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A B S T R A C T

Hypotheses about change over time are central to informing our understanding of development. Developmental
neuroscience is at critical juncture: although the majority of longitudinal imaging studies have observations with
two time points, researchers are increasingly obtaining three or more observations of the same individuals. The
goals of the proposed manuscript are to draw upon the long history of methodological and applied literature on
longitudinal statistical models to summarize common problems and issues that arise in their use. We also provide
suggestions and solutions to improve the design, analysis and interpretation of longitudinal data, and discuss the
importance of matching the theory of change with the appropriate statistical model used to test the theory.
Researchers should articulate a clear theory of change and to design studies to capture that change and use
appropriately sensitive measures to assess that change during development. Simulated data are used to de-
monstrate several common analytic approaches to longitudinal analyses. We provide the code for our simula-
tions and figures in an online supplement to aid researchers in exploring and plotting their data. We provide brief
examples of best practices for reporting such models. Finally, we clarify common misunderstandings in the
application and interpretation of these analytic approaches.

1. Introduction

Across multiple disciplines, longitudinal data have been used to
elucidate the developmental course of a variety of phenomena and to
test a host of hypotheses. As longitudinal data analysis (LDA) becomes
more common in the neuroimaging field, imaging researchers can draw
on other literatures with a long history of LDA, such as developmental
psychology/psychopathology, to inform best practices. Many of our
suggestions apply to all longitudinal data, although we highlight where
neuroimaging samples may encounter unique challenges. The practi-
calities of implementing the analytic techniques discussed below have
been covered in the extant literature (see Table 1). The purpose of this
article, however, is to provide guidance on navigating the major chal-
lenges in the design, analysis, interpretation, and communication of
longitudinal studies, and to clarify common misunderstandings in the
application and interpretation of LDA.
Collins’ (2006) seminal review outlined criteria for deciding whe-

ther a longitudinal design will provide a strong test of developmental

hypotheses about change. These include: 1) a well-articulated theore-
tical model of change, 2) a design that is able to observe the change
process in detail and 3) an analytical framework that operationalizes
the theoretical model (Collins, 2006, p. 507). This manuscript follows
this framework, with a focus on how design and analytic choices affect
researchers’ ability to understand developmental processes. We high-
light key take-home points of this manuscript in Box 1.

2. Designing longitudinal studies

2.1. Articulate a theory of change

In articulating a theory of change, researchers should describe what
change is expected to occur, how developmental processes influence
that change, and when in development the change might be observed.
First, researchers should decide what is meant by “change” over time.
Ram and Grimm (2015) described a taxonomy of how change can un-
fold. They argue that most developmental studies test change that

https://doi.org/10.1016/j.dcn.2017.11.009
Received 13 February 2017; Received in revised form 16 November 2017; Accepted 16 November 2017

⁎ Corresponding author at: Box 351525, Department of Psychology, University of Washington, Seattle, WA, 98195, United States.
E-mail address: kingkm@uw.edu (K.M. King).

Developmental Cognitive Neuroscience 33 (2018) 54–72

Available online 22 November 2017
1878-9293/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2017.11.009
https://doi.org/10.1016/j.dcn.2017.11.009
mailto:kingkm@uw.edu
https://doi.org/10.1016/j.dcn.2017.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcn.2017.11.009&domain=pdf


Ta
bl
e
1

Su
m
m
ar
y
of
st
at
is
tic
al
m
od
el
s
av
ai
la
bl
e
fo
r
ad
dr
es
si
ng
di
ffe
re
nt
hy
po
th
es
es
re
ga
rd
in
g
ch
an
ge
ov
er
tim
e.

N
um
be
r
of

Ti
m
e
po
in
ts

Ty
pe
of
W
ith
in
-

In
di
vi
du
al
Ch
an
ge

D
et
ec
ta
bl
e
Ch
an
ge

A
va
ila
bl
e
St
at
is
tic
al
M
od
el
s

In
fe
re
nc
es

Ca
ut
io
ns

Ke
y
Re
fe
re
nc
es

O
ne

N
on
e

M
ea
n-
le
ve
l

In
de
pe
nd
en
t
Sa
m
pl
es
T-
te
st

Be
tw
ee
n-
gr
ou
p
m
ea
n
di
ffe
re
nc
es

Co
nf
ou
nd
ed
by
co
ho
rt
;n
o
es
tim
at
e
of

w
ith
in
-in
di
vi
du
al
ch
an
ge

A
N
O
VA

A
s
ab
ov
e

A
s
ab
ov
e

(M
ul
tip
le
)
Re
gr
es
si
on
,

G
en
er
al
iz
ed
Li
ne
ar
M
od
el
in
g

A
s
ab
ov
e

A
s
ab
ov
e

Tw
o

N
on
e

Ra
nk
-o
rd
er

Re
pe
at
ed
M
ea
su
re
s
A
N
O
VA

Be
tw
ee
n-
pe
rs
on
ch
an
ge

Ti
m
e
tr
ea
te
d
as
a
fix
ed
ca
te
go
ri
ca
l

(r
at
he
r
th
an
co
nt
in
uo
us
)
pr
ed
ic
to
r

(M
ul
tip
le
)
Re
gr
es
si
on
,

G
en
er
al
iz
ed
Li
ne
ar
M
od
el
in
g

Ra
nk
-o
rd
er
ch
an
ge

N
o
es
tim
at
e
of
w
ith
in
-in
di
vi
du
al
ch
an
ge

A
ut
o-
re
gr
es
si
ve
Pa
ne
l

Ra
nk
-o
rd
er
ch
an
ge

N
o
es
tim
at
e
of
w
ith
in
-in
di
vi
du
al
or

av
er
ag
e-
le
ve
lc
ha
ng
e

Se
lig
an
d
Li
tt
le
(2
01
2)

La
te
nt
Ch
an
ge
Sc
or
e

La
te
nt
ra
nk
-o
rd
er
ch
an
ge

"S
ta
bi
lit
y"
ov
er
tim
e
m
ay
no
tr
efl
ec
t
a

la
ck
of
ch
an
ge

Fe
rr
er
an
d
M
cA
rd
le
,(
20
03
,2
01
0)
,

G
ri
m
m
(2
01
2)
,M
cA
rd
le
(2
00
9)

Th
re
e

Li
ne
ar

Ra
nk
-o
rd
er

Re
pe
at
ed
M
ea
su
re
s
A
N
O
VA

Be
tw
ee
n-
pe
rs
on
ch
an
ge

Ti
m
e
tr
ea
te
d
as
a
fix
ed
ca
te
go
ri
ca
l

(r
at
he
r
th
an
co
nt
in
uo
us
)
pr
ed
ic
to
r

A
ut
o-
re
gr
es
si
ve
pa
ne
l

Ra
nk
-o
rd
er
ch
an
ge

N
o
es
tim
at
e
of
w
ith
in
-in
di
vi
du
al
or

av
er
ag
e-
le
ve
lc
ha
ng
e

Se
lig
&
Li
tt
le
(2
01
2)

La
te
nt
Ch
an
ge
Sc
or
e

La
te
nt
ra
nk
-o
rd
er
ch
an
ge

Fe
rr
er
an
d
M
cA
rd
le
(2
00
3,
20
10
),

G
ri
m
m
(2
01
2)
,M
cA
rd
le
(2
00
9)

W
ith
in
-a
nd

Be
tw
ee
n-
in
di
vi
du
al

M
ul
til
ev
el
G
ro
w
th
Cu
rv
e

Be
tw
ee
n-
an
d
w
ith
in
-in
di
vi
du
al
ch
an
ge

Re
si
du
al
va
ri
an
ce
s
of
pr
ed
ic
to
rs
at
ea
ch

tim
e
po
in
t
ar
e
fix
ed

Br
yk
an
d
Ra
ud
en
bu
sh
(1
98
7)
,C
ur
ra
n

(2
00
3)
,S
ch
us
te
r
an
d
vo
n
Ey
e
(1
99
8)

La
te
nt
G
ro
w
th
Cu
rv
e

Be
tw
ee
n
an
d
w
ith
in
-in
di
vi
du
al
la
te
nt
ch
an
ge
;

co
rr
el
at
io
ns
be
tw
ee
n
m
ul
tip
le
gr
ow
th
pr
oc
es
se
s

Bo
lle
n
an
d
Cu
rr
an
(2
00
6)
,C
ur
ra
n
an
d

H
us
so
ng
(2
00
3)

La
te
nt
G
ro
w
th
M
ix
tu
re

La
te
nt
gr
ow
th
in
m
ul
tip
le
di
sc
re
te
po
pu
la
tio
ns

Se
ns
iti
ve
to
m
od
el
sp
ec
ifi
ca
tio
n

Ba
ue
r
an
d
Cu
rr
an
(2
00
3)
,M
ut
hé
n
an
d

Sh
ed
de
n
(1
99
9)
,N
ag
in
(1
99
9)
,N
yl
un
d

et
al
.(
20
07
),
Ra
m
an
d
G
ri
m
m
(2
00
9)

Tr
ai
t-S
ta
te

Co
nt
in
uo
us
(t
ra
it)
an
d
di
sc
on
tin
uo
us
(s
ta
te
)
ch
an
ge

La
te
nt
tr
ai
t-m
od
el
s
m
ay
be

in
ap
pr
op
ri
at
e
w
he
n
th
er
e
is
w
ith
in
-

in
di
vi
du
al
ch
an
ge
ov
er
tim
e

Co
le
et
al
.,
(2
00
5)
,K
en
ny
an
d
Za
ut
ra

(2
00
1)

