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Abstract: Inflammation and oxidative stress are closely related processes in the pathogenesis of
various ocular diseases. Uveitis is a disorder of the uvea and ocular tissues that causes extreme
pain, decreases visual acuity, and can eventually lead to blindness. The pharmacological functions
of fucoxanthin, isolated from brown algae, induce a variety of therapeutic effects such as oxidative
stress reduction and repression of inflammation reactions. However, the specific anti-inflammatory
effects of fucoxanthin on pathogen-associated molecular pattern (PAMP) lipopolysaccharide-induced
uveitis have yet to be extensively described. Therefore, the aim of present study was to investigate the
anti-inflammatory effects of fucoxanthin on uveitis in rats. The results showed that fucoxanthin effec-
tively enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in ocular tissues.
Furthermore, fucoxanthin significantly increased the ocular activities of superoxide dismutase and
decreased the levels of malondialdehyde stimulated by PAMP-induced uveitis. Ocular hypertension
and the levels of inflammatory cells and proinflammatory cytokine tumor necrosis factor-alpha in the
aqueous humor were alleviated with fucoxanthin treatment. Consequently, compared to the observed
effects in lipopolysaccharide groups, fucoxanthin treatment significantly preserved iris sphincter
innervation and pupillary function. Additionally, PAMP-induced corneal endothelial disruption was
significantly inhibited by fucoxanthin treatment. Overall, these findings suggest that fucoxanthin
may protect against inflammation from PAMP-induced uveitis by promoting the Nrf2 pathway and
inhibiting oxidative stress.

Keywords: fucoxanthin; lipopolysaccharide; uveitis; oxidative stress; nuclear factor erythroid 2-
related factor 2

1. Introduction

Inflammation, a key factor in many diseases, may be accompanied by oxidative stress;
together, these processes act as cooperative and even synergistic partners in worsening
the pathogenesis of several diseases. Lipopolysaccharides (LPSs), i.e., heat-stable cell wall
components of Gram-negative bacteria, which are known as endotoxins and pathogen-
associated molecular patterns (PAMPs), are often employed in the search to induce a variety
of pathophysiological effects, inflammatory diseases, and autoimmune disorders [1–4].
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The pathogenesis of LPS-induced injury can include oxidative stress and inflammatory
responses. Furthermore, exacerbated production of reactive oxygen species (ROS), which
play essential roles in the regulation of immune responses against pathogens under phys-
iological conditions and the progression of inflammatory disorders, can lead to protein
and lipid disruption, proinflammatory cytokine expression, inflammatory infiltration,
physiological process dysfunction, organelle damage, and cell death [5–7].

Uveitis is a general term describing a group of intraocular inflammatory diseases
that often affect the uvea [8]. Injection of LPS can generate PAMP-induced uveitis, which
is widely used as an animal model to examine the pathological mechanisms of uveitis
and ophthalmic inflammation in animals [9–11]. In a state of inflammation, the uveal
tract, including the iris, shows the accumulation of inflammatory cells. Iris atrophy and
sphincter muscle paralysis are often observed in patients with uveitis [12]. Additionally,
an increase in the number of trabecular precipitates (which are composed of various
proteins, inflammatory cells, and fragments) in the anterior chamber can result in decreased
trabecular outflow due to blockage of the trabecular meshwork [13,14]. Obstruction by
inflammatory precipitates associated with iritis is often accompanied by high intraocular
pressure (IOP). Moreover, corneal endothelial cell junction disruption and corneal edema
are also observed during uveitis [15,16]. In young- to middle-aged patients, uveitis can
cause extreme pain and light sensitivity that leads to the loss of the patient’s social and
economic independence because of partial-to-total blindness [17]. Thus, the identification
of novel treatments for uveitis is a priority.

One such potential therapeutic strategy involves targeting endogenous ROS to sta-
bilize the microenvironment and thereby ameliorate pathophysiological effects. Among
various antioxidative pathways, the nuclear factor erythroid 2-related factor 2 (Nrf2) path-
way includes a key cytoprotective transcription factor that functions in the amelioration of
various oxidative stress- and inflammation-associated diseases [18,19]. Once released, Nrf2
moves into the cell nucleus and binds to the DNA at the location of the antioxidant response
elements to enhance the expression of antioxidant enzymes, including superoxide dismu-
tase (SOD) and glutathione peroxidase, during oxidative stress. Numerous studies have
demonstrated that Nrf2 can enhance the inhibition of the inflammatory response in several
tissue types in ocular disease, including photokeratitis, cataracts, and retinopathy [20–23].
Nrf2 meditates the cellular signaling pathways that significantly reduce cell loss, inhibit
proteolysis, and improve permeability barrier integrity in various ocular tissues.

