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Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary
morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems
of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material
such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process
and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to
atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic
(bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response
results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from
the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review

focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants.

1. Introduction

The inhalation of toxic environmental particles is a world-
wide public health problem. There are numerous sources
of suspended particulate matter (PM) including industrial
sources, automobile traffic, natural disasters, such as forest
fires and volcanic eruptions, and local sources generated
either in the home or workplace [1-3]. Urban air pollution
originates from a variety of sources, of which the combustion
of fossil fuel products is the principal source. Air pollutants
can be classified by their source, chemical composition,
size, mode of release (gaseous or particulate), and space
(indoor or outdoor) [4]. Epidemiological studies show that
air pollution exposure positively correlates with admissions
for pneumonia, asthma, and chronic obstructive pulmonary
disease (COPD) [5]. Of all the pollutants, inhalable parti-
cles (PM,,) showed the strongest association with adverse
respiratory health effects [6]. In addition, data from large
population cohorts have indicated an association between
exposure to PM and cardiovascular morbidity and mortality

[7-10]. Mechanistically, this is thought to be due to the sys-
temic inflammatory response induced by exposure to PM air
pollution [11]. This concept is supported by studies showing
a positive association between long-term PM exposure and
hematological markers of inflammation and diseases such as
diabetes mellitus [12].

Inhalation of air pollution particles induces a local
response in the lung that is initiated by alveolar macrophages
(AMs) and airway epithelial cells. The macrophages are
several times more potent in producing proinflammatory
mediators that contribute to the local inflammatory response
in the lung but also contribute to the subsequent systemic
inflammatory response [11]. The systemic inflammatory
response is characterized by mobilization of inflammatory
cells from the bone marrow into the circulatory system,
followed by their activation, as well as the production of acute
phase proteins by the liver, and an increase in circulating
inflammatory mediators [13]. In this review, we focus on the
role of AMs in inflammation induced by air pollution.


http://dx.doi.org/10.1155/2013/619523

2. Response of Lung Macrophages to Inhaled
Air Pollutants

2.1. Processing of Particulate Matter by Macrophages. The
primary role of AM is to keep the air spaces clear by removal
of all foreign materials via phagocytosis. Experiments from
our laboratory have shown that AMs exposed to atmospheric
particulate matter are able to phagocytose these particles in
vivo and in vitro [13, 14]. Nonbiological particles lack specific
opsonins preventing them from classic opsonin-dependent
phagocytosis. Despite the absence of specific opsonins, AM
can phagocytose unopsonized environmental particles [15].
Kobzik identified a role for scavenger-type receptors in this
process [16]. The class A scavenger receptor (SR-A) and the
macrophage receptor with collagenous structure (MARCO)
are considered to be the two major receptors for unopsonized
particle phagocytosis by AM [17, 18], and a deficiency in
scavenger receptor function results in reduced uptake of
environmental particles by AM [18].

Toll-like receptors (TLRs) are sensors that directly rec-
ognize molecules from microbes. They are essential for
initiation of the innate immune response, when interacting
with PM, and also play a role in sustaining and regulating
the adaptive immune response to PM. Ambient PM contains
small amounts of microbial materials such as lipopolysac-
charide (LPS)/endotoxin [19, 20], beta-glucan, bacteria, and
fungal spores [21] that are thought to be the mechanism
by which TLRs engage in processing PM. Among the TLRs
identified in humans, TLR4 and TLR2 are thought to be
the two main receptors that bind PM [22]. Toll-like receptor
4 initiates a signaling cascade in response to LPS present
in the outer membrane of gram-negative bacteria, while
TLR2 initiates signals in response to zymosan (beta-glucans)
and peptidoglycan of gram-positive bacteria. Furthermore,
microorganisms attached to PM can be opsonized by specific
opsonins (such as immunoglobulin Fc receptors and comple-
ment receptor 3) that allow AM to phagocytose the particles
via an opsonin-dependent pathway [23].

