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Abstract: As the country with the largest carbon emissions globally, the effective operation of
China’s carbon emissions trading scheme (ETS) is of great importance to the global community
in terms of mitigating climate change. This paper considers China’s pilot ETS launched in 2013
as a quasi-natural experiment. Exploring provincial industrial-level data that are more in line
with the ETS coverage, the difference-in-difference-in-difference (DDD) model is used to evaluate
the impact of the ETS on carbon productivity. Considering different pilot regions and industries,
we also analyze the heterogeneous effect of ETS. Moreover, the mediating effects of technical progress
and capital investment are explored. We find that China’s pilot ETS boosted carbon productivity.
Among pilot regions, the best policy effectiveness appeared in Beijing, while the weakest effectiveness
appeared in Chongqing. Among the pilot industries, the pilot ETS had better effectiveness in
petrochemical and electric power industries and weaker effectiveness in building materials and
transportation industries. Additionally, the pilot ETS promoted carbon productivity through both
technological progress and capital investment, and the former contributed more. Our findings can
provide empirical references and policy implications for nationwide implementation of ETS to further
promote low-carbon economic transformation.
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1. Introduction

The issue of global warming has aroused widespread concern around the world [1]. Changes in
the global climate have significant impacts on the environment, economic activities, and residents’
health [2–4]. Excessive emissions of greenhouse gases caused by energy consumption, such as carbon
dioxide (CO2), are believed to be the main cause of such a warming [5–7].

Accordingly, China, the world’s largest energy consumer and CO2 emitter, has promised to stop
its increase in carbon emissions and reduce the emission intensity by 60% to 65% compared to the 2005
level before 2030 [8]. In the meanwhile, China faces a major challenge of achieving energy conservation
and emission reduction without sacrificing economic development as a developing economy with
a population of 1.4 billion [9–11]. To tackle this challenge, increasing carbon productivity has been
identified as an effective way [12].

The proposed indicator relates to the carbon productivity defined as the amount GDP per unit of
carbon emissions which focuses on describing the beneficial output of carbon emissions [13]. Increasing
carbon productivity is key to addressing the twin challenges of mitigating climate change and managing
economic growth. Therefore, it could be applied to evaluate the efforts to tackle climate change and
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the level of low-carbon economy in a region [13], and is also an important indicator to monitor green
growth progress in industries [14]. Related studies have used it to assess how environmental regulation
influences productivity [15] and the emissions performance of a region or multiple industries over
time [16].

In order to realize its reduction commitments, China needs to further increase carbon productivity.
To this end, the Chinese government officially introduced an emissions trading scheme (ETS) in 2011 [7].
Seven regions were initiated as carbon trading pilots. In 2013, those pilot regional carbon trading
markets (CTMs) were officially established (Table 1).

Table 1. Pilot emissions trading scheme in China.

Bourse Brand Time Turnover (106 ¥)
Trading Volume

(105 ton)

Average Unit
Transaction Price

(¥/ton)

Beijing BEA 28 November 2013–31 December 2017 358.86 71.20 50.40
Guangdong GDEA 19 December 2013–31 December 2017 558.02 384.85 14.50

Tianjin TJEA 26 December 2013–31 December 2017 41.16 30.05 13.70
Hubei HBEA 2 April 2014–31 December 2017 911.10 489.16 18.63

Chongqing CQEA 19 June 2014–31 December 2017 30.05 75.13 4.00

Note: 1 US dollar ($) = 6.9 Chinese yuan (¥). Turnover refers to the total transaction value of each bourse from initial
operating time to 31 December 2017.

Previous studies have found that the ETS can promote carbon mitigation [17,18] and reduce carbon
intensity, which is defined as the ratio of carbon emissions to economic output [19,20]. Will China’s
newly established ETS also promote carbon productivity? Are the effects of ETS on carbon productivity
in different regions and industries consistent? To solve these problems, we explore how China’s pilot
ETS affects regional industrial-level carbon productivity using a difference-in-difference-in-difference
(DDD) model. Furthermore, we investigate the heterogeneity of ETS effects from regional and industrial
perspectives and investigate the mediators.

This article contributes in the following aspects. Firstly, it empirically evaluates the impact of the
pilot ETS on carbon productivity, which supplements relevant studies on carbon trading. Since only
some high energy-consuming industries are covered by China’s pilot ETS, we employ the provincial
industrial-level data that is in line with ETS’s coverage to obtain more reasonable and accurate estimates.
Secondly, to avoid interference from other policies, we apply the cutting-edge DDD model to evaluate
ETS’s effect. On this basis, we further explore the effect heterogeneity on different pilot regions
and industries, providing a basis for formulating differentiated implementation plans for the ETS.
Thirdly, the paper studies the mediating effect of ETS on carbon productivity, which can provide policy
references of better operation for national ETS, and provide experience of carbon markets for other
developing countries.