Fucoxanthin, an orange-colored pigment, is the most abundant marine carotenoid;
it is responsible for the high antioxidant properties of brown algae [24]. Fucoxanthin has
noteworthy biological characteristics based on its unique molecular structure; it contains
an unusual allenic bond and a 5,6-monoepoxide structure, which differs from that of
other carotenoids. Our previous studies have demonstrated that fucoxanthin pretreatment
impedes ultraviolet B (UVB)-induced corneal inflammatory pain and exfoliation of the
corneal epithelial layer [22,25]. Moreover, fucoxanthin can induce a variety of therapeutic
effects such as reducing oxidative stress, repressing inflammation reactions, and protecting
the digestive tract as well as the blood vessels of the neural, skeletal, and integumentary
system. The effects of fucoxanthin on LPS-induced leucocyte and protein infiltration in rats’
aqueous humor have been studied [26,27]. However, the specific effects of fucoxanthin on
uveitis have yet to be examined in detail. Therefore, in this study, we investigated whether
fucoxanthin has anti-inflammatory effects on PAMP-induced uveitis and attempted to
elucidate the anti-inflammatory mechanism of such effects.

2. Materials and Methods
2.1. Experimental Animals

All experimental animals were cared for and treated in accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The animal experiment was approved by the Institutional Animal Care
and Use Committee of Mackay Medical College (New Taipei City, Taiwan; permit number:
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IACUC-A1080019). Healthy male Sprague Dawley rats (aged 4–6 weeks; body weight (BW),
180–200 g) were purchased from the animal department of BioLASCO Taiwan Co., Ltd.
(Taipei, Taiwan), after which they were quarantined and then allowed to acclimatize for
5 days before experimentation began. Experimental animals were allocated at 3–4 per cage,
and maintained at 19–23 ◦C (room temperature), 40–50% relative humidity, with a 12 h
light and 12 h dark cycle, and with ad libitum access to drinking water and food.

2.2. Induction of Endotoxin-Induced Ocular Disorders and Experimental Design

Twenty-five experimental animals were randomly allocated to one of five groups: A
blank control group (without LPS injection or fucoxanthin treatment), an LPS/vehicle group
(LPS injection and pretreatment by gavage of 0.1 mL of physiological phosphate-buffered
saline (PBS)/day for 2 days prior to the experiment), or LPS/fucoxanthin groups (LPS
injection and pretreatment by gavage of fucoxanthin (Sigma-Aldrich, St Louis, MO, USA)
at 0.1, 1, or 10 mg/kg BW in a 0.1% dimethyl sulfoxide solution (Sigma-Aldrich) mixed
with 0.1 mL of PBS/day for an interval of 2 days prior to experimentation). The dose of
fucoxanthin was chosen based on our previous study of ocular diseases in a rat model [22].
After anesthesia with an intraperitoneal injection of sodium pentobarbital (50 mg/kg BW),
PAMP LPS-induced uveitis was induced with a subcutaneous injection into the footpad of
200 µg of LPS (100 µg/footpad) obtained from Escherichia coli (Sigma-Aldrich) and diluted
in 200 µL of sterile pyrogen-free saline. Experimental animals were euthanized and assayed
5 days after the induction of uveitis.

2.3. Measurement of Nrf2 Protein Levels

Both cytoplasmic and nuclear extracts were prepared in parallel using extraction
reagent kits (Thermo Fisher Scientific, Rockford, lL, USA) according to the manufacturer’s
protocol. An enzyme-linked immunosorbent assay (ELISA) was used to measure Nrf2
protein levels in the supernatant of cytoplasmic and nuclear extracts from experimental
tissues following the manufacturer’s instructions (Novous, Centennial, CO, USA). Optical
density was measured spectrophotometrically at a wavelength of 450 nm with a microplate
reader. The sensitivity of the assay for Nrf2 was 9.3 pg/mL.

2.4. Measurement of IOP

The IOP at the center of the cornea was measured using a Tonolab rebound tonometer
(Icare, Helsinki, Finland) in accordance with the manufacturer’s recommendations. While
the rats were awake, 15 µL of 0.5% proparacaine hydrochloride was topically applied to
each ocular surface prior to taking IOP measurements. To achieve IOP measurements while
the rats were awake, each animal was restrained by holding the skin between its neck
and tail, while avoiding compression of the neck and the thoracic and abdominal cavities.
Each measurement was repeated three to four times and then averaged. To control for any
diurnal discrepancy in the IOP, all measurements were recorded between 11:00 and 12:00.