Fo
ur
or
m
or
e

Li
ne
ar

Ra
nk
-o
rd
er

Re
pe
at
ed
m
ea
su
re
s
A
N
O
VA
;

au
to
-r
eg
re
ss
iv
e
pa
ne
l;
la
te
nt

ch
an
ge
sc
or
e

Be
tw
ee
n-
pe
rs
on
an
d
(l
at
en
t)
ra
nk
-c
ha
ng
e

Tr
ue
ch
an
ge
pr
oc
es
s
m
ay
be
no
n-
lin
ea
r

in
fo
rm

W
ith
in
-a
nd

Be
tw
ee
n-
in
di
vi
du
al

M
ul
til
ev
el
gr
ow
th
cu
rv
e;
la
te
nt

gr
ow
th
cu
rv
e;
la
te
nt
gr
ow
th

m
ix
tu
re
;t
ra
it-
st
at
e

Be
tw
ee
n
an
d
w
ith
in
-in
di
vi
du
al
(l
at
en
t)
ch
an
ge
;

co
rr
el
at
io
ns
be
tw
ee
n
m
ul
tip
le
gr
ow
th
pr
oc
es
se
s;
la
te
nt

gr
ow
th
in
m
ul
tip
le
di
sc
re
te
po
pu
la
tio
ns
;c
on
tin
uo
us

(t
ra
it)
an
d
di
sc
on
tin
uo
us
(s
ta
te
)
ch
an
ge

A
s
ab
ov
e

Po
ly
no
m
ia
l(
e.
g.
,

Q
ua
dr
at
ic
)

N
on
-li
ne
ar

M
ul
til
ev
el
gr
ow
th
cu
rv
e;
la
te
nt

gr
ow
th
cu
rv
e;
la
te
nt
gr
ow
th

m
ix
tu
re
;t
ra
it-
st
at
e

N
on
-li
ne
ar
w
ith
in
-a
nd
be
tw
ee
n-
in
di
vi
du
al
ch
an
ge

Bi
es
an
z
et
al
.(
20
04
),
G
ri
m
m
(2
01
2)

Pi
ec
ew
is
e

D
is
co
nt
in
uo
us

D
is
cr
et
e
pa
tt
er
ns
of
w
ith
in
-a
nd
be
tw
ee
n-
in
di
vi
du
al

Fo
rm

of
ch
an
ge
m
ay
be
un
in
tu
iti
ve
;

m
or
e
es
tim
at
ed
pa
ra
m
et
er
s
in
cr
ea
se
s

co
m
pu
ta
tio
na
lc
om
pl
ex
ity
of
m
od
el

Fl
or
a
(2
00
8)
,M
cC
oa
ch
an
d
Ka
ni
sk
an

(2
01
0)

La
te
nt
ba
si
s
("
fr
ee

sl
op
e"
)

Fr
ee
ly
-e
st
im
at
ed

M
od
el
-d
er
iv
ed
fo
rm

of
w
ith
in
-a
nd
be
tw
ee
n-
in
di
vi
du
al

A
s
ab
ov
e

K.M. King, et al. Developmental Cognitive Neuroscience 33 (2018) 54–72

55



unfolds as relatively smooth increases or decreases over time. For ex-
ample, empirical data indicate that cortical thickness decreases roughly
1% per year during adolescence (Tamnes et al., 2017). Conversely,
transformational change, where new abilities or characteristics emerge
in relatively rapid transitions, or stability-maintenance processes (e.g.,
homeostatic systems) are less studied. To match developmental theory
with the appropriate statistical model, multiple types of change pro-
cesses, as well as multiple forms of those processes (such as linear,
exponential, sigmoidal or spline), should be considered (Ram and
Grimm, 2015). See Box 2 for one example of some challenges in
matching theory with statistical models. Moreover, change can be as-
sessed in terms of multiple indices (Roberts and Mroczek, 2008), in-
cluding mean-level change, rank-order consistency (e.g., relative or-
dering of individuals over time), structural consistency (e.g., similar
factor structures across time), and inter-individual differences in intra-
individual change (individual differences in within-person change).
Theories about the forms of change should be supported by a theory

about the processes that produce change. For example, neurodevelop-
mental theories attempt to explain developmental changes in risk
taking and impulsivity based on the development of the pre-frontal
cortex and subcortical structures including the striatum and amygdala

(e.g., Casey and Caudle, 2013; Romeo, 2013). Many developmental
models have yet to appear in the developmental neuroimaging litera-
ture, such as transactional models, bioecological models, or develop-
mental cascade models (e.g., Bronfenbrenner, 1977; Masten and
Cicchetti, 2010). For example, “coercion theory” is a transactional
model positing that negative parental responses to child misbehavior
can be negatively reinforced by the elimination of misbehavior, while
accidentally positively reinforcing the misbehavior through the provi-
sion of attention (Dishion et al., 1992). Through this cycle of re-
inforcement, each behavior escalates over time, leading to increasingly
maladaptive behaviors by both parents and children (Dishion et al.,
1992; Granic and Patterson, 2006). Drawing upon a strong theory that
explains how individual differences might emerge over time provides a
critical foundation for longitudinal research.

2.2. Design a study to assess change

The next step is to design a study to reflect the theory of change.
This includes decisions related to the timing, frequency, and spacing of
observations in a longitudinal study. For example, researchers may
measure cortical thickness annually across adolescence because it is

Box 1
Key Points for Longitudinal Modeling.

It is important to match a theory of change with design and statistical model to assess change. (p. 4)
Models with two time points cannot provide estimates of within-person change. (p. 5, 15 − 16)
All longitudinal findings are bounded by the start and endpoints of analyses, the selection of temporal intervals, and by the number of

time points in analyses (p. 6, 13, 21)
Standardizing within a time point actually removes time trends from longitudinal data. (p. 9)
It is important to carefully consider the psychometric properties of measures as they are administered over time. (p. 9–10)
“Stability” over time can reflect many things, only some of which mean a lack of change. (p. 14)
Difference scores can be reasonable estimates of change unless the measures have low reliability or high stability over time. (p. 15)
It is important to consider between person variability in repeated measures as a potential confound in auto-regressive models. (p. 18)
Multilevel and latent growth curve models are very similar, but have different strengths and weaknesses. (p. 19)
The intercept in a growth curve model represents the level of an outcome at one time point, and does not have to be the starting point of

data collection. (p. 22)
Varying the intercept can provide different estimates of covariances among growth parameters, and will change the estimates of lower-

order growth parameters when time is non-linear (e.g. quadratic, cubic). (p. 22 −23)
It is important to interpret all growth model parameters in the context of all others. (p. 25)
It is helpful to describe not only average growth (e.g. intercept and slope means), but variances in the growth parameters. (p. 25)
A non-significant effect of time (i.e. no average growth) does not preclude individual differences in growth (i.e. slope variances or

random effect). (p. 26 − 27)
It is important to graph the estimated models of change against the observed data to gain greater insight into your models. (p. 25)
Requiring significant variation in slopes (i.e. random effects) prior to testing a-priori hypotheses about predictors of variation may result

in under-powered hypothesis tests. (p. 28)
It is important to avoid reifying class solutions from mixture models because numerous methodological factors can influence the

number and shape of classes that are found. (p. 32)
It is important to avoid relying on rules of thumb for model fit, and to consider that plausible alternative models may also fit the data

well. (p. 36)

Box 2
Considering developmental peaks.

One example of matching theory to design is the search for developmental “peaks”. That is, researchers are often interested when, on
average, children, adolescents or adults are expected to show maximum levels of some construct, such as reward sensitivity (Braams et al.,
2015), cognitive control (Ordaz et al., 2013), or cortical thickness (Walhovd et al., 2016), before those levels begin to decline. Assuming the
phenomena is already measured at the correct time scale, peaks may be examined in a number of ways. Average developmental peaks may
be discerned from cross-sectional studies with multiple age-cohorts, as has been done with sensation seeking and “self-regulation”
(Steinberg et al., 2017). Longitudinal studies may go further by also estimating individual differences in the timing of those peaks, as well as
factors that impact individual differences in that timing. Because the functional form of a peak may approximate quadratic growth, splines,
or piecewise growth, longitudinal studies hoping to identify individual differences in the timing of developmental peaks require at least
four and preferably five repeated observations from most individuals to be properly identified (Bollen and Curran, 2006). Moreover, it is
important to include confidence intervals in any peak estimates to characterize the (un)certainty of such peaks.
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expected to change slowly and smoothly during this time period
(Tamnes et al., 2017). It is important that the timing of assessments is
driven by a theory about the timescale (e.g., yearly, monthly, daily) at
which change is thought to occur, as well as the metric of time (e.g. age,
grade, time since an event; see Ram and Grimm, 2015 for an excellent
overview of these issues). If assessments are spaced too far apart,
change could be missed entirely; if they are too frequent, a study could
be unduly expensive or hampered by participant reactivity (King et al.,
2006).
Study design also limits the type of change that can be modeled.

