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Pathological image classification is of great importance in various biomedical applications, such as for lesion detection, cancer
subtype identification, and pathological grading. To this end, this paper proposed a novel classification framework using the
multispace image reconstruction inputs and the transfer learning technology. Specifically, a multispace image reconstruction
method was first developed to generate a new image containing three channels composed of gradient, gray level cooccurrence
matrix (GLCM) and local binary pattern (LBP) spaces, respectively. Then, the pretrained VGG-16 net was utilized to extract
the high-level semantic features of original images (RGB) and reconstructed images. Subsequently, the long short-term memory
(LSTM) layer was used for feature selection and refinement while increasing its discrimination capability. Finally, the classification
task was performed via the softmax classifier. Our framework was evaluated on a publicly available microscopy image dataset
of IICBU malignant lymphoma. Experimental results demonstrated the performance advantages of our proposed classification
framework by comparing with the related works.

1. Introduction

Pathological image classification is important in various
biomedical applications, such as for lesion detection [1],
cancer subtype identification [2], and pathological grading
[3]. However, it is difficult for human eyes to recognize subtle
differences in the tissue; there are thus different inter-
pretations among medical experts. Moreover, pathologists
generally perform the pathological image classification by
the microscopic examination, which is time-consuming,
operator intensive and subjective. Therefore, computer-aided
diagnosis (CAD) is indispensable for pathological image
analysis.

Traditionally, machine learning (ML) techniques have
been widely used for different medical image processing
tasks, including image detection [4], segmentation [5], and
recognition [6]. Specifically, many researchers applied them
to the field of pathological image analysis, which has achieved
a great performance. For example, an automated system [7]

was used to extract a set of texture features by multiwavelets,
Gabor-filters, gray level cooccurrence matrix (GLCM), and
fractal dimensions (FD) for grading pathological images of
prostatic carcinoma. Experimental results showed that FD-
based features set had very good performance and provided
useful information for pathological image classification. If
FD-based features were included in the feature set and
optimized, the classification accuracy can be increased to
95.6%. Jia et al. [8] proposed an unsupervised network for
image segmentation by learning the nonlinear distribution
of medical data without prior knowledge. Experimental
results demonstrated that the unsupervised one-class sup-
port vector machine (SVM) had better segmentation results
than a supervised two-class SVM. To sum up, conven-
tional machine learning methods are generally performed
based on discriminative hand-craft features from manual
features, but the abstract level of the manual features is
relatively low, which brings difficulties for subsequent experi-
ments.
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Recently, several CAD models based on deep learning
(DL) strategies have been developed for pathological image
processing, which achieve the automatic extraction of fea-
tures and improve the accuracy of classification. Hence,
CAD using deep learning significantly reduces the subjective
misjudgment of doctors. For instance, Sirinukunwattana et
al. [9] explored the effect of the convolutional network depth
on its accuracy in the localization and classification track
respectively. Xu et al. [10] employed a deep convolutional
neural network (CNN) to learn the high-level representations
of histopathology images based on the transfer learning
technology. In other words, initial weights of the model
were determined using the optimal parameters pretrained on
ImageNet. Lei et al. [11] accomplished a work with respect
to a weakly supervised classification and disease localization
using pretrained deep convolutional network. Gu et al. [12]
employed the classical AlexNet to analyze the corresponding
classification problems. The classification accuracy obtained
by the proposed model can achieve to 69.9% in the task
of cancer classification. Magaña-Tellez et al. [13] proposed
a spatially constrained convolutional neural network (SC-
CNN) to perform nucleus detection and develop a novel
neighboring ensemble predictor for classification of nuclei.
Mercan et al. [14] proposed a deep learning method, which
used multiple processing layers to learn representations of
data through multiple levels of abstraction. Compared to tra-
ditional ML methods, DL can learn low-level features as well
as high-level semantic information. Moreover, the extracted
features have a stronger generalization performance than the
specific settings and can be applied to multiple fields.