2.5. Determination of SOD and Oxidative Stress-Related Malondialdehyde (MDA)

According to the weight of the anterior segment, the activities of SOD and the levels
of MDA in ocular tissues were measured using commercialized assay kits according to
the manufacturer’s instructions (Sigma-Aldrich). Briefly, the tissues were homogenized
in ice-cold 0.1-M Tris/HCl (pH 7.4, containing 5 mM of β-mercaptoethanol, 0.1 mg/mL
of phenylmethylsulfonyl fluoride, and 0.5% Triton X-100). After centrifugation at 4 ◦C
(14,000× g for 5 min), the supernatant and SOD reagents were measured by determining
the absorbance at 450 nm. A portion of the homogenate was immediately measured for
its MDA levels. The supernatants were supplemented with thiobarbituric acid and then
boiled at 95 ◦C in a water bath for 60 min. The reaction of MDA with thiobarbituric acid
was measured by determining the absorbance at 532 nm.
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2.6. Inflammatory Cell Counts in the Aqueous Humor

Cell counting in the aqueous humor was performed as previously described with slight
modifications [28]. The experimental animals were anesthetized with an overdose of choral
hydrate (450 mg/kg BW) via intraperitoneal injection, after which they were sacrificed
by cervical dislocation. Immediately after sacrifice, the aqueous humor was acquired by
penetrating the cavity between the cornea and the iris with a 30 gage needle. For cell
counting, 1 µL of aqueous humor was diluted with 9 µL of PBS and then suspended in 10
µL of trypan-blue solution (Sigma-Aldrich). Subsequently, the cell suspension was assessed
with a hemocytometer. The number of cells per square was quantified manually under a
light microscope and the total number of cells in five squares per sample was averaged.

2.7. Immunohistochemistry of Myeloperoxidase (MPO) and Zonula Occludens-1 (ZO-1) in the
Ocular Tissues

The experimental rats were deeply anesthetized via an intraperitoneal injection of
choral hydrate (400 mg/kg BW) and perfused with a fixative containing 4% paraformalde-
hyde in PBS. Tissue sections were pretreated with 3% H2O2 for 10 min at room temperature
to exhaust endogenous peroxidase activities. After incubation in PBS containing 5% skim
milk at 37 ◦C for 30 min, the sections were treated with primary antibody against tissue
leukocyte marker MPO (Abcam, Cambridge, U.K.) or intercellular junction ZO-1 (Abcam)
for 2 h at room temperature, followed by 3 washes in PBS. The sections were then incu-
bated with horseradish peroxidase-conjugated goat secondary antibody for 1 h at room
temperature. After being rinsed in PBS, the samples were placed in 0.05% DAB/0.01%
H2O2 solution for color development.

To evaluate the integrity of the corneal endothelium, corneal whole-mount samples
were washed and incubated with intercellular junction ZO-1. DAPI (40,6-diamidino-2-
phenylindole, Thermo Fisher Scientific, Waltham, MA, USA) was used to stain nucleic
acids for the nuclear staining.

2.8. Pupillometry of the Pupillary Light Reflex

Pupillary reactions were evaluated in unanesthetized rats following our previous
protocol [29] with some modifications. Each rat was adapted to darkness for at least 45 min
and subsequently placed on a custom-built stereotactic apparatus while their motion was
confined using a 56 mm-diameter polyethylene tube. The eye was gently held open during
monitoring. A beam of light was directed to the center of the ocular surface for evaluation of
the pupillary response. All data were recorded from the right pupil with the eye positioned
at an equivalent distance from the digital camera. The pupillary diameter was measured
and used to calculate the pupil area.

2.9. Immunohistochemical Analysis of the Iris Nerve Fibers

To determine the extent of innervation, the iris tissues were collected for immuno-
histochemical analysis as described in our previous report [29]. Iridial whole-mount
samples were transferred into PBS solution containing 3% hydrogen peroxide to eliminate
endogenous peroxidase activity. After blocking nonspecific binding using 10% bovine
serum albumin (Sigma-Aldrich) and 1% Triton X-100 in PBS, the samples were washed
and incubated with a specific primary antibody against pan neuronal marker proteins,
protein gene product (PGP) 9.5 (dilution, 1:250; Chemicon International, Inc., Temecula,
CA, USA), at 4 ◦C for 2 days. After washing with PBS, the samples were incubated with
an appropriate biotinylated secondary antibody (Sigma-Aldrich). The color reaction prod-
ucts were visualized with 3,3′-diaminobenzadine using a VECTASTAIN® ABC Kit (Vector
Laboratories, Burlingame, CA, USA). A flat mount of iris tissues was evaluated under a
Zeiss Axiophot microscope (Carl Zeiss, Oberkochen, Germany). The total lengths of nerves
labeled with antibody against PGP 9.5 were calculated with commercial digital software
(Adobe Illustrator; Adobe Systems, San Jose, CA, USA) using the object–length function,
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as described in a previous protocol [30] but with minor modifications. The innervation
density of the iris sphincter was then recorded as a percentage relative to the control.