Cross-sectional studies can infer developmental change by measuring
individuals with the same measure at specific ages (e.g., Ostby et al.,
2009; Somerville et al., 2013), but inferences about age are confounded
by cohort and period (Glenn, 1976), and certain examinations of
change (e.g., rank-order consistency) are not possible within this de-
sign. Studies with two time points can measure within-person change,
but only in terms of rank-order changes in levels of a variable. As Ro-
gosa et al. wrote “two waves of data are better than one, but maybe not
much better” (Rogosa et al., 1982, p. 744). Conversely, models with
more time points allow for the study of both within- and between-
person change. Importantly, as the number of data collection points
increases beyond a single time point, the ability to model types of
change increases substantially, as does the number of available models.
In terms of the number of time points, longitudinal functional

neuroimaging data with children and adolescents are relatively rare,
with one review reporting 13 longitudinal imaging studies (Crone and
Elzinga, 2015). In that report, most studies had data from only two time
points, and only a minority of studies followed subjects beyond three
time points, and only for subsets of the sample. Although there have
been more longitudinal structural imaging studies, with 34 in one re-
cent review (Vijayakumar et al., this issue), only three of those studies
reviewed included an average of three or more time points (i.e., scans)
from participants, and again, those with more than two observations
were usually a subset of the whole sample. Despite this, many of these
studies have reported inappropriate longitudinal analyses, such as

testing for individual differences in trajectories without enough time
points for trajectories to be over-identified (that is, more information is
observed than estimated). See Box 3 for a detailed discussion of this
issue.
Notably, any observational study is only sampling some of the many

possible time points that may provide a representation of a larger de-
velopmental process. All findings in longitudinal studies are bounded
by the start and endpoints of analyses, the selection of temporal in-
tervals, and by the number of time points in analyses. Prior studies have
demonstrated that the selection of time points can influence the results
from LDA (see, for example, Jackson and Sher, 2006; Rogosa, 1988).
Researchers should avoid falling prey to the “jingle” fallacy, where it is
assumed that studies cover similar developmental periods because they
use the same label (such as “adolescence”) but actually measure dif-
ferent age spans with different time points at different intervals. Rather,
each of these factors may have a dramatic impact on the information a
model provides. Researchers should carefully consider how their find-
ings may or may not converge with other studies that cover similar age
spans. For example, a recent study analyzed longitudinal structural
imaging data from four independent samples. Analyses in one dataset,
which found linear trajectories of change in gray and white matter
volume from ages 10–16, actually converged with three other datasets
which found cubic trajectories between ages 10 and 30, because both
types of trajectories described very similar change during the same
developmental period (Mills et al., 2016). (see, for example, Jackson
and Sher, 2006; Rogosa, 1988)
Other work highlights the impact of the coding of time in LDA, il-

lustrating the importance of matching the coding of time with the as-
sessment frame. If assessments were collected, for example, at a base-
line, 6 months, 12 months, and 24 months, time should be coded 0, 1, 2,
4 (not 0, 1, 2, 3), so that 1 unit of time represents the passage of 6
months. Mis-specifying time can also dramatically impact inferences,
coefficient estimates, and interpretability of the model (Biesanz et al.,
2004; Grimm, 2012; Raudenbush and Bryk, 2002; Schuster and von
Eye, 1998).

Box 3
On overfitting trajectories and the number of time points.

As several recent reviews have noted, neuroimaging studies are only now beginning to acquire samples with more than a single observation
(Crone and Elzinga, 2015), Vijayakumar et al., this issue), and studies with three or more observations are exceedingly rare. However, this
has not precluded imaging researchers from estimating longitudinal trajectory models in neuroimaging data using samples with only two
observations. In these studies, children and adolescents are sampled at different ages (as in an accelerated cohort design) for both a baseline
and follow up assessment. Researchers then attempt to estimate both the average trajectory of the outcome by comparing different
polynomial shapes (such as linear, quadratic, cubic), as well as testing for individual differences in trajectories.
Most textbooks on longitudinal modeling (Bollen and Curran, 2006; Raudenbush and Bryk, 2002) make it clear that at least three time

points are needed to fit a linear trajectory, four (preferably five) to fit a quadratic, and more than five are needed to fit cubic and higher
order polynomials. Although one can draw a straight line between only two points, such a line is fitted without any error, and thus
individual trajectory estimates will be overly precise. Bollen and Curran (2006) describe the issue of model identification for latent growth
models in detail. A model is identified if there is a unique solution for all model parameters. Although identification in SEM can be
established in a number of ways (Bollen, 1989), a brief rule of thumb is that fewer parameters must be estimated by a model than are
available from the mean and variance/covariance structure of the data. Thus data with two time points provides information about 2
means, 2 variances, and 1 covariance; data with three time points provides 9 unique pieces of information, and so on. A simple linear
growth model requires estimation of two means (intercept and slope), two random effect variances (intercept and slope), one covariance
(between intercept and slope) and one residual variance. As such, at least three time points are required for a linear latent growth curve
model (and any other latent variable approach) to be estimable.
Although multilevel models do not have the same identification requirements as SEMs, growth curve models in MLMs have the same

requirements. Although fixed effects of time may be estimable and reasonably accurate with only two time points (provided enough
different ages are sampled), the random effects will be unreliable. We provide a demonstration of this in our supplemental material. In our
simulations of data with two time points drawn from a population where linear growth was true, linear random effects were only estimable
60% of the time, although fixed effects were accurately estimated. When quadratic growth was the true model, quadratic random effects
were never estimable with only two time points, and the linear random effect was mis-estimated (and only 80% of the time), although all
fixed effects were estimated without error.
Thus, it is critical that longitudinal imaging studies avoid estimating trajectories for which there are insufficient data to estimate.
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Thus, it is critical to match the design of the collected data with the
hypotheses that researchers wish to test (Collins and Graham, 2002),
particularly with secondary data (Brooks-Gunn et al., 1991; Davis-Kean
et al., 2015; Greenhoot and Dowsett, 2012; McCall and Appelbaum,
1991). For example, several longitudinal studies of personality change
(Littlefield et al., 2010a; Littlefield et al., 2009; Littlefield et al., 2012;
Littlefield et al., 2010b) used data originally collected to track devel-
opmental change in drinking, though there is no guarantee that per-
sonality change follows the same time course of drinking. Sometimes
the assessment frame reflects external influences (e.g., available
funding for additional assessments) rather than “ideal” designs based
on scientific considerations.

2.3. Consider measurement over time

Once the overall longitudinal study is designed, measurement con-
siderations arise that are uncommon for cross-sectional or experimental
studies (Grimm et al., 2013). Tests of longitudinal hypotheses about
change assume that a study uses measures that are a) valid, b) measure
the appropriate time-span, and c) have the same psychometric prop-
erties over time. Models of change assume that a one unit change in the
observed data reflects the same amount of change in the underlying
construct across all time points. This relatively simple assumption raises
a number of issues to be considered in longitudinal modeling. First, any
data transformations must carefully consider how the transformation
may impact the relative scale of the construct across assessments.
Standardizing relative to one time point, or all time points, will yield
standardized parameters that are equivalent to results with un-
transformed data. However, many authors have noted that standar-
dizing within a time point actually removes time trends from long-
itudinal data (Bollen and Curran, 2006; Stoolmiller, 1995). But not all
age-standardized data may be bad; some age-norming (such as with the
Child Behavior Checklist; Achenbach and Edelbrook, 1983) actually
produces data where a one unit change in the data reflects a similar
magnitude of change in the construct across all ages where the raw data
does not.
Specific to neuroimaging, methodological approaches should be

also used to reduce measurement error, such as maintaining consistency
in MRI equipment, software, hardware, and data processing steps (see
Vijayakumar et al., this issue).
Psychometrics, which aims to model how observed data are related

to the underlying construct, may be especially problematic in the field
of neuroimaging. Many of the cognitive and behavioral tasks that are
used as stimuli are either ad-hoc or have limited psychometric data.
Psychometric analysis is also required to ensure that the measures ex-
hibit structural consistency across time (i.e., for a given construct, the
relations between the latent, unobserved construct and the variables
used to measure it are consistent across time Pitts et al., 1996). For
example, researchers using a Go/No Go task might be concerned about
ceiling effects as children get better at the task through either practice
or age. If an adaptive threshold is used (i.e., the task becomes more
difficult as children improve) used, scores will not be comparable across
age. Rather, age-related changes will reflect a mixture of a child’s skill
improvement and changes in task difficulty (Hamilton et al., 2015). It is
important, then, to use measures that are suitable for as broad an age
range as possible.
Ensuring structural consistency across time is difficult for beha-

vioral or cognitive tasks, which are often used as a correlate in struc-
tural imaging studies or to evoke brain responses in functional imaging
studies. Compared to research based on measurement approaches that
are amenable to latent variable modeling (e.g., survey data) and in-
cludes a relatively mature set of psychometric models (Vandenberg and
Lance, 2000), rigorous psychometric evaluations are generally lacking
within neuroimaging research. For example, most cognitive tasks (those
measuring attention, memory, and cognitive control) included in the
Research Domain Criteria (RDoC) were noted by the RDoC committee

to have a lack of psychometric data and no standardized administration
parameters (National Advisory Mental Health Council Workgroup on
Tasks and Measures for Research Domain Criteria (RDoC), 2016), ex-
cept for a few recent studies of very little is known about the psycho-
metric properties of many cognitive and behavioral tasks used in neu-
roimaging studies beyond test-retest reliability (c.f., Weafer et al., 2013;
Wöstmann et al., 2013). The relative infancy of psychometrics in be-
havioral tasks used in neuroimaging is not surprising, given the appli-
cation of traditional psychometric models is much more difficult and
expensive compared to survey data.
Further, attempts to utilize psychometric approaches within the

cognitive literature have yielded mixed success. For example, the oft-
cited latent variable analysis of executive functions (Miyake et al.,
2000) identified a latent inhibition trait, which was reflected by an
antisaccade, stop-signal, and Stroop task (tasks which are frequently
used in fMRI studies). However, subsequent psychometric evaluations
cast doubt on the robustness of the originally proposed measurement
model (Miyake and Friedman, 2012). Thus, researchers are cautioned
against over-reifying constructs in the absence of strong psychometric
support.
The extent to which even test-retest reliability reflects practice ef-

fects versus true stability (Salthouse, 2014) remains clouded. Many
cognitive and behavioral tasks (such as the Erikson Flanker, Stroop,
stop-signal, Go/No-Go) may suffer from low between subject variability
precisely because they were designed to produce an experimental re-
sponse from most individuals, rather than to detect individual differ-
ences in the magnitude of that response (Hedge et al., 2017). In sum,
compared to work based on (primarily self-reported) survey data, ro-
bust psychometric evaluations of (largely laboratory-based) tasks often
used in neuroimaging are less common. Additional psychometric work,
and the development of novel paradigms designed to maximally detect
between subject variability, will be required in the neuroimaging field
in order to determine whether fundamental prerequisites of LDA are
met by these tasks.