2. Literature Review

Current research on ETS has generally focused on two areas. The first is to study how to enhance
the effectiveness of ETS. The second is to explore ETS’s impacts on social-economic factors. For the
first area, most existing studies have discussed carbon prices. Some have found that the setting of
carbon prices is a key factor for the ETS to effectively achieve emission reductions [4,21]. The ETS
would be enhanced substantially if the carbon price and the carbon trading scale can be accurately
predicted [22–24]. Others believe that the initial emission allowances allocation matters most for the
effective operation of ETS [25].

In terms of the impacts of ETS, related studies have formed two groups from the perspective of
research approaches. The first is simulation research based on the computable general equilibrium
(CGE) model [26,27] or numerical simulation [28]. Those studies analyzed the potential impact of ETS
on the environment or economy, but they may not fully reflect the real effect of ETS since the simulation
is heavily influenced by parametric assumptions [29]. The other is regression analysis based on
actual data. Some scholars found that the EU ETS was not fully effective in carbon emission reduction
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in power markets [30]. A series of recent studies confirmed that China’s pilot ETS substantially reduced
carbon emissions in covered regions [17,31,32]. Additionally, some argued that China’s ETS also
promoted carbon intensity reduction [33], but Zhang et al. (2019) [34] found that only in some pilot
areas (e.g., Beijing and Guangdong) ETS decreased carbon emission intensity. Existing studies also
stated that the implementation of China’s ETS can reduce energy consumption and intensity [31],
boost new energy use [35], and influence technological innovation [36,37] and green development
efficiency [38].

Overall, these studies mainly focus either on carbon emissions of a whole region
(e.g., a province) [17,34,38] or all industries [33], which is inconsistent with the reality of pilot
ETS coverage. Although Zhang et al. (2019) [31] and Hu et al. (2020) [32] tried to revolve around the
specific covered industries, they use the difference-in-difference (DID) or propensity score matching
(PSM) difference-in-difference (PSM-DID) methods which cannot eliminate the interference effects of
other policies (e.g., national or regional industrial policies) [39,40], thereby reducing the validity of the
estimated results.

Carbon productivity is the level of gross output (or economic value output) per unit of carbon
emissions [41,42]. It measures the comprehensive level of low-carbon technologies over a certain period
of time [43]. Increasing carbon productivity is an important way to achieve low-carbon transformation
of economic modes [44]. It is estimated that China needs to increase its carbon productivity by
a factor of 10 times to achieve the greenhouse gas emission target of IPCC2025 [45]. The existing
literature has found carbon productivity is affected by economic scale [46], green capital investment [47],
technological innovation level [48], trade openness degree [12,49], energy consumption structure [47],
and urbanization level [13]. However, few have analyzed the effect of ETS on carbon productivity and
the associated mediators.

In summary, the existing literature still has some shortcomings. Firstly, few have empirically
studied the impact and mechanism of China’s ETS on carbon productivity. Secondly, existing studies
have mostly used provincial-level data for the whole region or industrial-level data for all industries,
which overestimated the coverage of China’s pilot ETS, and the estimated policy effects may not
be accurate. Thirdly, most studies use DID or PSM-DID models, which cannot avoid the impact of
other policies on carbon emissions. Therefore, to fill these gaps, we empirically assess the impact of
China’s pilot ETS on carbon productivity using the DDD model and the regional industrial-level data
reflecting the actual coverage of the pilot ETS.

3. Methods and Data

3.1. Methods

3.1.1. Difference-in-Difference-in-Difference (DDD) Model

The difference-in-difference (DID) model is a widely applied method for policy effectiveness
evaluation. However, the effects of many confounding factors, such as regional heterogeneity and
other regulation policies, cannot be eliminated by DID, which may result in inaccurate results [39,40].
Therefore, we employ the DDD model [16,50] to tackle the above problems. Specifically, this paper
regards the pilot industrial sectors in the pilot and non-pilot areas as the first group of the treatment
group and control group, and regards the non-pilot industrial sectors in the pilot and non-pilot areas
as another. Since the non-pilot industrial sectors are not affected by the pilot ETS, such a difference
can eliminate other confounding factors, and further divest the net effectiveness of the pilot ETS [51].
The DDD model used is as follows:

ln Yi jt = β0 + β1time× treat× group + λX + γit + ηt j + εi jt (1)

where, Yi jt is the dependent variable, indicating the carbon productivity of industry j located in region
i in year t. It is specified in logarithmic form to observe the relative change. The term time denotes
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a year dummy variable, equaling 1 after the establishment of the pilot ETS (2013) or 0 otherwise.
The term treat denotes a location dummy variable, equaling 1 if the region has its own CTM or 0
otherwise. The term group denotes another dummy variable and equals 1 if industry j is covered by the
pilot ETS, otherwise the value is 0. The term X is a set of control variables, γit denotes the province–year
fixed effect, and ηt j denotes industry-year fixed effect. The term β1 indicates the degree that the pilot
ETS influences the carbon productivity of covered industries relative to the uncovered ones, and εi jt is
the random error term.

3.1.2. Regional DDD Model

To figure out the regional heterogeneity of the pilot ETS’s influence, this paper selects all the
pilot regions as samples and introduces the region dummy variable province. When a certain pilot
region is investigated, the value of this area is 1, otherwise it is 0. It is combined with time× group to
construct a triple interaction item to observe the difference in policy effectiveness between one pilot
region and the others. The model is as presented in model (2). Other variables are the same as those in
the model (1). The term β2 of varying pilot regions can be used to derive the different policy effects
between differing pilot regions.

ln Yi jt = β0 + β2time× group× province + λ1X + γit + ηt j + εi jt (2)

3.1.3. Industrial DDD Model

To verify the heterogeneity of policy effectiveness between industries, this paper introduces the
industry dummy variable industry. When a certain industry covered by pilot ETS is investigated,
the value is 1, otherwise it is 0. The term β3 of different pilot industrial sectors can be used to derive
varying policy effects between various pilot industries. Other variables are the same as those in
model (1). The industrial heterogeneity DDD model is as follows:

ln Yi jt = β0 + β3time× treat× industry + λ1X + γit + ηt j + εi jt (3)

3.1.4. Stepwise Method

We adopt the mediating effect method [52,53] to explore how the pilot ETS influences carbon
productivity. The model is as follows.

ln Yi jt = α1time× treat× group + λaX + γit + ηt j + εi jt (4)

Mi jt = α2time× treat× group + λbX + γit + ηt j + εi jt (5)

ln Yi jt = α3time× treat× group + α4Mi jt + λcX + γit + ηt j + εi jt (6)

where, Mi jt denotes mediators. Other variables are the same as in model (1). If α1, α2 and α4 are all
significant, the mediating effect exists. Then α3 is further investigated. An insignificant α3 implies a
complete mediating effect. If α3 is significant and its absolute value is less than α1, the mediating effect
is partial-mediating.

3.2. Data

The data used include 34 industries (details are shown in Table A1 of the Appendix A) in the
provinces of China’s mainland from 2008 to 2017. Shanghai and Tibet are not included because of
data unavailability. In 2013, Beijing, Tianjin, Shanghai, Hubei, Chongqing, Guangdong and Shenzhen
officially started their CTMs. Shanghai’s data is incomplete, and Shenzhen’s data have been statistically
included in the data of Guangdong. Thus, Beijing, Guangdong, Hubei, Chongqing and Tianjin are
finally selected as pilot regions. We summarize industries in the light of Industrial Classification for
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National Economic Activities [31]. Eight industries covered by the ETS in pilot regions are set as pilot
industries. Details are shown in Table A2 of the Appendix A.

3.2.1. Dependent Variable

Carbon productivity is calculated as follows [43]:

CPit
j =

GOPit
j

CEit
j

(7)

where CPit
j denotes the carbon productivity of industry j located in area i in year t and GOPit

j denotes
the industrial gross output, collected from the China Industry Statistical Yearbook [54]. It has been
adjusted to a 2008 constant price by using the Industrial Producer Price Index [55]. CEit

j denotes the
industrial carbon emissions, accounted for by the IPCC accounting method [56] as Equation (8).

CE j
it =
∑

k

ADit
jk ×NCVk ×CCk ×Ok ×

44
12

(8)

where, ADit
jk denotes the consumption of energy k of industry j in region i in year t. The term NCVk

denotes the mean low calorific value of energy k, CCk denotes carbon content of energy k, Ok denotes
the carbon oxidation rate of energy, and 44

12 denotes the molecular weight ratio. Energy consumption
data are collected from the China Energy Statistical Yearbook [57]. The terms NCVk, CCk and Ok are
from IPCC [56,58]. Coal, crude oil, and natural gas are selected as energy sources for carbon emissions
accounting because they account for about 94% of China’s total energy consumption [43]. We only
consider direct emissions, excluding indirect emissions and process emissions in the measurement.