2.2. Macrophage Responses to Particle Size and Chemical Com-
position. Particulate matter is classified according to aerody-
namic diameter into PM,, (coarse particles, median aero-
dynamic diameter 2.5-10 ym PM, 5 (fine particles, median
aerodynamic diameter < 2.5um), and ultrafine particles
(UFP) median aerodynamic diameter < 0.1 um). PM,, par-
ticles are derived predominantly from abraded soil, road
dust, construction debris, and oil combustion products with
bioaerosols such as fungi, bacteria, endotoxins, and pollen,
while PM,; and UFP are primarily derived from direct
emissions from combustion processes such as vehicle use of
fossil fuel products, wood burning, and coal burning [4].
Although a considerable amount of data implicate PM,, and
PM, 5 in adverse health effects [24-26], much less is known
about the risks of UFP. In addition, several studies have
shown that PM,; and UFP have the strongest association
with adverse cardiovascular adverse effects [27, 28], which is a
direct consequence of the systemic response induced by these
particles [29, 30]. Alveolar macrophages exposed to smaller

Mediators of Inflammation

PM that have the ability to penetrate deep into the lungs sig-
nificantly contribute to the systemic inflammatory response.
Upon contact with particulate pollutants, AMs are activated,
produce proinflammatory cytokines, and undergo apoptosis
[31]. The capability of inducing apoptosis and inflammation
varies with different particle size and concentration [31]. In
vitro studies have shown that macrophages do recognize the
size and shape of their target pathogens [32]; therefore, their
response against various particle sizes may be different. It is
generally thought that the larger surface area of PM, 5 and
UFP per unit concentration of PM allows more opportunity
for cellular interaction and a downstream biological response.
On the contrary, in vitro studies comparing the effects
of the coarse and fine fraction of PM,, showed stronger
proinflammatory effects for the coarse particles [33, 34].

In addition to PM size and concentration, particle com-
position has also been reported to impact PM toxicity [35].
The toxicity of PM may stem from their metal content,
adhered organic compounds, or other biological components
such as LPS. Schins et al. showed that coarse PM induced
a greater inflammatory response than fine PM in rats and
suggested that, in these larger particles, toxicity is due
more to their biological components, such as endotoxin,
than their metal content [35]. In other studies, no apparent
relationship could be established between pulmonary injury
and the concentration of ambient particles or their elemental
components such as sulfate (S), zinc (Zn), manganese (Mn),
iron (Fe), and copper (Cu) [36]. Diesel exhaust particles
(DEPs) without their organic constituents were no longer able
to induce apoptosis or generate reactive oxygen radicals in
murine and human macrophages in vitro [37]. Diesel exhaust
particle is a major component of urban PM,, pollutants,
which comprise 40% of total PM,, levels in Los Angeles [38].
The organic extracts were, however, able to induce apoptosis
[37]. The water-soluble fraction of pollutant particles and
individual soluble metals such as vanadium (V), nickel (Ni),
and Fe did not induce apoptosis in human AMs [31]. In
addition to these reports that emphasize the toxicity of
organic components in PM, nonorganic components such
as metals have also been implicated in the pathogenesis
of particulate-induced pulmonary inflammation [39]. Vana-
dium (V), bromine (Br), lead (Pb), and organic carbon had a
strong association with pulmonary inflammation [40]. Stone
particles of varying composition (mylonite, gabbro, feldspar,
basalt, and quartz) induced different cytokine responses in
rat AMs [41]. Because ambient particles contain many other
nonleachable and leachable components, further studies are
needed to identify the toxicity of different particle compo-
nents.

2.3. Macrophage Responses to Other Ambient Chemicals Such
As Ozone. In addition to PM, gaseous pollutants such as
ozone also have inflammatory effects on the respiratory
tract and AM [42-45]. Ozone exposure induces the release
of cytokines and fibronectin by AM [46], increases AM
recruitment into asthmatic airways [47], and increases the
eosinophilic airway response [48]. Nitrogen dioxide (NO,)
is a precursor to photochemical smog, and its major effect on
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FIGURE 1: Photomicrograph of cocultured primary human bronchial
epithelial cells (HBECs) and human AMs incubated with 100 pg/mL
of PM,, (EHC-93) for 24h showing particles internalized by
both HBECs and AMs. Cells were cocultured on coverslips, and
immunocytochemistry was performed using mouse anti-human
CD68 monoclonal antibody to identify AMs. The bar represents
10 pum [54].