3. Improving longitudinal analysis

Finally, researchers are charged with matching the theoretical
model of change with the appropriate statistical model. As noted by
Collins (2006), “A mismatch of theoretical and statistical models will
result in the addressing of irrelevant or even meaningless scientific
questions. On the other hand, a close correspondence between theore-
tical and statistical model can provide an elegant test of a scientific
hypothesis and a penetrating look at longitudinal data.” (p. 509).
To illustrate common applications of longitudinal models, we si-

mulated a large dataset based on the same basic motivating example,
with modifications to the underlying model throughout to illustrate
different points about statistical modeling. We simulated data with
10,000 observations so the parameter estimates from our models would
approach their true (population) values. For most examples, random
samples of 250 participants were used to approximate typical sample
sizes in developmental neuroimaging research. The primary outcome of
interest is the development of cortical thickness of the right inferior
frontal cortex (rIFC), measured annually from age 10–19. The rIFC has
been associated with inhibitory control (Aron et al., 2014). We modeled
quadratic declines in cortical thickness across adolescence (Tamnes
et al., 2017). We assumed that all measurement parameters of the rIFC
were identical over time. We also simulated a variable representing a
behavioral measure of impulse control (such as performance in a Go/
No-Go task) at age 10. Finally, we included a time-varying covariate
reflecting the effects of stress on rIFC thickness.
Fig. 1 shows the “true” development of rIFC thickness over time in a

subset of cases from these simulated data. As shown in Fig. 1, rIFC
thickness exhibited rapid declines in early adolescence before those
declines slowed during the latter part of adolescence (i.e., change in
rIFC thickness demonstrated a quadratic trend). We injected substantial
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intra-individual variation in all aspects of change (i.e., intercept, linear
slope and quadratic effects), and allowed this variation to be correlated
(r= .20 across all parameters).

3.1. Models for two time points

With two time points of data, general linear models (GLMs) can be
used to answer several basic questions regarding change, including the
extent to which between-person variability in rIFC thickness at one age
(say 10 years) is associated with between-person variability at a later
age (say, 14 years). The extent to which the covariate (impulse control)
at Age 10 predict individual differences in rIFC thickness at Age 14,
adjusting for rIFC thickness at age 10, can also be explored.

3.1.1. Example
Table 2 presents the unstandardized intercept and the standardized

coefficients from our simulated dataset. This model was estimated with
ordinary least squares regression. When predicting rIFC thickness at
Age 14, the intercept means that when Age 10 rIFC thickness, Age 10
impulse control, and Age 10 stress were all at 0, Age 14 rIFC thickness
was predicted to be −9.84. If the value of the intercept were important,
we could center the predictors so its value could be interpreted as the
expected value of Age 14 rIFC thickness at the mean of the predictors.
The effect of Age 10 rIFC thickness reflects the degree of rank-order
stability of rIFC thickness from Age 10–14. A one SD difference between
adolescents in rIFC thickness at Age 10 would be associated with a .35
SD difference between adolescents in rIFC thickness at Age 14. Simi-
larly, a one SD difference between adolescents in impulse control at Age
10 would be associated with a .22 SD change in rIFC thickness at
Age14, and so on.
Table 2 illustrates how changing the follow up interval (to Age 15 or

Age 18) can change the coefficients we would observe, sometimes
dramatically. For example, Age 10 impulse control would be considered
to be a relatively minor correlate of rIFC thickness at Age 14 (β= .22),
but a very major predictor of Age 18 rIFC thickness (β= .50). Although
not illustrated in Table 2, the direction of a coefficient effect can even
flip signs, depending on the time of follow-up. Thus, the inferences
drawn from longitudinal effects are bounded by the assessment frame,
as these effects can change (sometimes substantially) across time in-
tervals.

3.1.2. Cautions in considering stability over time
Importantly, rank-order stability does not preclude mean-level

changes (and vice versa). Rank-order stability can result from a number
of factors such as how the environment shapes and transacts with in-
dividuals to influence both change and stability (Fraley and Roberts,
2005). That is, stability could reflect stable transactions between an
individual and a stable environmental context; given a different en-
vironment that stability may evaporate. Accurate inferences about
stability require more than two time points, allowing inferences about
the degree to which correlations across increasing increments of time
asymptote towards a lower bound (Fraley and Roberts, 2005). Others
have noted that “stability” coefficients could reflect the amount of true
change, the degree of uniformity in change, or the relations between
initial status and change over time (Hertzog and Nesselroade, 1987;
Selig and Little, 2012). We illustrate this in Fig. 2, showing three ways
high stability can manifest in samples with very different patterns of
change, and contrast it with a sample exhibiting true variation in
change and thus lower stability.
Stability and change may be even more complicated when con-

sidering repeated assessments of a cognitive task. In one large study,
subjects who had prior experience with a cognitive task exhibited
higher scores relative to subjects from the same cohort who were task-
naïve (Salthouse, 2014), suggesting that repeated exposure to cognitive
tasks may bias stability estimates due to task reactivity. For example,
some data suggest various delay discounting measures demonstrate
marked test-retest stability across various time intervals (e.g., Odum,
2011). In Kirby (2009), test-retest stability was high (rs > .63) though
mean discount rates increased across assessments, suggesting (by the
interpretation of the test) that the participants were becoming more
impulsive. An alternate interpretation, however, is that participants
were becoming increasingly reactive to the test (Salthouse, 2014).

3.1.3. Cautions in predicting outcomes from rank-order change
It is often of interest to connect rank-order change with some out-

come, controlling for common covariates. Although more advanced
methods have been recently developed to assist with this problem
(McArdle, 2009), more common approaches are to compute difference
scores (subtract Time 1 from Time 2 scores), or to residualize the Time
2 score by regressing Time 2 score onto Time 1 score. Burt and
Obradović (2013) provide an excellent overview of the true strengths
and limitations of these traditional approaches. In short, close attention
should be paid to the impact that the reliability, variability, and cor-
relation between the Time 1 and 2 scores have on the psychometric
properties of difference and residual scores. Low reliability of either
Time 1 or Time 2 score lowers the reliability of the change or residual
score, whereas a high correlation between Time 1 and Time 2 scores
causes lower reliability of difference scores (Burt and Obradović, 2013).
As Rogosa pointed out in a classic chapter on myths on longitudinal

Table 2
The impact of using different follow-up time points on stability and covariate estimates
for regression with two time points. n=250.

Age 14 rIFC
Thickness

Age 15 rIFC
Thickness

Age 18 rIFC
Thickness

Intercept −9.839 −12.545 −20.221
Age 10 rIFC

Thickness
0.347 0.304 0.330

Age 10 Impulse
Control

0.217 0.318 0.496

Age 10 Stress 0.251 0.235 0.160

Note: This table presents unstandardized intercept values and standardized regression
coefficients for two time point regression models predicting rIFC thickness at different
ages from Age 10 covariates. Note how as the time interval between the predictor and the
outcome changes from a 4 year lag to a 5 and 8 year lag the estimated effects of some
predictors can change dramatically.

Fig. 1. True change over time in rIFC thickness in the simulated dataset.
Caption: This figure illustrates average change over time in the outcome in a subset of 100
cases, as well as individual lines connecting observations across each time point (re-
flecting variability in trajectories over time).
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change (1988), difference scores are unreliable when stability is high
for a very good reason: the higher the Time 1–Time 2 correlation, the
less that there are individual differences in change, and “you can’t
detect individual differences that ain’t there” (p. 13). As illustrated with
two time points in Fig. 2, variability in change can dramatically impact
estimates of stability.

3.2. Models for three or more time points

3.2.1. Auto-regressive panel models
Auto-regressive panel models are extensions of the GLM that predict

the value of a variable in the future from the same variable in the past.
They are based in a structural equation modeling (SEM) framework,
and test how between-person differences in levels (i.e., rank-order in-
dividual differences) of a variable at one time point are predicted by
between-person differences in that variable at a prior time point (Selig
and Little, 2012). SEM software solves for a set of two equations si-
multaneously, in a way that maximizes the fit of the model (i.e., the
estimated parameters) to the covariance matrix of the data. The two-
time point models we presented above are examples of auto-regressive
lag-one effects, where a variable at one time point predicts the same
variable at the next observed time point. Auto-regressive lag-two
(predicting between-person differences in levels from those two time-
points prior) and greater lags are also possible.
These may be extended to two or more variables in cross-lagged

panel models (CLPM), where between-person differences in one vari-
able at a time point predict change in another variable at the next
(Gollob and Reichardt, 1987; Hamaker et al., 2015). Importantly, these
effects will be also expected to change as the time-lag changes, as we
demonstrated above with the two time point data. As with two-time
point regression models, because panel models do not typically in-
corporate information about means, inferences can only be made about
individuals’ standing relative to one another is related to change at the
next time point (see equation 2 in Hamaker et al., 2015), but not
within-individual or average change in the sample (see Curran et al.,

2014 for a method that combines traditional latent curve models with
cross-lagged panels).

3.2.1.1. Example. We estimated a bivariate auto-regressive cross-lag
panel model for the association between rIFC thickness and stress at
Ages 10, 12 and 14. Our auto-regressive panel model provided stability
(i.e. auto-regressive) estimates of the effect of Age 10 rIFC thickness on
Age 12, and Age 12 rIFC thickness on Age 14 rIFC thickness, and similar
stability estimates for stress. We also estimated cross-lagged effects for
the effects of Age 10 stress on Age 12 rIFC thickness (controlling for Age
10 rIFC thickness), Age 12 stress on Age 14 thickness, and similar
effects for rIFC thickness on stress. For simplicity, we constrained
similar effects (such as the stability of rIFC thickness between Age 10
and 12 and Ages 12 and 14, or the effects of stress on rIFC thickness at
Ages 12 or 14) to be equal over time, which means we forced the
parameters to be equal. This reflects a parsimonious assumption that
these associations do not change across time, although this assumption
may be relaxed. This model is illustrated in Fig. 3 as an SEM, where
boxes represent observed variables, single headed arrows between
variables represent regression slopes, and double headed arrows
represent correlations. Coefficients are reported in the first column of
Table 3, which again illustrates how coefficient estimates can change
for the same three time point auto-regressive model with different
scales of time.
The interpretation of the coefficients from these models was iden-

tical to that from the regression model above: how did between-person
differences in the level of stress at one time point predict between-
person differences in the level of rIFC thickness at the next, controlling
for stability in rIFC thickness? Additionally, how does rIFC thickness at
one time point predict stress at the next, controlling for stability in
stress? Again, the time interval selected will impact inferences. For
example, we would conclude that stress at the prior time point would be
weakly or unrelated to rIFC thickness when examining the effect in Age
14, 16 and 18 data, but we would conclude it had a moderate and
positive relation with rIFC thickness for the Age 10, 12 and 14 data.