3.2.2. Control Variables

The scales of industries have impact on productivity and profit margins and can affect the
investments in energy-efficient equipment as well as technological innovations [59]. Accordingly,
they may further influence industrial sectors’ carbon productivity. Therefore, we control the industrial
scale with total assets and industrial average number of employees in the analysis [60,61]. The data are
from the China Industry Statistical Yearbook [54]. Total assets are measured with a 2008 constant price
utilizing the fixed asset investment price index [55].

The asset–liability ratio is an indicator of long-term solvency, which could affect the willingness of
environmental management [62]. The asset profit ratio is an indicator of profitability, which may affect
energy efficiency through capital investment [63] and technological innovation [64,65]. Moreover,
the degree of asset liquidity is a main influential factor of technological innovation effectiveness [66].
Thus, we also control the asset–liability ratio, the asset profit ratio and the current assets ratio in
the empirical analysis. These data are from the China Industry Statistical Yearbook (Department of
Industry Statistics 2008–2018). Table 2 shows the interpretation and calculation of the control variables.

3.2.3. Mediators

Technological progress has been widely measured by total factor productivity (TFP) [67,68].
Levinsohn and Petrin (2003) [69] proposed a semi-parametric method to measure TFP (LP method
for short). The LP method can solve the problem of sample loss caused by a sample with zero
investment that cannot be estimated by replacing variables. Therefore, we choose the LP method to
measure TFP. The indicators used to calculate TFP have been adjusted to a 2008 constant price.

Capital intensity is selected to measure capital investment [19]. It is calculated as the proportion
of annual capital investment over total output value for each industry.
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Table 2. Summary statistics.

Variable Type Variable Symbol Variable Meaning Mean Standard
Deviation

Dependent
variable Carbon productivity Lncp Industrial carbon emissions/industrial total

output value (in log) (106t/108 RMB) 1.6376 2.2057

Control
variable

Industrial scale
Lnasset Industrial total assets in log (108 RMB) 4.9014 2.0799

Lnlabor Industrial average number of employees in
log (104 people) 1.4347 1.0586

Asset-liability ratio AL Industrial total liabilities/industrial total
assets × 100% 83.3002 344.2183

Asset profit ratio AP Industrial total profit/industrial total assets
× 100% 10.4222 43.9045

Current assets ratio CA Industrial total current assets/industrial
total assets × 100% 45.1310 19.0907

Mediator
Technological

progress Lntfp Total factor productivity 1.9317 2.3115

Capital investment CI Industrial fixed assets
investment/industrial total output value 19.8296 984.4881

Note: 1 US dollar = 6.9 Chinese yuan (RMB).

4. Results and Discussions

4.1. The Overall Impact of ETS

We use the DDD model (Equation (1)) for measuring the overall effect of the pilot ETS on carbon
productivity. Column (1) of Table 3 provides the estimates only controlled by the industry-year
fixed effect, without control variables. The interaction term coefficient is significantly positive at the
1% level. Column (2) further controls the province–year fixed effect upon Column (1). The interaction
term coefficient is still significantly positive, but it decreases from 1.2682 to 0.5631. Thus, it can be
seen that the confounding factors varying with time in different regions are indeed interfering with
the results. The R-squared value has improved, which shows that the model fits better after controlling
time-varying factors between regions. Column (3) considers control variables and the industry-year
fixed effect. The interaction term coefficient is also significantly positive, and its absolute value is
smaller than that of Column (1), verifying that those industrial characteristics had a certain impact
on carbon productivity. In Column (4), control variables and industry-year fixed and province–year
fixed effects are all considered. The interaction term coefficient is significantly positive, and the carbon
productivity of the treatment group increased by 58.25% after the pilot ETS implementation, compared
to the control group. This proves that the pilot ETS can significantly increase the carbon productivity.

Table 3. Impact of ETS on carbon productivity.

Variables (1) (2) (3) (4)

ttg 1.2682 ***
(0.2526)

0.5631 **
(0.2824)

1.1626 ***
(0.2665)

0.5825 **
(0.2803)

_cons 1.6070 ***
(0.6739)

1.6240 ***
(0.0068)

0.1491
(0.2487)

0.8154 ***
(0.2749)

Controls N N Y Y
Iyfe Y Y Y Y
Pyfe N Y N Y

R-squared 0.4570 0.6149 0.4950 0.6301

Note: Standard errors are clustered at the industrial units; ** and *** indicate significance at the 5% and 1% levels,
respectively. ttg denotes time × treat × group. Iyfe and Pyfe denote industry–year and province–year fixed effects,
respectively. Y denotes that the variables are added and N denotes that the variables are not included.

