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Abstract

Genetic robustness is a hallmark of cells, occurring through many mechanisms and at many

levels. Essential genes lack the common robustness mechanism of genetic redundancy

(i.e., existing alongside other genes with the same function), and thus appear at first glance

to leave cells highly vulnerable to genetic or environmental perturbations. Here we explore a

hypothesis that cells might protect against essential gene loss through mechanisms that

occur at various cellular levels aside from the level of the gene. Using Escherichia coli and

Saccharomyces cerevisiae as models, we find that essential genes are enriched over non-

essential genes for properties we call “coding efficiency” and “coding robustness”, denoting

respectively a gene’s efficiency of translation and robustness to non-synonymous muta-

tions. The coding efficiency levels of essential genes are highly positively correlated with

their evolutionary conservation levels, suggesting that this feature plays a key role in pro-

tecting conserved, evolutionarily important genes. We then extend our hypothesis into the

realm of metabolic networks, showing that essential metabolic reactions are encoded by

more “robust” genes than non-essential reactions, and that essential metabolites are pro-

duced by more reactions than non-essential metabolites. Taken together, these results tes-

tify that robustness at the gene-loss level and at the mutation level (and more generally, at

two cellular levels that are usually treated separately) are not decoupled, but rather, that cel-

lular vulnerability exposed due to complete gene loss is compensated by increased muta-

tional robustness. Why some genes are backed up primarily against loss and others against

mutations still remains an open question.

Introduction

Robustness is a defining hallmark of all evolved, stable living systems, including single celled

organisms. Throughout evolution, different robustness features have evolved within many cel-

lular circuits (e.g., in genetic, protein, and metabolic flux networks). These features operate

through a variety of mechanisms [1] to protect cell functions. Most basically, the perturbations

that robustness protects against can occur either externally in the environment, or internally
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through genetic or other intracellular changes. While there are several hypotheses for how

genetic robustness evolves [2], it is unclear whether adaptations typically evolve directly to pro-

tect against mutations in essential genes, or indirectly as a byproduct of adaptations to changes

in the environment. Mutation rates, population size, environmental diversity of a species (spe-

cialized or generalist) and metabolic capacities all play a role in building the selective pressure

that drives development of robustness, but disentangling the causes from the effects is a stand-

ing challenge [3,4].

A common form of robustness is redundancy. It can be expressed either directly, whereby

two genes (or other cellular elements, such as enzymes, transcription factors, etc.) exist in a cell

for the same function (thus, e.g., one non-essential gene can back up a homologous gene if the

second becomes inactivated), or indirectly, when an alternative pathway fulfills the missing

role of an inactivated gene. Essential genes, by definition, are not redundant–knocking out any

essential gene will kill the cell. Since essential genes are common in cells and play many impor-

tant roles, a question that naturally arises is if and what secondary mechanisms might exist

that provide robustness to essential genes? It has been shown that adaptive (direct) robustness

can evolve to compensate for structures with low intrinsic robustness (e.g., which are a by

product of evolution of some other property) [5]. Is this the case for essential genes? If so, what

kind of adaptive mechanisms have evolved? This question becomes especially important when

considering bacterial pathogens, where resistance to antibiotics poses a tremendous public

health threat. A better understanding of the robustness mechanisms backing up essential

genes in such organisms could potentially explain cases of resistance formation when they are

targeted, and help to design more effective drugs.

As techniques for probing genomes have matured, essential genes have been catalogued

and examined in depth for an increasing number of organisms. Notably, several studies have

been done to exhaustively catalog essential genes in Escherichia coli for multiple media. Simi-

larly, essential genes have been catalogued for many other bacteria and also eukaryotes, includ-

ing Saccharomyces cerevisiae (yeast). With the screening of essential genes across whole

genomes, efforts have turned towards analyzing their features. For example, essential genes

have been assessed for evolutionary conservation, protein length distribution, and amino acid

usage [6,7]. The experimental methods that enabled essentiality screens are now often compli-

mented by genome-scale metabolic modeling (GSMM), a computational platform that has

allowed highly accurate predictions of which metabolic genes are essential in key organisms.

GSMM uses the network structure of metabolism to predict insults that will harm biomass

production. As such, it is a reliable engine for predicting essential genes, in addition to other

related phenotypes such as reaction and metabolite essentiality and network robustness

[4,8,9].

Here, we use a combination of GSMM and bioinformatics-level analysis to study the

robustness of essential genes. In order to generalize our results beyond a single model organ-

ism, we perform our analyses both in E. coli and in yeast. Importantly, the analyses in each

organism are done independently and do not make assertions or assumptions about which

genes are essential across both E. coli and yeast, but rather are based on experimentally (or

model-) derived essential gene sets in the relevant organism only.