2.10. Statistical Analysis

All data are expressed as means ± standard deviation (SD). A Kolmogorov–Smirnov
test was used to verify the normality of the data. Nonparametric values were analyzed
with a Mann–Whitney test. In contrast, parametric values were analyzed with Student’s
t-test or one-way ANOVA followed by Bonferroni’s multiple comparison test. Differences
were considered statistically significant at p < 0.05. SPSS (SPSS, Inc., Chicago, IL, USA) was
used to perform all statistical analyses.

3. Results
3.1. Fucoxanthin Upregulates the Expression of Nrf2 and Enhances the Nuclear Translocation of
Nrf2 in PAMP LPS-Induced Uveitis

As previously mentioned, PAMP LPS-induced uveitis is a classical model for the
study of noninfectious ocular inflammation. In the present study, we investigated whether
fucoxanthin induces the expression of Nrf2, which is an essential mediator of cellular
reactions against oxidative stress and inflammatory responses. We measured the relative
expression levels of cytoplasmic Nrf2 and nucleic Nrf2 with an ELISA assy. The results
showed that fucoxanthin pretreatment promotes activation of cytosolic Nrf2 (Figure 1A)
and enhances the nuclear translocation of Nrf2 (Figure 1B).
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Figure 1. Effect of fucoxanthin on Nrf-2. Cytosolic (A) or nuclear proteins (B) were determined by ELISA and are expressed
as the relative level of the controls. The experiments were repeated three times and similar results were obtained. The
results are presented as the mean ± SD (n = 5). * p < 0.05: Significant difference compared to the blank control group
(Student’s t-test); # p < 0.05 and ## p < 0.01: Significant difference in the LPS-treated groups (one-way ANOVA followed by
Bonferroni’s multiple comparison test).

3.2. Protective Effects of Fucoxanthin on LPS-Induced Elevated IOP

The mean IOP values of the rats in the blank control group were within the normal
range (14.6 ± 1.2 mmHg), but these values were significantly higher among the rats in
the PAMP LPS-induced uveitis group (23.2 ± 1.3 mmHg). Although LPS injection caused
a significant increase in IOP, the effects of LPS were ameliorated by fucoxanthin. The
IOP remained elevated in the groups treated with 0.1 and 1 mg/kg BW of fucoxanthin
(21.3 ± 1.5 and 20.2± 1.1 mmHg, respectively) after LPS treatment, but the IOP was signifi-
cantly reduced in the groups treated with 10 mg/kg BW of fucoxanthin (15.5 ± 0.8 mmHg)
(Figure 2).
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Figure 2. Effects of fucoxanthin on IOP after LPS-induced uveitis. The IOP values were compared
among the blank control, LPS/vehicle, LPS/0.1 mg/kg BW of fucoxanthin, LPS/1 mg/kg BW of
fucoxanthin, and LPS/10 mg/kg BW of fucoxanthin groups. Compared to the blank control group, the
IOP was significantly elevated in the LPS-treated group, but the IOP then decreased with fucoxanthin
treatment. The results are presented as the means ± SD (n = 5 rats/group). * p < 0.05: Significantly
different compared to the blank control group (Student’s t-test). # p < 0.05: Significantly different in the
LPS-treated groups (one-way ANOVA followed by Bonferroni’s multiple comparison test).