What does the effect of ETS look like in other countries? The European Union carbon market
(EUCM) was first established globally. However, due to the over-lax quota allocation in the first phase of
the EUCM (2005–2007) and free allocation as well as the overall economic downturn in the second phase
(2008–2012), the effect of the EUCM was not effectively achieved [70]. Accordingly, EUCM began to
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reduce the total amount of quotas in the third stage (2013–2020), and the quota allocation was gradually
shifted from free distribution to auction [70]. Nevertheless, EUCM cannot produce effective innovation
incentives at all stages [71,72]. The second national-level ETS is the New Zealand ETS (NZ ETS),
which is the most comprehensive one, covering all sectors and greenhouse gases. Overall, the NZ ETS
has slowly improved, while remaining relatively dynamic, but the market has not increased emission
reductions because the transactions are for purchasing eligible offset units [73]. With the CEG model,
Meng et al. (2018) [74] found that Australia’s ETS can effectively reduce CO2 emissions, but Australia’s
ETS emission reductions have not reached their target yet, and have caused the economy’s contraction
as well as a reduction of the employment level [75]. South Korea launched an ETS (KETS) in 2015,
but the incentives were insufficient as the carbon price was lower than the marginal abatement cost.
As a result, KETS did not have a positive impact on the efficiency of coal-fueled power plants, the main
participants of KETS, in 2015–2016 [76]. In 2020, the carbon price of KETS is the highest among all
the carbon markets [77]. In general, worldwide ETSs still need to be further improved. Among them,
China’s pilot ETS is one of the most effective carbon markets in terms of emissions reduction.

4.2. Heterogeneity Analysis Results

4.2.1. Regional Heterogeneity

China’s pilot CTMs are implemented by local governments without a unified set of standards,
so the effectiveness of the ETS may be different. We analyze the heterogeneity of ETS effectiveness in
pilot regions.

Table 4 addresses the condition that only the interaction terms coefficients for Beijing and
Chongqing are significant, indicating that the effectiveness of the pilot ETS is regionally heterogeneous.
Beijing has the only significantly positive coefficient, indicating that Beijing’s pilot CTM had promoted
carbon productivity increase.

There may be some potential explanations. First, the average unit carbon price in Beijing is much
higher than that of the other pilot regions (Table 1). Higher carbon price is an effective incentive
for enterprises to adopt emission reduction measures that are conducive to carbon productivity
increase [32]. Second, more enterprises are covered by the pilot CTM in Beijing [78], boosting more
active transactions and promoting the ETS’s scale effect. Third, the pilot ETS implementation is sturdy
and the quality control of emissions data evaluation is strict in Beijing. Necessary guidelines and
documents have been proposed to implement quality management from both the verification agencies
and the inspectors. In the meanwhile, a team of experts has also been established for checking all
the verification reports. Finally, it may also be related to Beijing’s political status. As the capital and
political center of China, the implementation of the pilot ETS is more likely to be run with tireless efforts.

Chongqing’s coefficient is significantly negative, implying a less effective CTM. The result is in
accordance with Zhang et al. (2019b) who found that the CTM had limited effect on Chongqing’s carbon
emission intensity. Relatively low carbon price may be one of the reasons (Table 1). This may also be
affected by the way carbon quotas are allocated. Beijing and Tianjin adopt the “historical intensity
method” and Guangdong adopts the “baseline method”. The method in Hubei is a combination
of the two. For Chongqing, a self-declaration method is employed, resulting in sufficient and
even oversupply of the carbon quota. In that case, the carbon market may not enhance carbon
productivity substantially.

4.2.2. Industrial Heterogeneity

We also explore the industrial heterogeneity effect of the pilot ETS. Petrochemical and electric
power industries have significantly positive interaction term coefficients, and petrochemical industry
has the largest absolute value (1.3908) (Table 4). This indicates that the pilot ETS strongly promoted the
carbon productivity of those two industries. In contrast, the coefficients of building materials (−0.5102)
and transportation (−0.9184) are significantly negative.
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Table 4. Heterogeneity analysis results.