Generally, DLmethods require a large number of training
data. However, one challenge is how to deal with the lack
of data samples in the field of medical images. For example,
Shang et al. [15] proposed a novel algorithm that can pre-
serve geometric structure information based on the feature
selection framework of subspace learning and then used the
𝐿2,1-norm to ensure the sparsity of the feature array and
avoid complicated solutions. However, it was expensive and
impossible to train an effective model using a small amount
of labeled data. To address this issue, the transfer learning
technique had been used in this framework, which improved
model performance. Gupta et al. [16] proposed a heteroge-
neous transfer learning framework, which extracted textual
information to achieve the image classification. Experimental
results showed that this framework performed better than
other methods under the premise of using the less labeled
data.

As previously mentioned, features extracted by DL and
transfer learning are beneficial for pathological image classi-
fication. However, different features represent different image
characteristics; there are thus many literatures to obtain more
comprehensive information via image feature fusion. For
instance, Li et al. [17] proposed a multimodal feature fusion-
based framework to achieve representations of geographic
images by leveraging a low-to-high learning flow for both
the deep and shallow modality features. Banerjee et al.
[18] presented deep-learning-based CADs for the diagno-
sis of subtypes of rhabdomyosarcoma (RMS) by analyz-
ing multiparametric MR images. They achieved creating a

comprehensive representation of tumor by a fusion method.
Finally, they used a pretrained deep convolutional neural
network to perform classification of two RMS subtypes,
which achieved a fast, efficient, and reproducible diagnosis
for RMS subtypes.

In this study, we propose a pathological image clas-
sification framework based on a multispace image recon-
struction method and the transfer learning technology. The
contributions of this paper are summarized as follows.
First, the reconstructed image is a new generated image
containing three channels composed of gradient, gray level
cooccurrence matrix (GLCM) and local binary pattern (LBP)
spaces. Specifically, the gradient image is sensitive to the
boundaries and GLCM image is sensitive to regions of
nuclei. The LBP image mainly highlights the center of each
nucleus. Second, high-level semantic features from RGB and
pseudocolor images are extracted via the pretrained VGG-
16 net and the long short-term memory (LSTM) layer is
used to reduce the feature dimension while increasing its
discrimination capability. Our framework is evaluated using
a publicly available microscopy image dataset of IICBU
malignant lymphoma [19]. Experimental results demonstrate
the performance advantages of our proposed classification
framework by comparing with the related works.

The remainder of this paper is organized as follows. In
Section 2, we introduce NHL pathological image dataset and
our classification framework. Section 3 shows the classifi-
cation results and a comprehensive comparison with some
other methods. Finally, discussions and conclusions are
summarized in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Dataset Description. The IICBU lymphoma dataset con-
tains 374 hematoxylin and eosin (H&E) stained non-Hodgkin
lymphoma (NHL) images, which are divided into three
classes: chronic lymphocytic leukemia (CLL), follicular lym-
phoma (FL), and mantle cell lymphoma (MCL). They are
the major types of malignant small B-cell lymphoma [19].
The dataset sections are captured using the bright field
microscopy and each image is 1388 × 1040 pixels. In our
experiments, each image is divided into 336 nonoverlapped
patches with 64 × 64 pixels (21 × 16); we perform the
classification tasks in the patch level and image level, and the
image classification results are determined via the classifica-
tion results of the corresponding patches.

2.2. Pathological Image Classification. As shown in Figure 1,
the proposed process of the pathological image classification
is described, which is summarized as four stages, including
multispace image reconstruction, feature extraction, feature
selection, and image classification. First, a multispace image
reconstruction method is developed to generate new color
images, which contain the gradient, GLCM, and LBP infor-
mation adequately. Second, the VGG-16 net pretrained on
ImageNet is applied to original images and reconstructed
images for feature extraction. Third, the long short-term
memory (LSTM) layer is used for feature selection. Finally,
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Figure 1: The flowchart of the proposed classification process, which has four steps. (1) Multispace image reconstruction; (2) feature
extraction; (3) feature selection; and (4) image classification.
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Figure 2: The process of multispace image reconstruction. (a) Original image. (b) Grayscale image. (c) Gradient image. (d) GLCM. (e) LBP.
(f) Our reconstructed image.

the softmax classifier is utilized to perform the classification
task.