3.3. Protective Effects of Fucoxanthin on SOD Activity and MDA Levels

LPS was found to induce an increase in IOP that could be inhibited by fucoxanthin.
Thus, we also examined the effects of fucoxanthin on antioxidative capabilities by mea-
suring the levels of SOD and MDA in treated rats, because, in the ocular tissues, these
levels are indicative of antioxidative and oxidative damage capacities, respectively. The
SOD activity in the eyes of the LPS/vehicle group rats was notably lower than that in the
control group (p < 0.05); however, the group pretreated with 10 mg/kg BW of fucoxanthin
showed a remarkable increase in SOD activity relative to the activity measured in the
LPS/vehicle group (Figure 3A). In addition, the levels of MDA in the ocular tissue of the
LPS/vehicle group were significantly increased compared to the MDA levels in the blank
control group, but these levels were significantly decreased (p < 0.05) in the ocular tissue of
the rats pretreated with 10 mg/kg BW of fucoxanthin (Figure 3B).
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3.4. Histological Analysis of Ocular Tissues, Inflammatory Cell Counts, and Proinflammatory
Cytokine Tumor Necrosis Factor-alpha (TNF-α) Protein Concentration in the Aqueous Humor

Compared to the blank control group (Figure 4A), iris hyperemia was observed in
the LPS group (Figure 4B); however, this effect was alleviated in the 10 mg/kg BW of
fucoxanthin-treated group (Figure 4C). To characterize the morphological changes that occur
in uveitis, the anterior ocular structures of transverse sections were examined. Measurements
of the histological examinations demonstrated that after treatment with LPS, significant
differences in angle closure and increased MPO-positive inflammatory cells (Figure 4E,H)
existed in comparison to these measurements in the control group (Figure 4D,G). In addition,
decreases in the angle closure and anterior chamber depth, as well as an increase in corneal
thickness, were observed in the LPS-induced autoimmune iritis group. However, when
treated with fucoxanthin, a remarkable reduction in angle closure (Figure 4F) and inhibition
of infiltrating cells in the aqueous humor and iris regions were observed (Figure 4F,I), relative
to these measurements in the LPS/vehicle experimental groups.
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Figure 4. Effects of fucoxanthin on iris hyperemia, inflammatory cells, and TNF-α protein concentrations. Compared to
the blank control group (A), iris hyperemia was observed in the LPS/vehicle group (B). These signs were alleviated in the
LPS/10 mg/kg BW of fucoxanthin group (C). Moreover, the abundance of inflammatory cells was evaluated by immunohis-
tochemical analysis of MPO-positive leukocytes in the blank control (D,G), LPS/vehicle (E,H), and LPS/fucoxanthin (F,I)
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groups. A narrowed anterior chamber angle and number of MPO-positive leukocytes (arrowheads) in the aqueous humor
(E) and iris (H) were found in the LPS/vehicle group compared to the control group (D,G). In contrast, a relatively wider
anterior chamber angle and a decreased number of MPO-positive leukocytes were observed in the aqueous humor (F) and
iris (I) of the LPS/fucoxanthin group compared to that of the LPS/vehicle group. In addition, the aqueous humor was
collected to count the number of cells (J) and to measure the expression levels of the inflammatory cytokine TNF-α (K). The
cell count and TNF-α expression levels were increased in the LPS/vehicle group, whereas the number of inflammatory
cells and the TNF-α levels in the fucoxanthin-treated groups were significantly decreased. The results are presented as the
mean ± SD (n = 5). * p < 0.05: Compared to the LPS/vehicle group (Student’s t-test). Scale bars: 100 µm.

To confirm the infiltration of anti-inflammatory cells and protein concentrations of
ocular tissues in PAMP LPS-induced ocular disorders, the number of infiltrating cells and
the expression levels of TNF-α were measured in the aqueous humor. After LPS injection,
the number of infiltrating cells increased in the aqueous humor of the LPS/vehicle group
(14.7 ± 3.2 × 105 cells/mL; n = 5), but significantly decreased (relative to the LPS/vehicle
group) in the aqueous humor of the fucoxanthin-treated groups (2.1 ± 1.6 × 105 cells/mL;
n = 5; p < 0.05) (Figure 4J). In addition, TNF-α was strongly expressed in the LPS/vehicle
group. In contrast, fucoxanthin treatment significantly reduced the concentrations of in-
flammatory cytokines in the aqueous humor (Figure 4K). Collectively, the histopathological
and ELISA assay findings indicate that fucoxanthin mitigates ocular inflammation.

3.5. Effect of Fucoxanthin on the PAMP LPS-Induced Impaired Pupillary Light Reflex and
Autonomic Denervation of Iridial Tissues

This pupillary light test can be used to diagnose parasympathetic denervation of the
pupillary sphincter muscle. To assess denervation in the area of the sphincter muscles of the
iris, the initial noticeable symptom of autonomic impairment is a reduction in the amplitude
of pupillary constriction to light. In the present study, the pupillary light reflex was affected
by LPS treatment. After LPS treatment, the harshness of pupil abnormalities and other
autonomic deficits increased (Figure 5C,D). Compared to the control (Figure 5A,B), the
initial pupil diameter was significantly larger, the constriction velocity was decreased, and
the peak constriction amplitude to light stimuli was diminished in the LPS/vehicle group.
In contrast, the impaired reflex was alleviated with fucoxanthin treatment (Figure 5E,F).
Additionally, the pupil diameter of pupillary light differed significantly between the
LPS/fucoxanthin group and the LPS/vehicle group (Figure 5G). These results indicate that
LPS-induced impairment of the pupillary light reflex was suppressed by fucoxanthin.