Variables
Regional Heterogeneity Industrial Heterogeneity

Beijing Guangdong Tianjin Hubei Chongqing Papermaking Petrochemical Chemical Building
Materials Steel Non-Ferrous

Metal Transportation Electric
Power

ttg 1.0721 ***
(0.3691)

0.7366
(0.4581)

0.0196
(0.6093)

−0.4756
(0.5124)

−1.2894 **
(0.5349)

−0.1101
(0.2862)

1.3908 ***
(0.1883)

0.0443
(0.2605)

−0.5102 *
(0.2524)

−0.3486
(0.3015)

−0.3420
(0.2590)

−0.9184 **
(0.2756)

0.7409 **
(0.3037)

_cons 1.0624
(0.9379)

1.1469
(0.9205)

1.2036
(0.9590)

1.2030
(0.9502)

1.1436
(0.8987)

0.4128
(0.4678)

0.3108
(0.5124)

0.4132
(0.4611)

0.4166
(0.4657)

0.4181
(0.4634)

0.4482
(0.4640)

0.3404
(0.4860)

0.4334
(0.4490)

Controls Y Y Y Y Y Y Y Y Y Y Y Y Y
Iyfe Y Y Y Y Y Y Y Y Y Y Y Y Y
Pyfe Y Y Y Y Y Y Y Y Y Y Y Y Y

R-squared 0.6673 0.6650 0.6628 0.6638 0.6697 0.6996 0.7041 0.6996 0.7002 0.6999 0.6999 0.7014 0.7009

Note: Standard errors are clustered at the industrial units; *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. ttg denotes time × treat × group. Iyfe denotes
industry-year fixed effect. Pyfe denotes province–year fixed effect. Y denotes that the variables are added and N denotes that the variables are not included.
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These results may be affected by the differences in industrial emission reduction potential.
Wang et al. (2017) reported that the petrochemical industry has the largest emission reduction potential,
followed by the electric power industry, and the transportation industry has the smallest one.
The emission reduction potential of the building materials industry is also relatively small. In the
petrochemical industry, carbon productivity can be greatly improved by expanding the proportion of
clean energies used and using emission-reducing technologies. The power industry can also greatly
promote carbon productivity through large-scale onshore wind power generation and high-efficiency
natural gas power generation technologies.

Due to the heterogeneity among industries, the allocation of carbon quotas should also be
differentiated. Setting large emission reduction pressures on industries with small emission reduction
potential will affect their economic output, and some foreign trade industries may even have carbon
leakage [79]. It is more appropriate to consider the industrial emission reduction potential in carbon
quota allocation to maximize the overall improvement of carbon productivity.

4.3. Mediating Effects Results

4.3.1. Technological Progress

Empirical evidence supports the position that in the face of carbon emission quota constraints,
enterprises will reduce emissions through technological progress to achieve low-carbon production [80].
Therefore, we further consider the potential mediating effect of technological progress. Column (1) of
Table 5 reports the overall effect, which is the regression result of Equation (3). The positive interaction
term coefficient indicates that the pilot ETS promoted carbon productivity. The dependent variables in
Columns (2) and (3) are the mediator Lntfp. Column (3) adds the province–year fixed effect on the
basis of (2), absorbing the provincial time-varying factors. The coefficient of time × treat × group is also
significantly positive, indicating that the pilot ETS promoted technological progress effectively. Column
(4) reports the result of Equation (5), which includes time × treat × group and Lntfp simultaneously.
The coefficients of interaction term and Lntfp are all significant, and the absolute value of the interaction
term coefficient is smaller than that of Equation (1). So far, it can be proved that the mediating effect
of technological progress exists, which is partial-mediating. This shows that the pilot ETS increased
carbon productivity through technological progress.

Table 5. Mediating effect results.

Variables
Technological Progress Capital Investment

(1) (2) (3) (4) (5) (6) (7) (8)

ttg 0.5825 **
(0.2803)

0.4845 *
(0.2801)

0.5825 **
(0.2803)

0.5809 **
(0.2805)

Lntfp 0.6303 ***
(0.1303)

0.2125 *
(0.1168)

0.2228 ***
(0.0453)

CI 0.0549 *
(0.0285)

0.0682 *
(0.1168)

0.0098 ***
(0.0453)

_cons 0.8154 ***
(0.2749)

−1.2764 ***
(0.2730)

−1.0281 ***
(0.2482)

1.3141 ***
(0.2773)

0.8154 ***
(0.2749)

1.0645 ***
(0.3611)

−1.6171
(1.8374)

1.3141 ***
(0.0026)

Controls Y Y Y Y Y Y Y Y
Iyfe Y Y Y Y Y Y Y Y
Pyfe Y N Y Y Y N N Y
Pfe N N N N N N Y N

R-squared 0.6301 0.2218 0.8348 0.6400 0.6301 0.0877 0.0883 0.6304

Note: Standard errors are clustered at the industrial units; *, ** and *** indicate significance at the 10%, 5% and
1% levels, respectively. The term ttg denotes time × treat × group, Iyfe denotes the industry–year fixed effect, Pyfe
denotes the province–year fixed effect, Pfe denotes the province fixed effect, Y denotes that the variables are added,
and N denotes that the variables are not included.