Fig. 2. Four different ways that stability (and “change”) can manifest in regression and panel models.
Caption: Displayed are 100 cases from simulated data with two time points, where stability was manifested as A) no average change (β= .99), B) mean change over time, but no
individual differences in change (β= .99), C) a high correlation between initial status and change (β= 0.97), contrasted to D) an “unstable” sample with variation in change (β=0.44).
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3.2.1.2. Cautions: considering trait variability. The CLPM has been
specifically critiqued for mixing within and between-person variation,
leading to mistaken inferences about the nature of transactional
processes (Hamaker et al., 2015). For example, Ritchie et al. (2015)
applied a CLPM to a sample of twins studied across five time points
from ages 7–16, and found associations between reading and later
measures of intelligence, even when controlling for prior observations
of intelligence. In a reanalysis of the same data, Bailey and Littlefield
(2017) showed that a state-trait model, which separated stable (i.e.
trait), between-person variation in reading and intelligence over time
from state variation in reading and intelligence that varied from time to
time (Kenny and Zautra, 2001), could fit those data equally well (or
better), and largely reduced the magnitude of the causal paths among
reading and intelligence. These findings indicated that stable third
variables that contributed to trait variability, such as common genetic
or environmental factors, may largely account for the longitudinal
association between reading and intelligence. Thus, it is important to
carefully consider between-person (i.e., trait) variability in what is

thought to be a time-varying construct as a special form of a third
variable confound that is particularly pertinent to auto-regressive
models.

3.2.2. Growth curve models
Researchers are often interested in modeling and explaining pat-

terns of within-individual change (i.e., how a person changes relative to
their own standing over time), as well as how their pattern of change
may differ from that of another individual. Growth curve models
(GCMs) are common approaches to modeling within-individual change,
and can be approached from a multilevel or latent variable framework
(see Curran, 2003 for a discussion of the similarities of the two ap-
proaches; Wood et al., 2015 for an in-depth review of the relation of
various types of longitudinal models).
In multilevel GCMs (or random regression, random coefficient

models), observations for individuals at each time point are predicted
by a variable coding the passage of time (Bryk and Raudenbush, 1987).
By allowing the coefficients of this model (such as the intercept, or
level, and the effect of time, or the slope) to be “random” (i.e., assume it
was sampled from a larger population in the same way we assume the
sample of individuals was), we can also estimate between-person dif-
ferences in those coefficients. These estimates inform the degree to
which people exhibit individual differences in change over time.
(Ballinger, 2004; McNeish et al., 2016; Zeger et al., 1988)
Latent curve models (LCMs) model the growth process (i.e., inter-

cepts and slopes) as latent variables within an SEM framework (Bollen
and Curran, 2006) and are similar to multilevel GCMs (Curran, 2003).
In LCMs, the effects of time are coded into structural coefficients for the
latent growth factors (i.e., intercept and slope), the average effects of
time are estimated from latent means of the growth factors, and random
effects (i.e., individual differences in intercepts and slopes) are esti-
mated via the variances of the latent growth factors. LCMs may also be
extended to multiple parallel processes, where two or more growth
processes are estimated simultaneously, allowing for the estimation of
inter-relations among growth factors (Cheong et al., 2003). An SEM
representation of the latent growth curve model is illustrated in Fig. 4.
Despite similarities between LCMs and multilevel GCMs, each ap-

proach has distinct strengths. Because they model growth as latent
variables, LCMs are very useful when researchers use individual

Table 3
Autoregressive Panel Models at different time intervals. n= 250.

Age 10, 12, 14 Age 14, 16, 18 Age 10, 14, 18

T2/T3 Outcome rIFC rIFC rIFC
T3 Intercept −6.39 −4.62 −9.44
T2 Intercept −3.95 −4.73 −8.97
β1 Lag 1 rIFC Thickness 0.44 0.71 0.47
β2 Lag 1 Stress 0.28 0.14 0.24
T2/T3 Outcome Stress Stress Stress
T3 Intercept −0.15 0.41 0.74
T2 Intercept −0.13 0.25 0.24
β3 Lag 1 rIFC Thickness 0.08 0.03 0.08
β4 Lag 1 Stress 0.73 0.86 0.78

Note: This table displays how coefficients for the cross-lagged panel model illustrated in
Fig. 3 would change with different time intervals. Identical effects were fixed to be equal
over time.

Fig. 4. A latent growth curve model of Impulse control.
Note: For graphical depictions of structural equation models, boxes represent observed
variables, circles represent unobserved (latent) variables, triangles represent estimated
means, single headed arrows between variables represent regression slopes, and double
headed arrows represent correlations and variances.

Fig. 3. A three time point cross-lagged panel model.
Note: This figure is a graphical model of an auto-regressive panel model of the relation
between rIFC thickness and stress over time. For graphical depictions of structural
equation models, boxes represent observed variables, circles (not displayed) represent
unobserved (latent) variables, triangles (not displayed) represent estimated means, single
headed arrows between variables represent regression slopes, and double headed arrows
(not displayed) represent correlations. Each residual error term was estimated in-
dependently. IC= Impulse Control. rIFC= right Inferior Frontal Cortex. Coefficients are
reported in Table 3.
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differences in growth change as a predictor. Moreover, LCMs allow for
the estimation of more complicated forms of growth, such as the latent
basis model, where the growth function is not completely known (Flora,
2008; McCoach and Kaniskan, 2010). Conversely, multilevel GCMs
allow for flexible time specification, such that all participants can have
unique time points (such as age measured in days); because time is a
factor loading for LCMs, they are much more restricted.

3.2.2.1. Example. Taking our model of rIFC thickness at Ages 10, 12
and 14 from above, we first estimated a linear growth model using a
multilevel model, where the outcome was predicted by a variable
representing time, coded as Age 10= 0, Age 12=1, Age 14=2. The
model produced the output displayed in Table 4a.
For simplicity, we present the conditional parameter estimates,

which refer to the estimates of model parameters after accounting for
covariate effects. The intercept value tells us the predicted level of rIFC
thickness (2.62) when time and the other covariates were at zero (i.e.,
Age 10, and the mean of the covariates), while the random effect (a
standard deviation) tells us that we could expect residual variability
around that intercept value, with 68% of the population expected to
have rIFC thickness values of 2.62 ± 2.21. The slope value tells us that
rIFC thickness declined by 5.80 points for every one unit change in time
(in this case every two years) at the zero point of the covariates. After
accounting for covariate effects, there was variability in change over
time, such that 68% of the population exhibited rates of change of
5.80 ± 0.43. Moreover, the intercept and slope were very weakly

correlated (r=−0.14), which means that an individual’s level of rIFC
thickness at Age 10 was weakly associated with their rate of change
over time. The residual term describes unexplained within-person
variation in rIFC thickness across all time points.
Covariate effects indicated that greater Age 10 impulse control was

related to higher initial levels of rIFC thickness (b=0.92), but not to
change in rIFC thickness over time (b=0.07). Similarly, stress at each
time point was related to higher levels of rIFC thickness at each time
point (b=1.32), meaning a one unit increase in stress at a given age
was related to a 1.32 unit increase in rIFC thickness above and beyond
that which was predicted by the developmental trajectory. Re-esti-
mating this model in a latent growth curve model framework gave
identical results, except the latent variable model would estimate un-
ique residuals at each time point rather than a single residual estimate
for all time points.
For comparison, we also re-estimated this model with the full dataset

(Table 4b). Because there was now a quadratic effect included in the
model, the interpretation of the conditional linear growth coefficient
changed: it represented the rate of change only when time was equal to 0
(Age 10), controlling for the covariates, while the quadratic effect re-
presented how the linear time effect changes for every one unit change in
time (i.e., acceleration or deceleration) controlling for covariate effects.
In our simulated model, youth’s rIFC thickness at Age 10 was declining
by −3.13 per year, but that decline slowed by .05 per year. Accurate
estimates of the intercept and slope for different ages can be obtained
simply by re-centering the intercept at different time points.
In addition, the covariate effects differed: not only did Age 10 im-

pulse control predict the level of rIFC thickness (to nearly the same
degree), but it also predicted the linear and quadratic slope. An increase
in Age 10 impulse control was associated with higher initial rIFC
thickness (b=1.02), but also with a greater rate of decline at age 10
(b=−0.21) and a larger quadratic effect (b=0.07). The predicted
trajectories of rIFC thickness at low, average, and high (± one SD)
levels of Age 10 impulse control are shown in Fig. 5, which displays
(similar to an interaction plot) how trajectories of rIFC thickness would
be expected to change for individuals with differing levels of Age 10
impulse control.
Conversely, the time-varying effects of stress (and the residual,

which also reflects time-varying, or within-individual variation) were
nearly identical to the model above. This is because when there are no
between individual differences in within-individual effects, their effects
will be generally be unbiased as long as the time interval assessed is
identical.

Table 4a
Multilevel Growth Model, Ages 10, 12 and 14, Fixed Effects. n= 250.

b S.E. p-value

Intercept 2.63 0.34 0.000
Slope −5.80 0.18 0.000
Age 10 Impulse Control 0.92 0.18 0.000
Stress 1.32 0.08 0.000
Slope X Age 10 Impulse Control 0.07 0.11 0.535

Random Effects

Random Effects Intercept – Slope Correlation

Intercept 2.21 −0.14
Slope 0.43
Residual 2.98

*Note: This table displays growth model estimates for change in rIFC thickness over time
for Ages 10, 12 and 14, conditional on the effects of the covariates.