To define the effect of fucoxanthin on LPS-induced degeneration of the autonomic
nerve, the general neuronal marker PGP 9.5 was used as a target for histopathological
analysis. In the control group, there was an abundance of autonomic nerves in the sphincter
muscles of the iris; staining of PGP 9.5 was dense with continuous patterns (Figure 5H). In
the whole-mount iris of the LPS/vehicle group, there was a noticeable decrease in the den-
sity of immunopositive fibers throughout the sphincter region compared to observations
in intact control irises (Figure 5I). In the fucoxanthin treatment group, denervation was
significantly reduced and nerve density increased in the sphincter area (Figure 5J) relative
to these measurements in the LPS/vehicle group.

Compared to the control group, the decrease in autonomic nerve density was statisti-
cally significant in the LPS/vehicle group (23.4%± 4.6%; p < 0.05). In contrast, compared to
the LPS group, denervation in the sphincter region of the iris was reduced in the 10 mg/kg
BW of fucoxanthin pretreatment group (75.1% ± 12.8%; p < 0.05) (Figure 5K). These find-
ings suggest that LPS-induced denervation in the sphincter region of the iris was efficiently
inhibited with fucoxanthin treatment.

3.6. Effects of Fucoxanthin on the Cell Infiltration and Endothelial Cell Junctions of Corneal
Tissues

To examine the effect of fucoxanthin on LPS-induced cell infiltration of corneal tissues,
inflammatory cells were quantified by immunohistochemical analysis. In the blank control
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group, no evidence of MPO-positive leukocytes was detected (Figure 6A), but a continuous
labeling of ZO-1 around corneal endothelial cells was observed (Figure 6D,G). The results
showed a marked increase in the number of MPO-positive cells induced by LPS treatment
(Figure 6B) compared to the number detected in the blank control group. The corneal
stroma was strongly infiltrated by MPO-positive leukocytes as a result of LPS treatment.
The abundance of infiltrated MPO-positive leukocytes was significantly increased in the
corneal stroma; this was also correlated with the intensity of endothelial junction disruption,
because cell junction ZO-1 was lost in the LPS/vehicle group (Figure 6E,H). Compared
to the LPS/vehicle group, treatment with fucoxanthin resulted in significantly lower
numbers of adherent and infiltrated leukocytes, as well as enhanced disruption of the
endothelial junctions in the corneas (Figure 6C,F,I). Fucoxanthin treatment, therefore,
decreased the number of inflammatory cells and increased the intensity of cell–cell junction
ZO-1 expression.
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Figure 5. Protective effects of fucoxanthin on LPS-induced abnormal pupillary light reflex and
denervation of the iris. The pupil diameter in response to pupillary light was compared among
the blank control (A,B), LPS/vehicle (C,D), and LPS/10 mg/kg BW of fucoxanthin (E,F) groups.
Abnormal pupillary light reflex was observed in the LPS/vehicle group relative to the control group,
whereas the impaired reflex was alleviated in the LPS/10 mg/kg BW of fucoxanthin group (G).
In addition, nerve innervation in the sphincter area was evaluated via immunohistochemical analysis
of the general neural marker PGP 9.5. Nerve innervation was also compared among the blank
control (H), LPS/vehicle (I), and LPS/fucoxanthin (J) groups. There was a significant reduction
in nerve innervation in the sphincter muscle of the iris with evident LPS-induced nerve injury in
the LPS-treated group (I) relative to in the blank control group (H), whereas nerve innervation was
increased by treatment with fucoxanthin (J). Semi-quantification analysis of nerve innervation was
calculated in the sphincter area and the results are presented as the mean ± SD (n = 5). Denervation
in the sphincter region of the iris was reduced in the 10 mg/kg BW of fucoxanthin pretreatment
group as compared to the LPS group (K). * p < 0.05: Compared to the LPS/vehicle group (Student’s
t-test). Scale bars: 50 µm.
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Figure 6. Effects of fucoxanthin on the infiltration of LPS-induced MPO-positive cells and disruption of ZO-1 in the corneal
endothelium of the anterior chamber. MPO (A–C) and ZO-1 (D–I) expression levels among the blank control (A,D,G),
LPS/vehicle (B,E,H), and LPS/10 mg/kg fucoxanthin (C,F,I) groups. Immunohistochemical staining showed strong adherent
effects and infiltration of MPO-positive inflammatory cells (arrows) in the LPS/vehicle group (B) relative to equivalent
measurements in the control group (A). In contrast, there were decreased numbers of MPO-positive inflammatory cells in the
anterior chamber in the fucoxanthin/LPS group (C). Moreover, histological examination showed a continuous brown stained
ZO-1 in the region of cell–cell contact in the corneal endothelium of the blank control (double arrowheads, (D)). Disruption of
ZO-1 was observed in the LPS/vehicle group (E) relative to in the control group. Compared to the LPS group (E), an increase
in the intensity of browning staining ZO-1 expression at the cell–cell junction was noted in the LPS/fucoxanthin group
(double arrowheads, (F)). On whole flat-mounted corneas, disruption of tight junction was prevented in the LPS/10 mg/kg
fucoxanthin group (G–I). Nuclei were stained with hematoxylin or DAPI. Scale bars = 20 µm.