health as an outdoor pollutant is likely through the formation
of ozone. Recent epidemiologic studies conducted worldwide
have provided valuable insight into the associations between
sulfur dioxide (SO,), NO,, and carbon monoxide (CO)
exposure and increases in cardiopulmonary mortality, such
as respiratory and cardiovascular hospital admissions, emer-
gency admissions caused by stroke (NO,), and myocardial
infarction (NO, and CO) [49-51]. In these studies, NO,
inhibited AMs from playing an immunosuppressive role [52].
Alveolar macrophage phagocytosis was significantly sup-
pressed following coexposure of fine carbon particles and SO,
[53]. Because air pollution contains both, the contribution of
these gaseous pollutants in modulating the response of the
AM to PM is complex, poorly understood, and still an area of
active investigation.

2.4. Mediators Produced When Macrophages Are Exposed
to PM. Alveolar macrophages are one of the most potent
producers of proinflammatory mediators in the airways
and lung. Studies from our laboratory have shown that
human AMs exposed to urban PM (EHC-93) phagocy-
tosed these particles in vitro (Figurel) [13, 54], and, ex
vivo, they produced tumor necrosis factor alpha (TNF-
«) in a dose-dependent fashion following PM exposure
[14]. In addition, these AMs produce an array of proin-
flammatory mediators including acute response mediators
such as interleukin (IL)-13 and IL-6 as well as secondary
mediators, such as IL-8, and granulocyte macrophage colony-
stimulating factor (GM-CSF) [11, 13]. Interestingly, pro-
duction of anti-inflammatory mediators such as IL-10 was
suppressed [55], suggesting that the AM inflammatory
response induced by PM is tipped toward a proinflammatory
profile. The inflammatory profile of mediators produced
by bronchial epithelial cells exposed to PM is distinct
from those of AM [56]. Alveolar macrophages are also
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FIGURE 2: Cytokines produced by human AMs and bronchial
epithelial cells (HBECs) when exposed to 100 ug/mL of PM,, (EHC-
93) for 24 h. Alveolar macrophages produced significantly more IL-
6, IL-18, and GM-CSF than bronchial epithelial cells when exposed
to same amount of PM,,,.

more potent producers of the acute response mediators
such as IL-1f3, IL-6, and TNF-« than bronchial epithelial cells
when exposed to the same dose of PM, suggesting that AMs
are the drivers of the proinflammatory response in the lung
following inhalation of PM (Figure 2) [56]. Furthermore,
instillation of supernatants from human AMs incubated ex
vivo with urban PM into rabbit lungs produced a systemic
response similar to that produced by direct deposition of the
same amount of PM directly into the lungs [57, 58], which
implies that AMs significantly contribute to the systemic
inflammatory response generated following exposure to PM.

2.5. Maturation Changes in Macrophages Induced by PM.
Macrophages are a heterogeneous population of cells with
significant phenotypic plasticity [59]. Depending on the
microenvironment, they undergo distinct activation pro-
grams, acquiring polarized phenotypes and different func-
tional capacities that together provide an armamentarium
that protects, repairs, and sometimes damages tissues [60,
61]. Macrophage “M1 polarization,” also referred to as the
“classical activation” program, is induced by signals generated
during Thl-mediated immune responses such as interferon
(IFN)-y and by exposure to components of pathogens such
as bacteria [60, 61]. The M1 polarization response is char-
acterized by upregulation of genes relevant to inflammation
and cell-mediated immunity. In contrast, macrophage “M2
polarization” induced upon exposure to the Th2 cytokines
IL-4 and IL-13 (referred to as “alternative activation”) or
immunoregulatory signals such as IL-10 (also called “deac-
tivation”) is highlighted by induced expression of receptors
with scavenger functions, anti-inflammatory cytokines, and
molecules implicated in tissue remodeling [60, 61].