Table 4b
Multilevel Growth Model, Full Model, Fixed Effects. n= 250.

b S.E. p-value

Intercept 2.42 0.29 0.000
Linear Slope −3.13 0.11 0.000
Quadratic Slope 0.05 0.01 0.000
Age 10 Impulse Control 1.02 0.16 0.000
Stress 1.15 0.05 0.000
Linear Slope X Age 10 Impulse Control −0.21 0.07 0.001
Quadratic Slope X Age 10 Impulse Control 0.07 0.01 0.000

Random Effects

Random Effects Random Effect Correlations

Intercept 2.20 Intercept Linear Slope
Linear Slope 0.47 −0.48
Quadratic Slope 0.07 0.50 −0.54
Residual 2.98

*Note: This table displays growth model estimates for change in rIFC thickness over time
for Ages 10–19, conditional on the effects of the covariates.

Fig. 5. The Effects of high (+1 SD), mean and low (−1 SD) rIFC thickness on trajectories
of impulse control.
Caption: Illustrating variability in change over time of rIFC thickness for High, Mean and
Low levels of Impulse Control at Age 10.
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3.2.2.2. Cautions in interpreting the intercept and the coding of time. As
opposed to other models, in growth models the intercept is important
because: a) it helps define the trajectory (along with the slope
parameters) and b) individual differences (or random effects) in
levels of the outcome are of interest. Biesanz et al. (2004) noted that
researchers struggled with interpreting the intercept; most commonly,
researchers assume the intercept must be the first observed time point,
though the intercept can be set at any time point. They further noted
that many studies wrongly labeled the intercept as the starting point
even when it was clear from the coding scheme that this was not true
(Biesanz et al., 2004). There are two important consequences to this
conflation of the intercept and the starting point. First, it often limits
researchers’ inferences about individual differences in levels, and it
limits interpretations of the correlation between the slope and
intercept. Both variability in the intercept, and (some degree of) the
magnitude of its correlation with the slope, are determined by the
placement of the intercept (Biesanz et al., 2004; Mehta and West, 2000;
Rogosa and Willett, 1985). Changing the coding of time via centering
impacts the estimation of the value of an intercept, its covariance with a
linear slope, and the effects of a predictor on an intercept (without
affecting estimates of the slope), all without changing the underlying
trajectories or model fit. Fig. 6 illustrates how choosing to center time at
age 10, versus centering time at age 15, does not change the average
quadratic growth trajectories of rIFC thickness, but only shifts the axis
of time.
Coding time is also important when interpreting non-linear effects

of time. Because a quadratic growth effect is estimated as the effect of
time squared, the value of the linear effect of time, and its correlation

with the intercept are only interpreted when time is equal to zero. Just as
re-centering data to explore the impact of a moderator changes the
simple slope of a predictor on an outcome (Aiken and West, 1991), all
other variables in a growth model are impacted by the choice of the
intercept. Researchers often incorrectly interpret this in quadratic
growth models, and generalize the linear time effect and its correlations
to all time points. For example, Harden and Tucker-Drob (2011) esti-
mated correlated change between quadratic growth curves of im-
pulsivity and sensation seeking across adolescence, and reported a
moderate (r= .21) correlation between individual differences in linear
change in impulsivity and sensation seeking. However, that correlation
only applied to age 16 (where the data were centered), because the
presence of a quadratic effect meant that the linear effect changed
across time, and the correlation was certain to take on other values at
different locations. Moreover, if one wanted to most accurately describe
how change in one construct was related to another, the correlation
between quadratic change observed in the study (r= .41) should be
interpreted, because it was not conditional on any other effects in the
model. In other words, as the rate of change in impulsivity accelerated
by one SD, we might expect a parallel .41 SD acceleration in of change
in sensation seeking in Harden and Tucker-Drob (2011).
We illustrate this in Table 5. Changing the location of the intercept

changes the estimates of all fixed effects of our quadratic growth model
except the quadratic effect itself, as well as the estimates of the corre-
lations among growth factors. Whether a random effect increases or
decreases depends on the variability of the trajectories and the location
of the point of minimum variability. Fig. 7 illustrates this: around Age
12, there is little variability in levels, so there is likely to be a low

Fig. 6. The effects of centering time at different ages.
Caption: Choosing to center time at age 10, versus centering time at age
15, does not change the average quadratic growth trajectories of rIFC
thickness, but only shifts the axis of time.

Table 5
The impact of centering at different ages on coefficient estimates. Fixed effects. n= 250.

Age 10 Age 11 Age 12 Age 13 Age 14 Age 15 Age 16 Age 17 Age 18 Age 19

Intercept 1.15 −1.98 −4.88 −7.56 −10.02 −12.25 −14.27 −16.06 −17.63 −18.98
Linear Slope −3.24 −3.01 −2.79 −2.57 −2.35 −2.13 −1.90 −1.68 −1.46 −1.24
Quadratic Slope 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Correlations among random effects

Age 10 Age 11 Age 12 Age 13 Age 14 Age 15 Age 16 Age 17 Age 18 Age 19

Intercept: Linear Slope −0.21 0.18 0.54 0.75 0.82 0.85 0.87 0.88 0.90 0.92
Intercept: Quadratic Slope 0.64 0.56 0.51 0.50 0.53 0.58 0.64 0.69 0.74 0.79
Linear Slope: Quadratic Slope −0.62 −0.33 0.08 0.46 0.69 0.81 0.88 0.91 0.94 0.95

*Note: This table displays growth model estimates for change in rIFC thickness over time for Ages 10–19, conditional on the effects of the covariates.
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correlation between the level of rIFC thickness and the rate of change
over time. Conversely, by Age 19, there is large variability in the level
of rIFC thickness, and thus we would expect at Age 19 to observe a large
correlation between the level and the rate of change over time.
Unless there is a compelling rationale for choosing a point in time

(such as the beginning of high school, or the end of a treatment study),
there is value in exploring several locations of the intercept, because the
interpretation of slopes, intercepts and their correlations in a growth
model are not independent of one another.

3.2.2.3. Cautions in interpreting the slope(s). There is frequent confusion
about the interpretation of trajectory parameters in non-linear growth
models. As noted above (Ram and Grimm, 2015), growth may be
represented by non-linear shapes (e.g., a quadratic slope), and
researchers often struggle to interpret even quadratic growth models.
Further, assuming sufficient model degrees of freedom, SEMs allow for
the free estimation of change parameters (referred to as “latent basis” or
“free slope” models), permitting examinations of discontinuous change
(Flora, 2008; McCoach and Kaniskan, 2010). When the shape of growth
extends beyond the linear case, the interpretation of parameters rapidly
becomes less intuitive. Take, for example, the relative difficulty of
interpreting the parameter values for Table 5, when the intercept was
centered at age 10, with the relative ease of interpreting Figs. 5–9,
which represent the same data. Thus, we strongly recommend that all
parameters should be interpreted in the context of all others and all
models should be graphed.

3.2.2.4. Cautions in interpreting the variances/random effects and
covariances. Because of variability in the intercept and slope, it is
probably more useful to describe the variability in trajectories than to
simply describe the average trajectory. This is where visual displays can
be useful (Biesanz et al., 2004). Although it is often recommended, it is
rare to find visual displays of variability for growth models, and
especially unusual to display variability as a function of the
covariation among growth components. It is not uncommon that
slopes and intercepts in growth models are correlated. Individual
differences in developmental timing can cause children who start at a
high level on a particular indicator to demonstrate less pronounced
change over time, simply because they enter the study at a more
advanced stage of development. This induces a negative correlation
between the starting level and the rate of change over time. Researchers
regularly fail to interpret these correlations, or (if they do), interpret
them incorrectly. Thus, we strongly encourage researchers to plot

variability in growth, as well as the correlations between growth
factors to better understand the basic properties of their growth models.
Figs. 7–9 provides three examples of how variation and co-variation

in our growth example might be illustrated. Fig. 7 illustrates the ex-
pected trajectories for individuals at high, mean and low initial levels
and linear and quadratic slopes based on the model estimated varia-
bility. Fig. 8 illustrates a case where the intercept is negatively corre-
lated with the slope and quadratic effects (r=−.30), meaning that
individuals who are high on rIFC thickness at Age 10 are expected to
change the least over time, while those with the lowest rIFC thickness
levels are expected to change the most. Fig. 9 samples 12 cases from the
simulated data and displays quadratic curves plotted over individual
data points as a means of highlighting between person variability in
change over time. These figures provide a more direct, intuitive means
of understanding the results provided by the estimated model compared
to a text description of variance associated with a growth parameter.
In latent growth curve models, significance tests for variances and

covariance of the growth factors are provided as a matter of estimation,
as growth factors are estimated as latent variables with means, var-
iances and covariances by default for most software. Thus, it is unlikely
that a researcher will explicitly fix the variance of a latent growth factor
to zero. However, in multilevel models, variances must be explicitly
estimated as a random effect of the intercept and time variables (such as
the linear and non-linear time effects). A common limitation that is
specific to multilevel models is the failure to test for random effects
when the main effect of time (i.e., the fixed effect) is zero. This seems to
reflect a misunderstanding that the estimate of within-person change
over time applies to all subjects, and thus represents a fundamental
misunderstanding of the parameters reported in a GCM. As illustrated
in Fig. 2, there can be no average growth, but individual differences in
growth (Fig. 2D), and there can also be growth over time, but no in-
dividual differences in growth (Fig. 2B). Thus, it should be a matter of
course to test for random effects for all trajectory parameters, and they
should be fixed to zero only when there is no evidence that they vary in
the sample (Raudenbush and Bryk, 2002). Researchers should also use
less biased approaches to test parameter significance such as likelihood
ratio test/deviance tests (Agresti, 2002; Johnston and Dinardo, 1997),
given the more standard Wald-Z test may be positively biased when
samples are less than 100 (Pawitan, 2001).
By assuming a dependency between the presence of a fixed and a

random effect, researchers assume that information about one provides
information about another. However, if a random effect for a trajectory
parameter is not modeled, variance attributable to that random effect

Fig. 7. An illustration of variability in a growth model.
Caption: This figure illustrates average growth over time (Mean), along with model es-
timated growth for subjects at +1 SD (High) for the intercept, linear and quadratic slopes,
and model estimated growth for subjects at −1 SD (Low) for all growth factors.