4. Discussion

In general, the basal expression of antioxidant elements is not appreciably regulated
by Nrf2 signaling [31]. However, Nrf2 is involved in regulating the innate immune re-
sponse, and ROS have been shown to accumulate at higher rates in the retina and ciliary
body of Nrf2-deficient mice [32]. Nrf2–Keap1 is considered to be one of the most critical
transduction pathways in regulating the oxidative stress response of cells. A recent study
found that fucoxanthin specifically targets Keap1 and inhibits the interaction between Keap1
and Nrf2 [33]. Nrf2 and its interaction with anti-oxidant response elements increase the
transcription of the phase II antioxidant enzymes, such as SOD, NAD(P)H, NAD(P)H:
quinone oxidoreductase 1, and heme oxygenase-1 [34]. A previous study conducted by our
group demonstrated that pretreatment with fucoxanthin effectively protects the corneas
from denervation and inhibits trigeminal pain in UVB-induced keratitis with significant
increases in Nrf2 expression in vivo [22]. Building on this work, in the present study, we
investigated the anti-inflammatory effects of fucoxanthin against PAMP-induced ocular
disorders, as well as the possible underlying mechanisms, in vivo. The results of our study
demonstrated that fucoxanthin substantially ameliorates noninfectious inflammatory re-
sponses in experimental animals treated with LPS, with significant reductions in oxidative
stress, inflammatory cell infiltration, and protein TNF-α concentrations observed in the
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aqueous humor. In addition, impairment of the pupillary light reflex and denervation of the
autoimmune nerves of iris sphincter muscles were reduced by fucoxanthin. However, the
functional changes are not completely dependent on a fucoxathin-mediated increase in Nrf2
expression and elevated SOD activity. It has been shown that fucoxanthin also activates the
AMP-activated protein kinase signaling pathway and inhibition of mitochondria dysfunc-
tion induced by oxidative stress [35]. Further studies will be crucial to clarify the effects of
fucoxanthin on the expression of other genes involved in the anti-inflammatory effects.

Inflammation plays a critical role in the innate immune response by preventing tissue
destruction and promoting tissue healing [36]. The goals of therapy for autoimmune uveitis
are to reduce inflammation, prevent impairment of ocular tissues, inhibit elevations in
the IOP, and prevent long-term visual loss. To date, various corticosteroid regimens have
been the mainstay for uveitis treatment; however, the uncontrollable side effects of these
corticosteroid treatments can give rise to advanced tissue damage. The most frequent ocular
side effects are glaucoma, cataracts, poor wound healing, ptosis, and mydriasis [37,38].
In addition, a break in the functional integrity of the corneal endothelium is associated
with corneal edema [39]. Corneal thickness plays a critical role in the anterior chamber
angle and the rate aqueous humor flow out of the eye. In the present study, the risk of
glaucoma development among the experimental animals with autoimmune uveitis, as well
as a narrowed anterior chamber angle, elevated IOP, and ocular inflammatory responses,
were significantly reduced by treatment with fucoxanthin.

