B
AMD age-related macular degeneration
AMPK AMP-activated protein kinase
ARD age-related disease
ATG13 autophagy related protein 13
ATM ataxia telangiectasia mutated
ATR ATM-related
ATP adenosine triphosphate
CMV cytomegalovirus
CpG 5’-C-p-G-3’
CR caloric restriction
DAP1 death associated protein 1
DN diabetic neuropathy
eEF2 eukaryotic elongation factor 2
eIF eukaryotic translation initiation factor
ER endoplasmic reticulum
FA fatty acid
FBW8 F-Box And WD Repeat Domain Containing 8
FDA Food and Drug Administration
FKBP FK506 binding protein
FK506 Tacrolimus
FRB FKBP12-Rapamycin Binding (FRB) domain of mTOR
GIT1 GPCR-kinase interacting protein 1
GSK3 glycogen synthase kinase 3
HD Huntington’s disease
HGPS Hutchinson Gilford progeroid syndrome
HIF1 hypoxia inducible factor 1
HTT huntingtin protein
IC50 half maximal inhibitory concentration
IKK IkB kinase
IL Interleukin
IGFR insulin-like growth factor receptor
IMP2 insulin-like growth factor 2 mRNA binding protein 2
IRS insulin receptor substrate
Ki inhibitory constant
LAMTOR late endosomal/lysosomal adaptor and MAPK and MTOR activator
LAP liver-enriched activator protein
LARP1 La-related protein
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LIP liver-enriched inhibitory protein
LKB1 liver kinase B1
LMNA lamin A
L-DOPA L-dopamine
MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2
MCF-7 Michigan Cancer Foundation-7 (breast cancer cell line)
mLST8 mammalian lethal with SEC13 protein 8
MMP matrix metalloproteinase
mTOR mammalian/mechanistic target of rapamycin
mTORC1/2 mTOR complex 1 or 2
NFAT5 nuclear factor of activated T cells 5
OA osteoarthritis
PD Parkinson’s disease
PD-1 programmed death 1
PDK1/2 pyruvate dehydrogenase kinase 1/2
PGC-1-β peroxisome proliferator-activated receptor gamma coactivator 1-β
PKC protein kinase C
PPAR Peroxisome Proliferator Activated Receptor
RA rheumatoid arthritis
RAD Ras associated with diabetes
RAGE receptor for advanced glycation end products
REDD1 regulated in development and DNA damage 1
RNAi RNA interference
ROS reactive oxygen species
S6K protein kinase that phosphorylates S6 ribosomal protein
SAβGAL senescence associated beta galactosidase
SASP senescence-associated secretory phenotype
SGK1 serine/threonine protein kinase
SIRT sirtuin
SOD1 superoxide dismutase 1
SREBP sterol regulatory element-binding protein
STAT3 signal transducer and activator of transcription 3
T1DM
T2DM

type 1 diabetes mellitus
type 2 diabetes mellitus

TFEB transcription factor EB
TNFα tumour necrosis factor α
TSC1/2 tuberous sclerosis complex 1 or 2
ULK1 Unc-51 like autophagy activating kinase
UTR untranslated region
VEGF vascular endothelial growth factor
γH2AX Ser-139 phosphorylated histone 2A variant X
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