It has been reported that cigarette smoke skews the AMs
to M2-polarized phenotypes [62]. Although PM shares many
of the same ingredients and characteristics as cigarette smoke,
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FIGURE 3: The impact of PM exposure on alveolar macrophage
phenotype. PM exposure stimulates macrophages (predominantly
M1 phenotype) to produce proinflammatory mediators that attract
other immune cells such as neutrophils into the airspaces. Fol-
lowing phagocytosis of the PM, these cells undergo apoptosis
and are removed by M2 macrophages, which also produce anti-
inflammatory mediators that are pivotal for resolution of the
inflammatory response induced by the PM exposure. Persistent
inflammation in the lung induced by PM exposure may be due to
PM that blocks macrophage switching (M1 to M2), compromising
efferocytosis.

the M1 cytokines (IL-12 and IFN-y) are increased consistently
in bronchoalveolar lavage fluid (BALF) from PM-exposed
animals [63, 64] while the M2 cytokines (IL-4, IL-10, and IL-
13) remain at lower levels [65]. Our group previously showed
that primary cultured human AM, stimulated in vitro with
urban PM,,, produced an array of cytokines without signif-
icantly increased levels of IL-10 compared to nonstimulated
AM [13]. These reports suggest that PM skews the AMs to an
M1 profile rather than an M2 profile. Data from an influenza
virus pneumonia model suggest that macrophage pro- and
anti-inflammatory phenotypes are under tight control of
nearby airway epithelial cells [66]. Epithelial-macrophage
crosstalk seems to be an important mechanism in keeping
the balance between efficient host defense and excessive
inflammation and injury during infection. These responses
(M1/M2 switching) of macrophages following PM exposure
still need further investigation to assess what factors (such
as size or composition) determine switching. Figure 3 shows
how PM exposure could potentially inhibit macrophage
switching and thus promote a proinflammatory state.

2.6. Macrophage Apoptosis, Autophagy, and Efferocytosis
Induced by PM. Alveolar macrophages play numerous roles
in immunity, inflammation, and tissue repair. In addition
to being key players in the innate immune response against
microorganisms and in the initiation of adaptive immune
responses, they are crucial for the clearance and processing
of microorganisms, dead cells, and environmental debris in
the lung tissue via phagocytosis. In contrast to cells such
as neutrophils, AMs are long-lived [67] and in general are
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resistant to apoptotic stimuli [68]. Following activation of
AM, by exposure to PM, for example, they either remain
in the lung airways or tissues [69] or are removed via the
lymphatic system to regional lymph nodes [70]. Several
studies have demonstrated that exposure to ambient PM and
diesel exhaust particles induced apoptosis in macrophages
[37,71]. Particulate matter-induced apoptosis is considered to
be mediated through scavenger receptors [71]. Phagocytosis
of apoptotic cells (efferocytosis) by AMs is involved in the
regulation of the inflammatory response and maintenance
of lung homeostasis by removing dead cells before the
onset of necrosis [72]. Alveolar macrophages are primarily
responsible for removing and processing dead cells and debris
in the airways, thereby reducing their inflammatory poten-
tial. Whether air pollution exposure alters the efferocytotic
function of AMs is unclear. Our group recently showed
that 3-hydoxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase inhibitors (statins) enhance the phagocytic activity
of AMs and promote the clearance of PM from lung tissues
[73]. Promoting macrophage phagocytosis and efferocytosis
could accelerate processing and clearance of PM particles
from lung tissues and thereby reduce lung inflammation.

Autophagy consists of the fusion of autophagosomes
with lysosomes, forming autolysosomes and resulting in the
breakdown of encapsulated materials to components that are
then available for homeostasis. Intracellular nanoparticles
may undergo autophagic sequestration, and autophagy dys-
function may play an important role in nanoparticle toxicity
[74]. Monick et al. identified an autophagic defect in the AMs
of smokers and concluded that the decrease in the process
of autophagy leads to impaired protein aggregate clearance,
dysfunctional mitochondria, and defective delivery of bacte-
ria to lysosomes [75]. Exposure to ambient PM could decrease
autophagy of AM in a similar manner to smoking, but further
studies are necessary to confirm this.