2.2.1. Multispace Image Reconstruction. Generally, H&E
images vary significantly in color, because of many fac-
tors, including specimen preparation and staining protocol
inconsistencies (e.g., temperature of solutions); variations in
fixation characteristics and interpatient variation and the
scanner are used to digitize the slides. The classification
performance could be hampered by color and intensity
variations. Many classification tasks implemented by DL
strategies not only considered RGB inputs but also took the
advantage of other spaces’ inputs, such asHSV, Lab, and YUV
[20]. Inspired by these works, we first use the white balance
method to alleviate color influence and then convert RGB
images into grayscale images. Besides, in order to consider
more beneficial information, we propose a novel multispace
reconstruction method to generate a new image which is
composed of the gradient, GLCM and LBP spaces’ images.
In other words, the R, G, and B channels of a reconstructed
image are represented as the gradient, GLCM, and LBP
spaces’ images, respectively. Figure 2 presents the generative

process of a reconstructed image. Figure 2(a) is an original
H&E pathological image. Figures 2(b)–2(e) represent the
grayscale, gradient, GLCM, and LBP images. Figure 2(f) is the
generated reconstructed image. Visually, the gradient image
is sensitive to boundaries and the GLCM image is sensitive to
the regions of nuclei. The LBP image mainly emphasizes the
center of each nucleus. The following experiments demon-
strate that these three kinds of information are effective for
the pathological image classification.

2.2.2. Feature Extraction via VGG-16 Net. As is well known,
the effective classification greatly depends on the discrimina-
tive representations of samples. Some literatures [21] treated
the feature extraction and classifier design as two separated
processes; they could not work together to maximally extract
and retain the most discriminative information. Recently,
deep learning strategies are widely applied to the feature
extraction on different image classification tasks. Particularly,
conventional convolutional neural network (CNN) [22] is
consisted of alternating convolution and subsampling oper-
ations. Flatten operation was used on the feature maps of the
last convolution layer to obtain the feature vectors. The next
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Table 1: The network structure for our classification task.

Layer Filter number Kernel size Dimension
Input - - 64 × 64 × 3
Conv1 64 3 × 3 64 × 64 × 64
Conv2 64 3 × 3 64 × 64 × 64
Max-Pool1 - 2 × 2 32 × 32 × 64
Conv3 128 3 × 3 32 × 32 × 128
Conv4 128 3 × 3 32 × 32 × 128
Max-Pool2 - 2 × 2 16 × 16 × 128
Conv5 256 3 × 3 16 × 16 × 256
Conv6 256 3 × 3 16 × 16 × 256
Conv7 256 3 × 3 16 × 16 × 256
Max-Pool3 - 2 × 2 8 × 8 × 256
Conv8 512 3 × 3 8 × 8 × 512
Conv9 512 3 × 3 8 × 8 × 512
Conv10 512 3 × 3 8 × 8 × 256
Max-Pool4 - 2 × 2 4 × 4 × 256
Conv11 512 3 × 3 4 × 4 × 512
Conv12 512 3 × 3 4 × 4 × 512
Conv13 512 3 × 3 4 × 4 × 512
Max-Pool5 - 2 × 2 2 × 2 × 512

Convolution+ReLU
Max pooling
Fully connected+ReLU

Figure 3: The architecture of the VGG-16.

several fully connected layers were applied one by one on
the feature vectors. These series of operations were regarded
as a process of feature extraction. In addition, the transfer
learning in [23] used the parameters of trained models
(via natural images) to extract medical images’ features or
initialized the parameters of a particular model. Motivated
by [24], our strategy uses the pretrained VGG-16 [25] (Visual
Geometry Group) net for performing the feature extraction
on lymphoma patches. VGG-16 is a simple and common
deep convolutional neural network and can obtain the com-
petitive performances with other networks. The proposed

feature extraction process using VGG-16 net is described in
Figure 3. The network is trained on the entire ImageNet [26]
dataset and our input images are all resized to 64×64 pixels.
The corresponding outputs are 2048-dimensional features.
The specific network structure for our classification task is
presented in Table 1. Note that the pretrained VGG-16 net
is used for the feature extraction on RGB images and the
reconstructed patches simultaneously.