Fig. 8. Illustrating negative correlations (r = −.50) between initial levels and linear and
quadratic rates of change.
Caption: Illustrating the association between initial levels and variability in change in
rIFC thickness over time, for High, Mean and Low initial levels of rIFC thickness. High
initial rIFC thickness is associated with less change over time.
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will remain in the residuals of the observed variable at each time point,
and the standard errors associated with time-varying covariates will in
turn be underestimated (Chen et al., 2013; Gibbons et al., 2010;
Hedeker et al., 1994). Because of this underestimation, the statistical
tests of these parameters will be overly liberal, resulting in in-
appropriately small p-values and inflated Type I Error. Note that the
fixed effect parameters are often not substantially altered when random
effects are specified (e.g., Hedeker et al., 1994); this is often because the
fixed effect estimate (for example, the effect of linear change over time)
is simply the sample average, while the random effect simply provides
an estimate of how individuals in the sample vary around that average.
If researchers observe a non-significant fixed effect (i.e., slope of time),
and assume that means no one in their sample is changing over time,
this could be a serious mis-characterization of their data.
Some researchers have argued that a stepwise approach, requiring a

significant random coefficient before testing the effects of predictors on
that coefficient (Raudenbush and Bryk, 2002). Despite intuitive appeal,
we argue that this requirement is unnecessarily restrictive (Aguinis
et al., 2013). In short, if the covariate effect is true, a stepwise method
requires researchers to have a significant random effect for a model that
is effectively mis-specified, and it is not clear that the variance attri-
butable to the covariate effect would be accurately represented in the
unconditional random effect. (Aguinis, 1995). Thus, we believe it is
reasonable to test for theoretically-grounded moderation in growth
models, regardless of the presence of a significant random effect.

3.2.2.5. Cautions in interpreting predictor effects. Associations with
either the initial levels of rIFC thickness or explained time-varying
variance in rIFC thickness can be relatively straightforward to interpret.
It is often more difficult to interpret predictor effects when they explain
individual differences in a slope, and particularly so for non-linear
growth models, as covariate effects on slopes represent interactions
between the covariate and the effect of time on the outcome. However,
this interpretation does not come readily to most applied researchers,
and is further complicated when trajectories include non-linear
components. Given that all coefficients that identify a trajectory must
be interpreted to properly interpret covariate effects, we strongly urge

that researchers plot covariate effects on trajectories, in same way they
plot other interactions. For example, if a covariate is associated with all
aspects of a non-linear trajectory (such as the intercept, linear and
quadratic slope), all three effects should be plotted in a single graph
(see Fig. 5 for an example of this). Take the associations of Age 10
impulse control with rIFC thickness. Greater impulse control at Age 10
was associated with higher rIFC thickness at Age 10. However, it was
also associated with rIFC thickness that declined more quickly and
slowed in deceleration over time, exhibiting the highest levels of rIFC
thickness by Age 19. Interpreting the effects of a predictor on trajectory
parameter (such as the linear slope) without considering its effects on
other trajectory parameters can lead to misleading inferences. In the
supplementary materials, we have provided R code for all of our
figures, as well as an illustration of how several of our figures could be
created in spreadsheet software using only model output.

3.2.3. Latent class growth and growth mixture models
Latent class growth models (LCGM; Nagin, 1999) extend LCMs by

assuming that multiple discrete populations produced the sample data.
That is, individual differences in levels and change are thought to arise
from multiple, discrete distributions with different means rather than
reflect normal variability around a single distribution. Importantly,
estimation of LCGM required within-group variances for intercept and
slope to be set to zero. LCGMs assign all individuals a probability of
belonging to each latent class, and more optimal solutions exhibit high
entropy (i.e., latent classes where individuals have a high probability of
belonging to one class and a low probability of belonging to other
classes). Latent growth mixture models (LGMMs) extend the Nagin
model by allowing the latent classes to have variability around the
mean intercept and slopes (Ram and Grimm, 2009). In other words,
they can model heterogeneity in trajectories both between classes, as
well as within them (Bauer and Shanahan, 2007), although often de-
fault settings are to assume equal variances across classes. Bauer and
colleagues provide an excellent overview of the similarities and dif-
ferences between multilevel, latent growth, and latent class growth
models (Bauer et al., 2007). In brief, LGMMs should generally be pre-
ferred to LCGMs because they model within-class variability in growth.

Fig. 9. A random sample of 12 individual growth curves.

K.M. King, et al. Developmental Cognitive Neuroscience 33 (2018) 54–72

65



However, LGMMs may be more difficult to estimate because of the
additional parameters required to estimate within class variability.
Although these models are exploratory, in that tests of model fit are
relative rather than absolute (Jung and Wickrama, 2008), they can be a
useful way of testing theories about heterogeneity in development. For
example, many early examples of LCGM and LGMMs were motivated by
theories about “adolescent limited” versus “persistent” developmental
trajectories of criminality and delinquency (Moffitt, 1993; Nagin and
Tremblay, 1999) and substance use (Chassin et al., 2002). Fig. 10
provides an SEM illustration of the growth mixture model.

3.2.3.1. Example: LCGM. For the current dataset, we took a random
subsample of 500 cases (to improve model estimation larger samples
are often required for latent class analysis), and analyzed them as an
LCGM. We used the recommended rules to choose the number of latent

classes based on a range of model fit indices (Jung and Wickrama,
2008; Ram and Grimm, 2009). We tested one to four classes. Based on
recommendations from the literature (Nylund et al., 2007), the final
models suggested that three classes best fit the data, because this
solution minimized AIC and BIC, the Vuong-Lo-Mendell-Rubin
likelihood ratio test (which performs a corrected likelihood ratio test
comparing nested models) of the 2 versus 3 class model was significant,
entropy, meaning the average classification probability for participants’
most likely class, was high, and models with 4 or more classes divided
existing classes into non-meaningful sub-groups, and/or became
unstable in estimation (see supplementary tables S1). Fig. 11, which
illustrates the model estimated trajectories from the LCGM solution, is
strikingly similar to Fig. 7, and illustrates how the LCGM parceled
variation in growth into separate classes. Effectively, it described three
patterns of change in rIFC thickness across adolescence: one of declines
which slow over time, one of larger declines that slow less, and one of
even greater declines that do not slow over time. However, because the
within-class variability in LCGM was forced to be zero, this model
actually estimated less variability in growth than a latent growth model
or growth mixture model would, because both of the latter models
allowed for between person variability around trajectory averages (as
illustrated in Fig. 1).

3.2.3.2. Example: LGMM. Our simulated data did not provide an
optimal illustration of the advantages of LGMM; thus for LGMM we
simulated four separate samples of 100 subjects each with different
linear trajectory shapes across 5 time points, merged them into a
combined dataset, and analyzed them with LGMM to see if we could
recover the individual groups (illustrated in Fig. 12a and b ). Here, we
simulated data to represent the “cat’s cradle” pattern of stable-high,
stable-low, and increasing/decreasing classes of change over time,
which has been found repeatedly in growth mixture modeling studies
of risky behavior. In the “cat’s cradle”, named after a children’s game,
there are four classes: one high and stable, one low and stable, one
increasing and one decreasing (Sher et al., 2011). Although this may be
biologically unlikely, it is a useful example because it parallels many
common behavioral examples in the literature applying LGMM.
Again, we tested for between one and four latent classes. Model fit

indices (supplementary table S2) suggested that the four class solution
best fit the data, because AIC and BIC were low, entropy was high, and
the Vuong test suggested that the 4 class solution was superior to 3

Fig. 10. The growth mixture model.
Caption: As compared to the latent growth model (Fig. 4), note that its only difference is a
new latent variable “c”, which represents the probability of membership in each latent
class.

Fig. 11. A three class latent class growth model solution (n= 500).
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classes but that 5 classes provided no additional explanatory power.
Around 100 participants classified in each of the classes based on their
highest probability of class membership. In short, the LGMM procedure,
in this case, did a reasonable job replicating the actual sub-populations
of the simulated data. We could go further and predict class member-
ship from covariates to understand how individual differences in cov-
ariates are related to the probability of belonging to one class or an-
other (Nylund et al., 2007) to further understand the correlates of inter-
individual variability in trajectories. They would be interpreted using a
multinomial logistic regression framework, with covariates predicting
relative probability of membership in different classes (see Asparouhov
and Muthen, 2014 for more details).

3.2.3.3. Cautions about over-extraction and reification of latent
classes. Researchers should be cautious in the application and
interpretation of such LCGMs (Sher et al., 2011). Research has shown
that latent class growth models are as vulnerable to differences in
model specification. For example, different trajectory solutions are
obtained across different scaling of outcome variables (e.g., continious
vs. ordinal; Jackson and Sher, 2008), the number and interval of
observations (Jackson and Sher, 2006), and the choice of (highly
related) outcomes (e.g., heavy drinking vs. alcohol quantity-
frequency; Jackson and Sher, 2005). Sher and colleagues also
demonstrated that certain types of solutions (i.e., the “cat’s cradle”)
appear to be prototypic in longitudinal data of a given phenomena (e.g.,
alcohol use), regardless of the developmental period under
consideration (see Sher et al., 2011). These findings indicate that
methodological artifacts drove at least some of the solutions obtained
by these methods. Further, non-normal data may produce trajectory
classes when none exist in the true population (Bauer, 2007; Bauer and
Curran, 2003). Finally, researchers should take care to recall that all
latent classes are probabilistic, and should not be confused with true
observed group differences.
In sum, LCGM and LGMMs can be very useful models for testing

hypotheses about variation in growth, but caution should be taken in

their interpretation, and the latent classes should not be reified. Latent
growth classes do not “carve nature at its joints,” but may provide a
useful means of describing different probabilistic patterns of variability
in change over time (Nagin and Tremblay, 2005). By identifying these
latent sub-populations who exhibit different trajectories of change over
time, LCGM and LGMMs provide a way to explore how subgroups of
individuals may differentially respond to interventions, or exhibit dif-
ferential susceptibility to risk and protective factors. Best practices for
testing and fitting LCGM and LGMM begin with following best practices
for GCMs, and following recommended practices for model selection
(Nylund et al., 2007), as well as being cautious to avoid reifying the
classes that are discovered (Sher et al., 2011).