2.7. Interaction of Macrophages with Other Lung Cells. Alve-
olar macrophages form the first line of defense following
inhalation of PM. They sense, scavenge, and phagocytose PM
and in the process they produce and release early response
cytokines [67]. These cytokines stimulate neighboring air-
way and alveolar epithelial cells as well as tissue-resident
macrophages in an auto- and paracrine manner to produce
a variety of chemokines necessary to recruit other cells,
such as polymorphonuclear leukocytes, to assist in processing
and ultimately clearing foreign material. Human airway and
alveolar epithelial cells are also capable of PM endocytosis
[54] and in the process they produce mediators such as GM-
CSE IL-1B, IL-8, and leukemia inhibitory factor (LIF) in
a dose-dependent manner at both the mRNA and protein
level when exposed to ambient particles [76]. Coculture
experiments of bronchial epithelial cells and AM showed
synergistic production of certain mediators such as IL-183,
IL-6, and GM-CSF [54]. The increased IL-1$ production
[54, 76] is mediated by the nucleotide-binding domain and
leucine-rich repeat protein 3 (NLRP3) inflammasome [77]
that spreads the local inflammatory response by interact-
ing with resident dendritic cells residing within or near
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the epithelium, initiating, and maintaining an adaptive
immune response [78]. These studies demonstrate the impor-
tance of the interaction of AMs with other lung cells in pro-
ducing lung inflammation and possibly contributing to the
systemic inflammatory response following PM inhalation.

2.8. Adaptive Responses Induced by Macrophages Exposed
to PM. Alveolar macrophages are also important antigen-
presenting cells. After phagocytosis and internalization of
PM, the organic components are digested by the endosome
into peptide fragments that combine with the MHC class II
complex for presentation to CD4+ T cells, which are pivotal
steps in cell-mediated and adaptive immunity. Expression
of MHC in AMs moderately increased in response to PM
exposure in healthy human subjects [79]. Pretreatment of
PM with heat to degrade the organic component abolished
the MHC class II overexpression, which suggests that the
organic component of PM is responsible for MHC class 1I
upregulation [79]. In addition to antigen-specific MHC and
T-cell receptor interaction, T cells require a costimulatory
signal to be fully activated. These molecules are expressed
on the cell membrane of antigen presenting cells and are
upregulated by PM exposure [80]. Together, these studies
illustrate the crucial role that AMs play in initiating the
adaptive immune response to PM exposure. However, the
role of this adaptive response in the local lung and systemic
inflammatory responses induced by PM exposure has not
been well studied to date.

3. Macrophages and the Systemic Response
Induced by PM

3.1. Macrophages and the Bone Marrow Responses. Earlier
studies implicate AMs as key effector cells responsible for
generating the systemic inflammatory response associated
with exposure to air pollution [13, 41, 56, 81, 82]. They produce
a broad range of mediators, particularly IL-6, IL-13, MIP-1a,
and the hematopoietic growth factor GM-CSF, when exposed
to urban PM [13]. The importance of the AM producing the
mediators that elicit the systemic response is supported by
studies showing a correlation between the amount of particles
phagocytosed by AM in the lung and the magnitude of bone
marrow stimulation following PM exposure (Figure 4) [56].

Humans exposed to an acute episode of air pollution,
where the predominant pollutant was PM, showed increased
levels of circulating cytokines such as IL-1f and IL-6 and
signs of bone marrow stimulation reflected by an increase
in circulating band cells counts [83]. These cytokines are
similar to those produced by AM exposed to PM both ex
vivo and in vivo [13, 84], suggesting that these mediators
produced in the lung enter the circulation and contribute
to the systemic response associated with exposure to PM.
Recent studies from our laboratory showed that mediators
such as IL-6, produced in the lung from PM exposure directly,
translocate into the circulation [84] and, because the AMs
are the most prolific producer of these mediators following
PM exposure, it is reasonable to postulate that AMs are
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FIGURE 4: Relationship between the fraction of AMs that phago-
cytosed PM,, particles and the transit time of PMN though the
bone marrow. Rabbits were exposed to 5 mg PM,, (EHC-93) twice
a week for 4 weeks, and AMs with particles in their cytoplasm
were enumerated using quantitative histological methods. Dividing
PMNs in the marrow were labeled with 5-bromo-2-deoxyuridine
and the transit time of PMN through the bone marrow was
measured. Faster transit times of PMN through the marrow were
associated with more AMs with phagocytosed particles (R* = 0.46,
P < 0.05) [56].

crucially important effector cells in generating the systemic
inflammatory response induced by air pollution exposure.