2.2.3. Feature Selection by LSTM. Due to the great differences
between natural images and pathological images, the features
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Table 2: Different classification results using RGB (2048-dimension), reconstruction (2048-dimension), and combination features (4096-
dimension).

Index Classes RGB Reconstruction Combination
ACC Overall (0.5317 ± 0.016) (0.4423 ± 0.016) (0.6667 ± 0.008)

CLL (0.5205 ± 0.011) (0.4214 ± 0.010) (0.6414 ± 0.010)
SEN FL (0.5179 ± 0.010) (0.4187 ± 0.013) (0.6396 ± 0.018)

MCL (0.5224 ± 0.009) (0.4226 ± 0.009) (0.6428 ± 0.009)
CLL (0.5515 ± 0.008) (0.4602 ± 0.004) (0.6806 ± 0.005)

SPE FL (0.5469 ± 0.012) (0.4584 ± 0.011) (0.6789 ± 0.007)
MCL (0.5524 ± 0.011) (0.4628 ± 0.014) (0.6833 ± 0.009)

extracted by pretrained VGG-16 net may not obtain the
satisfactory classification results. A common method for
addressing this issue is to initialize the model’s parameters
using the pretrained net and then train our images to adjust
the parameters. However, there is no essential difference
compared with training own data directly, and it also could
lead to the overfitting. To this end, we propose a “feature
selection strategy” to find the discriminative features and
remove the redundant features using the long short-term
memory (LSTM) layer.The LSTM [27] is an efficient network
for text classification tasks, which considers the relationship
between the text and time information. For our case, the rela-
tionship between original RGB images and corresponding
reconstructed images is similar to temporal text data. Specif-
ically, redundant features are removed via the forget gate,
then beneficial features are added to the input gate and the
optimal feature vector is obtained by the output gate. Figure 1
shows the feature selection process using the LSTM layer.The
VGG-16 features of RGB images are regarded as the original
content information (text information in LSTM), while the
VGG-16 features of the corresponding reconstructed images
are considered as the auxiliary information (temporal infor-
mation in LSTM). There are 32-dimension features selected
via the LSTM layer. Afterwards, we cascade the 32-dimension
features of RGB images and the reconstructed images into
a 64-dimension feature vector. Finally, the softmax classifier
is used to perform the pathological image classification task.
Note that the integral loss function is defined as follows in
(1)-(3).

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (1)

𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = −∑
𝑖

𝑦𝑖 log 𝑎𝑖 (2)

𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = −∑
𝑖

𝑦𝑖 log 𝑏𝑖 (3)

where 𝑦𝑖 represents the label of each sample. 𝑎𝑖 and 𝑏𝑖
are the output probabilities obtained via the softmax func-
tion 𝑒𝑧𝑖/∑𝑘 𝑒

𝑧𝑘 , 𝑧𝑖 = ∑𝑗 𝑤𝑖𝑗𝑥𝑖𝑗 + 𝑏 is the output of the
neuron, 𝑥𝑖𝑗 represents the feature vectors of the RGB and
reconstructed inputs, respectively, and 𝑤𝑖𝑗 and 𝑏 are the
corresponding weights and bias. We can observe that if one
loss function (𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 or 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) leads to the
vanishing gradient, the feedback information from another

loss function can also train the LSTM layer. In order to
remove redundant information in the features, the LSTM
layer for text classification tasks is used in this paper by
analyzing each row of the feature matrix recursively, and it
has produced good results.

3. Results and Comparisons

3.1. Experimental Results. In order to verify the effectiveness
of the proposed framework, three commonly used evaluative
criteria are considered as follows in (4)-(6).