We provide the potential explanation. The ETS motivates enterprises to adopt emission reduction
measures through cost pressures caused by carbon quota constraints [81] and benefit incentives brought
by the marketization mechanism of policies [82]. For the long-term, enterprises are likely to choose the
measures that are more conducive to their long-term development, such as technological progress,
to achieve low-carbon production [83]. Technological progress includes technological innovation and
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improvement. The impact of the former is mainly achieved by low-carbon R&D. The latter is through
upgrading equipment, improving processing conversion efficiency, using waste heat and pressure
resources for cyclic production, and optimizing the allocation of production resources [84].

4.3.2. Capital Investment

The results of capital investment as a mediator are shown in Table 5. Column (5) reports the
overall effect, with Lncp as the dependent variable. The dependent variable is capital intensity (CI)
in both Columns (6) and (7). Column (7) adds the provincial fixed effect on the basis of Column (6),
absorbing mutual unobservable factors at the regional level. The interaction term coefficient implies that
the pilot ETS significantly increased capital investment, notwithstanding that the coefficient’s absolute
value is small, indicating that the pilot ETS played a smaller role in increasing capital investment than
in promoting technological progress. Column (8) includes capital investment (CI) in the overall effect
regression model. The coefficients of time × treat × group and CI are both significantly positive, and the
absolute value of the time × treat × group coefficient is smaller than the counterpart in Column (1). So far,
the mediating effect of capital investment can be proved, which is partial-mediating. Nevertheless,
the interaction term coefficient in Column (8) is only slightly smaller than that in Column (5). It can be
seen that the effect of capital investment was weaker than that of technological progress on carbon
productivity improvement. This shows that enterprises preferred to promote technological progress
rather than increase capital investment. A potential reason is that capital investment such as fixed
assets investment may incur pressure on capital flow, but technological progress can be achieved by
internal resources optimization, so enterprises may be more inclined to choose the latter.

4.4. Robustness Test Results

4.4.1. Placebo Test

We adopted a placebo test [85] to identify whether our results are driven by unobservable factors
at regional, industrial, and year levels. Specifically, a treatment group of the pilot ETS was randomly
set to ensure that the selection of the pilot did not affect the dependent variable, that is, the interaction
term coefficient of random regression equals 0. We conducted 1000 random samplings and performed
regression according to Formula (1). Figure 1 reports the t-value distribution of 1000 results, most of
which are distributed near zero. The mean of the coefficient after random sampling is 0.0017, which is
close to 0 compared to the above DDD model results and is not significant. This proves that our
estimates are hardly affected by unobservable factors at the regional, industrial and year levels.
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4.4.2. Concurrent Event Test

During 2013–2014, other laws and regulations on carbon emissions or energy use issued by China
may affect our results. We therefore consider the policy event as it may bias the conclusion. In 2014,
China began to implement pilot water rights trading in six provinces, including Hubei. The water rights
trading mainly deals with regional water use for industrial water transactions [86]. Water consumption
is an important factor affecting industrial production. The implementation of this policy may have
an impact on the output of the industries, which in turn may reduce energy consumption and
carbon emissions. Therefore, a robustness test was performed in this paper. Following Shi and
Xu (2018), Ningxia, Jiangxi, Hubei, Inner Mongolia, Henan, and Gansu provinces with pilot water
rights trading are eliminated, and regression testing is performed using model (1). The significant
triple interaction term implies that carbon productivity improvement has not been affected by the pilot
water rights trading (Table 6).

Table 6. Concurrent event inspection.

Variables
Pilot Water Rights Trading

(1) (2)

time × treat × group 1.1323 *** 0.5355 **
(0.1763) (0.2353)

_cons −0.0560 * 0.5528 **
(0.2999) (0.3102)

Controls Y Y
Pyfe N Y
Iyfet Y Y

R-squared 0.4668 0.6125

Note: Standard errors are clustered at the industrial units; *, ** and *** indicate significance at the 10%, 5% and
1% levels, respectively, Iyfe denotes the industry–year fixed effect, Pyfe denotes the province–year fixed effect, Y
denotes that the variables are added and N denotes that the variables are not included.