Several studies from our laboratory have shown that
exposure to air pollution stimulates the bone marrow in
humans [83] and in animal models [11, 14, 56-58, 85] and
promotes the release of both polymorphonuclear leukocytes
and monocytes from the marrow. The cytokine production by
macrophages in the lung is of particular importance in induc-
ing this systemic inflammatory response; for example, GM-
CSF is a hematopoietic growth factor that stimulates gran-
ulocyte and monocyte differentiation and releases from the
bone marrow, but it also activates circulating leukocytes and
prolongs their survival in the circulation [13]. Furthermore,
IL-1B is one of the “acute response” cytokines that induces
cytokine production by many cells, stimulates hematopoiesis,
activates endothelial cells, is pyrogenic, and induces the
acute-phase response [13]. In addition, stimulation of liver
hepatocytes by IL-6 produces acute phase proteins including
C-reactive protein (CRP), fibrinogen, and antiproteases [13].
Moreover, IL-6 also stimulates hematopoiesis, specifically the
production of platelets, and has a broad stimulating effect on
B and T cells, as well as markedly accelerating the transit
time of granulocytes through the bone marrow, releasing
them into the circulation, and promoting their sequestration
in microvascular beds [86]. Collectively, GM-CSE IL-1p,
and IL-6 have the ability to elicit a systemic inflammatory
response characterized by an increase in circulating leuko-
cytes and platelets by directly stimulating the bone marrow.
This bone marrow response elicited by PM exposure is
thought to play a critically important role in the downstream
adverse systemic health effects associated with exposure to
air pollution, particularly the adverse effects on the heart and
blood vessels [87].



3.2. Macrophages and the Vascular Effects of PM. Numerous
studies have shown an association between air pollution
and increased cardiovascular morbidity and mortality [24,
88-91]. The adverse cardiovascular health effects include
hospital admissions and death from conditions such as
acute myocardial infarction (acute coronary syndrome),
arrhythmias, and congestive heart failure. These hospital
admissions were shown to occur within hours of a spike
in air pollution exposure. Elevated concentration of PM, 5
increased acute myocardial infarction within a few hours
[92], which was confirmed by subsequent studies [93]. Seaton
etal. proposed that an increase in blood coagulability induced
by deposition of particles in the lung is associated with an
increase in cardiovascular deaths in susceptible individuals
[94]. The systemic response induced by PM,, is characterized
by activation of the acute-phase response, an increase in
coagulation, the release of inflammatory mediators into
the circulation leading to activation of the endothelium,
and stimulation of the bone marrow causing the release
of leukocytes and platelets. These events may contribute
to destabilization of atherosclerotic plaques, making them
vulnerable for rupture and thrombosis and accounting for the
increase in cardiovascular events associated with episodes of
air pollution [92].

Mediators such as GM-CSE, IL-13, and IL-6 produced
by lung macrophages when exposed to ambient PM have
the ability to elicit a systemic inflammatory response char-
acterized by an increase in circulating leukocytes, platelets,
and proinflammatory and prothrombotic proteins. These
mediators also have the ability to activate circulating leuko-
cytes and the endothelium of the vascular bed to promote
leukocyte-endothelial adhesion and migration, contributing
to atherosclerotic plaque activation and instability. Our group
showed that 4 weeks of exposure to ambient particles in
Watanabe hereditarily hyperlipidemic rabbits induced a sys-
temic inflammatory response that included stimulation of the
marrow and caused progression of atherosclerosis in both
the aorta and coronary arteries, with phenotypic changes in
atherosclerotic plaques characteristic of plaque vulnerability
[95]. These observations have recently been confirmed by
others using ambient PM, 5 [96] and by our group, using
DEPs in a mouse model [87]. To determine the role of AMs in
these effects, studies by our group examined the relationship
between the fraction of macrophages in the lung that had
phagocytosed particles and circulating mediators strongly
associated with cardiovascular disease in humans such as IL-6
[97] and found a positive association [84, 98]. In addition, our
group showed an association between the extent of progres-
sion of atherosclerosis and features of plaque vulnerability
and the fraction of AMs that had phagocytosed PM (Figure 5)
[95]. Collectively, these studies strongly implicate the AM
in eliciting the systemic inflammatory responses induced by
exposure to PM as well as the downstream adverse vascular
effects of air pollution.