ACC = 1
𝑛

𝑛

∑
𝑖=1

I (𝑓 (𝑥𝑖) = 𝑦𝑖) (4)

SEN (𝑐𝑖) =
Num (PT (𝑐𝑖))
Num (GT (𝑐𝑖))

× 100% (5)

SPE (𝑐𝑖) =
Num (PT (−𝑐𝑖))
Num (GT (−𝑐𝑖))

× 100% (6)

where ACC means the overall grading accuracy. SEN(𝑐𝑖)
and SPE(𝑐𝑖) are sensitive and specificity for each class (𝑐𝑖).
I(𝑓(𝑥𝑖) = 𝑦𝑖) is the indicative function. It defines that if
𝑓(𝑥𝑖) = 𝑦, I(𝑓(𝑥𝑖) = 𝑦𝑖) = 1; otherwise I(𝑓(𝑥𝑖) = 𝑦𝑖) =
0. −𝑐𝑖 denote all the other classes except (𝑐𝑖). Num(PT(𝑐𝑖))
and Num(GT(𝑐𝑖)) denote the number of correctly predicted
class (𝑐𝑖) and the total number of (𝑐𝑖) in the ground truth,
respectively.

In our experiments, first, we perform the NHL classi-
fication tasks using the VGG-16 features (Section 2.2). Our
experiments adopt 10-cross validation method to determine
the optimal parameters of each model. Table 2 presents
the different classification results with the VGG-16 features
extracted on the original and reconstructed images. We can
observe that the feature combination (4096-dimension) is
beneficial for our classification task. It can be also proved that
reconstructed images can provide complementary informa-
tion with respect to RGB images. As is well known, more
features could not denote that they can achieve a better
result. This is because that there are redundant features
which can result in the worse classification results. To address
this issue, the feature selection strategy is widely used for
the more accurate classification result while reducing the
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Table 3: Different classification results using RGB (32-dimension), reconstruction (32-dimension), and combination features selected by the
LSTM layer (64-dimension).

Index Classes RGB-LSTM Reconstruction-LSTM Combination-LSTM
ACC Overall (0.8453 ± 0.018) (0.7637 ± 0.012) (0.9894 ± 0.011)

CLL (0.8243 ± 0.014) (0.7459 ± 0.019) (0.9666 ± 0.012)
SEN FL (0.8168 ± 0.010) (0.7321 ± 0.009) (0.9662 ± 0.011)

MCL (0.8251 ± 0.019) (0.7482 ± 0.015) (0.9685 ± 0.013)
CLL (0.8721 ± 0.014) (0.7832 ± 0.008) (0.9931 ± 0.007)

SPE FL (0.8659 ± 0.011) (0.7779 ± 0.007) (0.9912 ± 0.005)
MCL (0.8718 ± 0.012) (0.7834 ± 0.011) (0.9938 ± 0.013)
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Figure 4: Accuracy versus iteration times graph.

computational cost. Table 3 shows different classification
results using different features selected by the LSTM layer. It
can be observed that the LSTM layer is effective for feature
selection and improving classification accuracy. Following
these experimental results, our proposed framework for
NHL image classification is determined. In addition, Figure 4
shows the classification results according to different iteration
times and the best time is 250.

3.2. Image-Level Classification. As mentioned before, our
objective of this paper is to classify 374 NHL pathological
images, which include CLL, FL, and MCL. Our proposed
classification framework is performed on the image patches
with 64×64×3; the image-level classification is thus accom-
plished via the label of each patch inside a whole pathological
image. Specifically, a pathological image is divided into
336 nonoverlapped patches and the label of each patch
is obtained via the proposed classification framework. We
can thus determine the pathological image’s label using the
majority voting strategy via the number of each category’s
patches. To visualize the classification results of the whole
pathological images, Figure 5 shows the probability atlases of
three examples with different classes. Figures 5(a)–5(c) are
CLL, FL, and MCL pathological images. Figures 5(d)–5(f)
are corresponding probability atlases. The colors in the
probability atlases represent the probability that each patch
is predicted to be a label of the image categories. The colors

from bottom to top is ranged from [0, 1]. According to
the probability atlases, we can see that majority of patches
inside a pathological image are correctly classified as the
corresponding image’s label.