5. Conclusions

In this paper, China’s pilot ETS is regarded as a quasi-natural experiment. Using provincial
industrial-level data, the effect of the pilot ETS on carbon productivity is explored by DDD model.
In addition, the regional and industrial heterogeneous effects and the mediating effects of technical
progress and capital investment are also analyzed. We find that the pilot ETS increased carbon
productivity of the coverage of China’s pilot ETS. Among pilot regions, the best policy effectiveness
appeared in Beijing while the weakest effectiveness appeared in Chongqing. Among the pilot industries,
and the pilot ETS had better effectiveness in petrochemical and electric power industries and weaker
effectiveness in building materials and transportation industries. Moreover, the pilot ETS improved
carbon productivity by promoting technological progress and capital investment and the former
contributed more.

Several policy implications are proposed. First, it is of great importance to set up appropriate and
reasonable carbon quota allocation methods. More appropriate carbon quota allocations need to be
formulated according to the conditions of each region. Second, different emission reduction pressures
can be set according to the industry’s emission reduction potential. Industries with large potentials
can more reasonably and efficiently increase carbon productivity and promote a low-carbon economy.
Third, it is necessary to establish a dynamic carbon quota adjustment program. For regions with low
carbon prices, the authorities can appropriately tighten carbon quotas to stimulate the price of carbon
emissions trading.

Further research can combine enterprise-level data to comprehensively analyze the impact
mechanism of China’s pilot ETS on carbon productivity, and come up with more targeted policy
recommendations from the enterprise perspective. Besides, the policy spillover effect of China’s pilot
ETS also needs further study.
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Appendix A

Table A1. List of sample industries.

Industry Classification Name Code Industry Classification Name Code

Mining and Washing of Coal B06 Processing of Petroleum, Coking,
Processing of Nuclear Fuel C25

Extraction of Petroleum and Natural
Gas B07 Manufacture of Raw Chemical

Materials and Chemical Products. C26

Mining and Processing of Ferrous Metal
Ores B08 Manufacture of Medicines C27

Mining and Processing of Non-Ferrous
Metal Ores B09 Manufacture of Chemical Fibers C28

Mining and Processing of Nonmetal
Ores B10 Manufacture of Rubber and Plastics C29

Processing of Food from Agriculture
Products C13 Manufacture of Non-Metallic Mineral

Products C30

Manufacture of Foods C14 Smelting and Pressing of Ferrous Metals C31

Manufacture of Beverages C15 Smelting and Pressing of Non-Ferrous
Metals C32

Manufacture of Tobacco C16 Manufacture of Metal Products C33

Manufacture of Textile C17 Manufacture of General Purpose
Machinery C34

Manufacture of Textile Wearing
Apparel, Footware and Caps C18 Manufacture of Special Purpose

Machinery C35

Manufacture of Leather, Furs, Feather
and Related Products C19 Manufacture of Transport Equipment C36, C37

Processing of Timber, Manufacture of
Wood, Bamboo, Rattan, Palmand Straw

Products
C20 Manufacture of Electrical Machinery

and Equipment C38

Manufacture of Furniture C21
Manufacture of Communication

Equipment, Computers and Other
Electronic Equipment

C39

Manufacture of Paper and Paper
Products C22

Manufacture of Measuring Instruments
and Machinery for Culture Activity and

Office Work
C40

Printing, Reproduction of Recording
Media C23 Production and Distribution of Electric

Power, Heat Power and Gas D44, D45

Manufacture of Articles for Culture,
Education and Sports Activity C24 Production and Distribution of Water D46
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Table A2. List of pilot industries.

Pilot Industries Industry Classification Name Data Description

Papermaking Papermaking and Paper Products
Petrochemical Petroleum Processing and Coking

Chemical Raw Chemical Materials and Chemical Products
Building materials Non-metal Mineral Products

Steel Smelting and Pressing of Ferrous Metals
Non-ferrous metal Smelting and Pressing of Nonferrous Metals

Transportation Transportation Equipment Manufacturing
Merge “Automotive Manufacturing” with

“Railroad, Ships, Aerospace and Other
Transportation Equipment Manufacturing”

Electric power Production and Supply of Electric Power, Heat
Power and Gas

Merge “Production and Supply of Electric Power
and Heating Power” with “Production and

Supply of Gas”
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