3.3. Interindividual Variability in the Effects of Air Pollutants.
The studies mentioned earlier describe the effect of PM on
AMs; however, it is understandable that there is marked
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FIGURE 5: The correlation between the percentage of AMs that
phagocytosed particles in the lung and the vol/vol (volume fraction)
of atherosclerotic lesions. Results were from rabbits exposed to PM,,
for four weeks (solid circles; n = 10) or saline (control; open circles;
n=6) [95].

interindividual variability in the response to PM. Exploration
of genetic predispositions and epigenetic changes associ-
ated with ambient air pollution shows promising results
[99]. Polymorphisms in genes coding for glutathione-S-
transferases (GSTs), which are enzymes responsible for the
metabolism of reactive oxygen species, are correlated with
the risk of lung diseases such as asthma when individuals
are exposed to ambient air pollution [100, 101]. Kerkhof et al.
showed that single-nucleotide polymorphisms in TLR2 and
TLR4 genes significantly modified the effect of PM, 5 on the
incidence of asthma [102]. Ambient air pollution can induce
epigenetic changes such as DNA methylation [103-107] and
there is further promise for genome-wide association studies
(GWAS) [99]. Little is known about the effect of gene-
environment interactions on AM and more research in this

field is required.

4. Conclusions

Increasing evidence over the past 10 years has demonstrated
that AM plays a key role in local lung and systemic inflam-
matory responses induced by exposure to ambient PM. In
the lung, AM contributes to the magnitude and the nature
of the inflammatory response by interacting with other lung
cells such as bronchial epithelial cells and dendritic cells in
an effort to process and clear the PM from the lung. These
macrophages also produce the mediators that are associated
with the systemic inflammatory response induced by PM
exposure, and recent studies support the concept that these
systemic mediators translocate from the lung tissues into the
circulation. The adverse systemic health effects of exposure
to PM, particularly the adverse cardiovascular effects, are
strongly associated with the amount of PM phagocytosed
by AMs, underscoring the crucial role that the AMs play in
these adverse systemic responses of PM exposure. Therefore,
it is reasonable to suppose that attenuating the local and
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FIGURE 6: The potential impact of the 3-hydroxy-3-methylglutaryl
coenzyme A reductase inhibitors (statins) on both the local (lung)
and systemic inflammatory responses induced by exposure to PM.
Statins enhance both the opsonized and unopsonized phagocytosis
of PM by AMs, potentially promoting the switching of M1 to
M2 macrophages (promoting resolution of inflammation), and
reduce the production of proinflammatory mediators produced
by macrophages when exposed to PM as well as reducing the
translocation of these mediators into the systemic circulation. These
effects attenuate the systemic inflammatory response induced by
PM as well as the downstream adverse vascular effects (endothelial
dysfunction and progression of atherosclerosis).

systemic inflammatory responses of AMs, induced by PM
exposure, would be of benefit. Recent studies by our group
have shown that statins reduce both local lung and systemic
inflammatory responses induced by exposure to ambient PM
in a rabbit model [73]. Figure 6 shows a potential mechanism
by which statins could alter key pathways to achieve these
local and systemic anti-inflammatory effects. Downregulat-
ing the inflammatory responses could potentially reduce the
adverse clinical pulmonary and cardiovascular effects of air
pollution. Further research surrounding gene-environment
interactions in AMs will contribute to understanding of
interindividual variability and may assist in designing tailor-
made therapies for air-pollution-related lung and heart dis-
eases.
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