3.3. Comparisons. To further evaluate our proposed classifi-
cation framework with other models, there are three popular
methods [28–30] used for comparison in our experiments.
Shamir et al. [28] developed CAD software for biological
image analysis. This software worked by first extracting image
content descriptors from the raw images, image transforms,
and compound image transforms.Then, themost informative
features were selected and then used for classification and
similarity measurement. Meng et al. [29] proposed a frame-
work using the novel and robust collateral representative sub-
space projection modeling (CRSPM) supervised classifica-
tion model for general histology image classification. Codella
et al. [30] first created additional 5 images for each H&E
pathological image, which can emphasize unique aspects of
the original image, such as dominant staining and staining
segmentations. Then a pretrained CNN model was used to
extract 4096-dimension visual features. Finally, nonlinear
SVMs were utilized to perform the classification. Similarly,
all methods are performed on NHL dataset and tested using
10-cross validation method. The average comparison results
are presented in Figure 6. We can observe that our method
performs the best in terms of ACC.

4. Discussions

According to the classification results in Section 3.1 (Tables 2
and 3), there are two important characteristics with respect
to our proposed classification framework. First, besides RGB
image information, we also consider the other classes of
information via a “multispace image reconstruction” strategy.
As Figure 2 is shown, the gradient image is sensitive to
boundaries and GLCM image is sensitive to regions of nuclei.
The LBP image mainly highlights the center of each nucleus.
The results indicate that this auxiliary information facilitates
the improvement of classification accuracy significantly. Sec-
ond, in order to remove redundant features, the pretrained
LSTM layer is used to perform a “feature selection” process.
Further, our classification framework obtains the ACC of
98.94% in patch-level classification.
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(a) (b) (c)

(d) (e) (f)

Figure 5: The probability atlases of three examples with different classes. (a) A CLL pathological image. (b) A FL pathological image. (c) An
MCL pathological image. (d–f) The probability atlas of (a–c), respectively.
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Figure 6: The average classification accuracy (%) using different
methods.

Comparing results from our classification framework
with other methods, the software proposed in [28] only used
hand-craft features to perform classification tasks and con-
sidered no high-level semantic features (extracted via deep
learning model). Our method and [29] both converted the
image-level classification into the patch-level classification.
A difference from [29] was that it divided the image into
25 overlapped patches with a larger size. This, however, may
lose more subtle local information. Finally, the method in
[30] utilized a pretrained CNN to extract the visual features
from different images. Our improvement related to [30] is
that we adopt a feature selection method to increase its

discrimination capability.The results in Figure 6 demonstrate
the advantages of our proposed classification framework.

5. Conclusions

In this paper, we proposed a novel classification framework
based on a multispace image reconstruction method and the
transfer learning technology. The multispace image recon-
struction mapping method can convert original RGB images
into gradient, gray level cooccurrence matrix (GLCM), and
local binary pattern (LBP) spaces. This auxiliary information
is beneficial for more accurate classification results. Then,
the pretrained VGG-16 net was utilized to extract the high-
level semantic features of RGB and reconstructed images.
Subsequently, the LSTM layer was used for feature selection
and refinement while increasing its discrimination capability.
Experimental results demonstrated the performance advan-
tages of our proposed classification framework by comparing
with related works. Future work may be considered based on
our proposed framework. For feature extraction, we plan to
establish a complete feature set, which includes hand-craft
features and high-level representations. Another important
work will consider the feature extraction on more other
spaces’ images.

Data Availability

(i) The dataset includes three types of malignant lymphoma.
(ii) The data can be accessed from https://ome.grc.nia.nih
.gov/iicbu2008/lymphoma/index.html. In addition, there are
no restrictions on data access.
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