3.2.4. Latent change score models
Latent change score models (LCS; Ferrer and McArdle, 2010;

McArdle, 2009) are SEM-based extensions of the auto-regressive panel
model that may be used to test auto-regressive, cross-lag models and
growth curve models (described in more detail below), while allowing
somewhat more dynamic questions about change to be posed about
each type of model. LCS models use highly constrained latent variable
models to separate stability and change at each time point. Although
they can be used to essentially replicate other models described above,
their specification allows many flexible representations of change pro-
cesses that may not be adequately captured by those models. Excellent
overviews of LCS models, and their comparison to auto-regressive and
latent growth models, are presented by several authors (Ferrer and
McArdle, 2003; Grimm et al., 2016).

3.2.4.1. Example. One advantage of LCS models is that they may be
used with two time points of data to create a latent change variable that
can itself be used to predict latent time points, which is not possible
with either regression or auto-regressive and cross-lag panel models.
The growth model may be overlaid on the LCS model by loading an
intercept factor on the latent factor at the desired time point, and the
slope factor(s) on the latent change variables. Fig. 13 provides an SEM

Fig. 12. (a) Four simulated latent growth trajectory groups (n= 100 each) across four time points. (b) Latent growth mixture model “best fitting” 4 class solution of the same data.
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representation of a latent change score model from our simulated
dataset for ages 11, 13 and 15, and Table 6 providing coefficient
estimates.
These results indicate that individuals had an average level of rIFC

thickness at age 11 of −1.73, and a variance of 14.37 (SD=3.79).
Above and beyond year-to-year stability, individuals on average de-
clined by −4.53 from age 11 to 13, and varied around that degree of
change (SD=2.81), and declined faster, by −5.90 from age 13 to 15,
while also varying in that amount of change (SD=3.82). Note how

these inferences differ from those obtained from the autoregressive
model described above in Tables 2 and 3, although they were derived
from the same data and are somewhat similar models. We could include
predictors or outcomes of those change scores, as well, or use latent
variables to summarize between individual differences in change over
time and make the LCS akin to a growth model (e.g., see Fig. 6 in
McArdle, 2009). This is the powerful flexibility of the LCS framework,
see (Kievit et al., 2017) for a more in depth discussion of LCS models.
These models may be readily extended to the bivariate model,

testing models of reciprocal change (much like CLPMs), or to the bi-
variate growth modeling case, testing theories about correlated change.
There has been substantially less methodological research on LCS
models (Ferrer and McArdle, 2010; McArdle, 2009; though see Usami
et al., 2015, for a recent examination of the mathematical relation
between latent change score and autoregressive cross-lagged factor
approaches) and LCS models are only just beginning to be widely ap-
plied (relative to LCMs). In our experience, these already highly con-
strained models tend to require additional constraints to permit esti-
mation, such as constraining estimates of change to be equal over time,
and can sometimes be difficult to fit (in our experience). However, LCS
models represent a powerful and flexible class of models for change
over time that are worthy of additional research attention.

4. General cautions, conclusions and limitations

There are general concerns about fitting longitudinal data to a given
model that apply to all longitudinal models. Most applications we have
discussed either rely on model fit criteria that may be applied toFig. 13. Estimates for a latent change score in impulse control across ages 11, 13 and 15.

Table 6
Latent change score results

Means Variances Residual

Y11 −1.73 14.37 6.21
13 −4.53 7.91
15 −5.90 14.65

Fig. 12. (continued)
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sequences of models to allow researchers to make decisions about
which parameterization of a model best fits the data. For example, re-
searchers may wish to test whether a quadratic time effect or a free time
slope better explains change in rIFC thickness, or whether a three versus
four latent class solution explains individual differences in trajectories.
Across all maximum likelihood based estimation approaches, relative
model fit indices derived from the likelihood function [such as Akaike’s
Information Criteria (AIC), Bayesian Information Criteria (BIC, and −2
log-likelihood (-2LL)] may be used to guide modeling decisions. SEMs
also provide a range of fit indices [e.g., Chi-square, root-mean squared
error of approximation (RMSEA), and confirmatory fit index (CFI)] as a
means of informing how well model parameters reproduce the observed
covariance matrix among the variables (Bollen, 1989).
However, researchers should be cautious about applying simplistic

“golden rules” about model fit (Bentler, 2007; Hu and Bentler, 1999;
Marsh et al., 2004). Substantial research suggested that using strict
cutoffs does not perform well under some circumstances (Marsh et al.,
2004). As such, suggestions for what determines a well-fitting model
have evolved over time, and currently a broad and holistic approach to
model fitting is encouraged (Jackson et al., 2009; see special issue of
Personality and Individual Differences, May, 2007) SEM.
It is also commonly assumed that one well-fitting model rules out

alternative models (Tomarken and Waller, 2003), when in fact model fit
indices for SEM only provide information on whether the model tested
could have plausibly generated the data at hand. Thus, careful con-
sideration of multiple plausible alternative models (e.g., Liu et al.,
2012)(e.g. Liu et al., 2012) in the context of the design and analysis of
longitudinal data is critical to drawing appropriate inferences. As we
have demonstrated, different models of change may be fit to the same
data, each answering different questions about change over time. For
example, auto-regressive models can test hypotheses about the timing
of associations between variables, such as whether one variable predicts
another, or vice-versa, or whether an association strengthens or
weakens over time. Conversely, growth curve models can test hy-
potheses about how two variables might change together over time, as
in parallel process growth models. In choosing a statistical model to test
one’s hypothesis, it is important to consider how alternative models
might provide different insights about change, and to acknowledge that
any given model is only one way of testing theories of change.
Longitudinal data have the ability to establish temporal precedence,

thus improving causal inference over cross-sectional studies because
observations of an outcome at a prior time point may be controlled.
However, longitudinal data are not a panacea for causal inference. As
noted by Littlefield and Alquist (2014), non-experimental observational
data remain correlational, even if data are longitudinal. That is, models
that assume specific sets of causal processes may fit the data as well as
models that assume alternative causal relations or no causal processes
(Rovine and Molenaar, 2005; Tomarken and Waller, 2003). Thus,
though longitudinal observational data may illuminate various patterns
of co-relations among variables across time and provide clues regarding
functional relations between constructs, strong evidence of causality
will require integrating these data with evidence from other approaches
(Littlefield and Alquist, 2014). For example, though many authors are
aware that inferences about mediation are inappropriate in cross-sec-
tional data, similar issues still arise in longitudinal data (see Cole and
Maxwell, 2003 for a detailed guide on mediation in longitudinal data).
As with cross-sectional data, longitudinal data can suffer from un-
measured third variables that confound causality (Fraley and Roberts,
2005). Indeed, threats to inferences of mediation are fundamental even
in the best experimental contexts (Bullock et al., 2010).
Although examining parallel change is a critical direction for future

neuroimaging research, given the nascent state of longitudinal mod-
eling in developmental neuroimaging, we did not go into detail on
parallel processes growth models (Cheong et al., 2003), autoregressive
latent trajectory (ALT) models (Bollen and Curran, 2004), or latent
curves with structured residuals (Curran et al., 2014). Similarly, it is

important for researchers to consider issues of variable centering and
separating between- and within-person variability in both predictors
and outcomes in longitudinal models (Curran and Bauer, 2011; Enders
and Tofighi, 2007). State-trait models (Kenny and Zautra, 2001) may be
used to test the degree to which between- and within-person variation
in covariates contribute to the development of psychopathology over
time (e.g., King et al., 2009; McLaughlin and King, 2014). Latent
transition models (Bray et al., 2010) may be used to test how in-
dividuals transition between different expressions of disorder (Jackson
et al., 2006). As these methods become increasingly available to neu-
roimaging researchers, we encourage their exploration as they fit re-
searchers’ hypotheses and available software. Table 1 provides refer-
ences detailing the use of a number of these models.
The field of neuroscience is at an exciting juncture as an increasing

number of research endeavors are incorporating repeated-measures
designs to inform critical scientific questions germane to neuroimaging.
At the time of this writing, two major efforts are underway. The
Adolescent Brain Cognitive Development (ABCD, https://abcdstudy.
org/) study aims to collect data on 10,000 participants across the
United States who will be tracked over the course of ten years starting
at age 9. Individuals who take part of this study will be scanned every
other year, potentially resulting in 5 time points of brain data for each
individual between the ages of 9 and 19 years. Another developmental
major longitudinal neuroimaging initiative, The Lifebrain study
(https://www.lifebrain.uio.no/), aims to examine 6000 Europeans
across different periods in the human lifespan from ages 0–100 years,
with an expected 40,000 time point total (with potentially ∼6 time
points per individual). The success of these (and similar) projects will
depend, in part, on the appropriate utilization of statistical techniques
to analyze longitudinal data.
Towards this end, the current paper summarized common problems

and issues that arise when applying longitudinal models in the extant
developmental literature. Reflecting, to some extent, an analytic em-
barrassment of riches, a legion of techniques currently exists to examine
a variety of types of change as well as explore various functional rela-
tions among constructs across time. As shown in our paper, each ap-
proach includes a somewhat distinct set of strengths and weaknesses,
necessitating a series of (hopefully informed) decisions throughout the
research process. It is our intent that the provided suggestions and so-
lutions will serve as a useful guide to those who seek to optimize the
design, analysis, and interpretation of longitudinal neuroimaging stu-
dies.
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