LPS from Gram-negative bacteria is an important stimulus for tissue inflammation.
Higher doses of LPS induce significant systemic disorders involving the brain, liver, and
testes [40–42]. However, footpad injection of LPS at a relatively low dose is appropriate
for inducing ocular inflammation with no other significant systemic disorders [43]. Oxida-
tive stress and proinflammatory cytokines have been implicated in the development of
ocular inflammation [44,45]. The proinflammatory cytokine TNF-α in the aqueous humor
plays an important role in the pathogenesis of anterior uveitis. TNF-α levels are signifi-
cantly elevated in the aqueous humor in the early stages of endotoxin-induced anterior
uveitis [46,47]. Furthermore, the concentration of proinflammatory cytokines in the aque-
ous humor has been shown to increase before apparent clinical signs of anterior uveitis
emerge; moreover, blocking signaling results in a significant delay in the onset of anterior
uveitis pathologies [48,49]. Other studies have also assessed the effects of TNF-α on vascu-
lar leakage, leukocyte adhesion, and the recruitment of circulating inflammatory factors
in ocular tissues [50,51]. In our own prior studies, we demonstrated that fucoxanthin
suppresses UVB-induced TNF-α expression and the deterioration of epithelial smoothness
in the photokeratitis of corneal tissues [25]. In the present study, antioxidative capabilities
were determined by measuring the activity of SOD and the levels MDA in ocular tissues.
Both the expression levels of TNF-α and the number of inflammatory cells decreased in the
aqueous humor following fucoxanthin treatment, suggesting that fucoxanthin regulates
oxidative stress and inflammatory cytokines while inhibiting the recruitment of leukocytes
in a rat model of endotoxin-induced ocular disorder.

Anterior uveitis is caused by several potential etiologies and may involve other
adjacent tissues. Examination of the iris preceding dilation can sometimes facilitate an
etiologic diagnosis. Most types of acute anterior uveitis are caused during transient
pupillary miosis. Anterior uveitis associated with sectoral iris atrophy is frequently ascribed
to antibiotic- and virus-induced uveitis. Disruptions of collagen tissue in the smooth
muscle and the blood vessels of the sphincter pupillae are known causes of iris atrophy and
sphincter muscle paralysis in patients with moxifloxacin-induced uveitis [12]. Histological
analysis via microscopic examination has revealed destruction of the iris muscle and
necrosis of the iris sphincter in clinical uveitis [52]. Moreover, dysfunction of the ocular
autonomic nerves that regulate the pupillary reflex results in abnormal pupil size [53].
In the present study, in the LPS-induced uveitis group, nerve innervation and the reduction
in autonomic nerve density were significantly reduced in the area of the sphincter muscles
of the iris and pupil size was abnormal in response to light stimuli. However, LPS-
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induced denervation and impairment of the pupillary light reflex were suppressed in the
fucoxanthin-treated group.

Such negative pressure can induce fluid leakage into the stroma from the anterior
chamber, but the rate of leakage is restrained by the tight junctions of the endothelium. The
corneal endothelium is localized to the inner surface of the cornea into the anterior chamber
of the eye and is an immediate target of ophthalmic inflammation during anterior uveitis.
Close associations exist between the clinical signs of corneal disease and the onset of uveitis.
The corneal endothelium is susceptible to cellular damage due to chronic inflammation,
which is further supported by the detection of immune imbalance. In a previous study,
it was demonstrated that cellular adhesion molecules, such as E-selectin, are expressed
in the corneal endothelium after endotoxin injection [54]. Consistently, the formation of
keratic precipitates in the corneal endothelium is characteristic of uveitis [16]. Anterior
uveitis involves infiltration of polymorphonuclear inflammatory cells, increased protein
permeability, and upregulation of inflammatory cytokines in the aqueous humor [55,56].
In the present study, disrupted endothelial tight junction ZO-1, infiltrated inflammatory
cells, and edema of the cornea were significantly induced by LPS treatment; however, these
effects were suppressed by fucoxanthin treatment. Dispersion of ZO-1 and swelling of
cornea in response to TNF-α involves activation of matrix metalloproteinases-9 and p38
mitogen-activated protein kinase [57,58]. Herein, we discovered that fucoxanthin protects
corneal barrier function perhaps based on fucoxanthin-mediated control of the TNF-α
inflammatory cytokine concentrations in the aqueous humor.

5. Conclusions

The results of the present work show that treatment with fucoxanthin prevents PAMP-
induced uveitis. A significantly decreased number of inflammatory cells and an improved
narrow anterior chamber angle were observed in the groups treated with fucoxanthin
following the development of ocular disorders induced by LPS. Moreover, iris innervation
and the pupillary light reflex were preserved in the fucoxanthin-treated groups. These
findings suggest that fucoxanthin may protect the eyes from PMAP-induced inflammatory
action, as well as an elevated IOP.
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