In both E. coli and S. cerevisiae, we show that essential genes contain stronger genetic

protections against mutations than non-essential genes, as they have higher scores in novel

measures we term “coding efficiency” and “coding robustness”. These measures denote respec-

tively a gene’s efficiency of translation and robustness to non-synonymous mutations (see

Results Section: Sequence coding of essential genes is efficient and robust). We also show evi-

dence that this model of vulnerability at one level being compensated by robustness at a lower

level is a general property of biological networks, at least with regard to cell metabolism: we
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find that essential reactions are encoded by more robust genes than non-essential reactions,

and that essential metabolites are produced via more reactions than non-essential metabolites.

The results are true both for Escherichia coli and Saccharomyces cerevisiae, model prokaryote

and eukaryote, respectively. Furthermore, we show that coding efficiency and coding robust-

ness correlate positively with gene conservation level regardless of the essentiality of the genes.

This indicates that true gene ‘essentiality’ might be best defined in a way that includes not only

genetic redundancy, but the back-up mechanisms of coding efficiency and coding robustness

as well.

Results

The different layers of cellular robustness

Living organisms have evolved to be highly robust. This is especially true among organisms

that live in complex and hostile environments, which includes most human pathogens and

biotechnologically relevant microbes. Considering the striking robustness of these organisms,

we hypothesize that robustness mechanisms have formed to protect against the loss of essential

genes, which lack the key property of redundancy. The question remains: if we are able to find

such robustness mechanisms, what do they look like?

We hypothesize that the answer lies in the interconnected biochemical networks (e.g., met-

abolic, regulatory) that drive cellular function, which may employ varying levels of physical

compensatory systems to render essential genes less vulnerable, and thus relieve the evolution-

ary pressure to back them up with alternative genes. To investigate this, we examined E. coli
and S. cerevisiae at multiple scales, focusing on metabolic genes and the various systems in

which they participate. Fig 1 shows the general scheme of our investigation. We find, indeed,

that multiple levels of compensation exist in the cell, which uphold the general observation of

cellular robustness as it relates to essential genes, and sheds light on how essential genes can

persist across the tree of life without devastating consequences.

Sequence coding of essential genes is efficient and robust

We began our study at the level of DNA, asking whether essential genes are preferentially

coded to help protect the loss of their function. To test this, we considered the relative effi-

ciency of translation of essential versus non-essential genes, using a standard measure of how

good an organism’s ribosomes are at translating each codon (Methods). We examined this

property, which we term “coding efficiency”, in several datasets of essential genes in E. coli iden-

tified under various growth conditions, as well as in S. cerevisiae under rich glucose medium.

We found that, from a translation efficiency standpoint, essential genes are coded highly sig-

nificantly more efficiently than non-essential genes (p-values < = 5.1e-9 in all essential gene

sets available for E. coli or yeast, Wilcoxon one sided test; see Table 1). The same analysis on

metabolic genes also yielded significant results (p-value < = 3.6e-4 for all essential gene sets

tested; see Table 1).

It is possible that the differences we observe in coding efficiency between essential and non-

essential genes are due simply to essential genes having generally higher expression levels, as it

is known that expression level and coding efficiency are not independent [15–17]. To control

for this, we redid our analysis of coding efficiency comparing genes only within similar expres-

sion levels. We did this using transcriptomics [18] and gene essentiality data [12] under glyc-

erol-supplemented minimal media for E. coli, and transcriptomics [19] and essentiality [14]

data measured in a rich (YPD) medium for yeast. Indeed, despite essential genes being gener-

ally more expressed than non-essential genes (p-value < 4.9e-21 for E. coli, p-value < 0.0017

for S. cerevisiae in 15 out of 18 conditions tested), we found significantly higher coding
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efficiency of essential vs. non-essential genes even when comparing only within similar expres-

sion levels (this held true for all expression levels except for those that contained too few genes

for a reliable test–see S1 Fig).

Since coding efficiency improves translation speed [20–22], our results suggest that the cod-

ing of essential genes has evolved to speed up translation upon demand. We were curious if

the coding of essential genes has also preferentially evolved to guard against translation errors.

To examine this question, we developed a second new metric, termed “coding robustness,”
which is the ability of a protein to maintain its functionality given random non-synonymous

SNPs in the gene that codes it (Methods). We found that essential genes in both E. coli and S.

cerevisiae are significantly more robust at the codon level than non-essential genes (p-values<

0.0025 when considering all genes, and p-value< 0.0234 for only metabolic genes; see Table 2).

Fig 1. A four-level robustness hierarchy of the cell. Consecutive layers are separated by a horizontal dashed line. As evident, each

element’s efficiency/robustness arises from components at the layer beneath it; metabolite production depends on the functioning of the

reactions producing it, the latter depends on the function of the genes encoding their enzymes, and the genes’ sequence effects their

robustness and efficacy in turn.

doi:10.1371/journal.pone.0168444.g001
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This supports the notion that the potential detrimental implications of essential genes loss

are mitigated by multiple mechanisms within cells. Fig 2 shows the essential and non-essential

gene distributions of coding efficiency and coding robustness scores over all experiments

described above–all of these distributions show significant differences between essential and

non-essential gene groups.

Importantly, we never compare coding efficiency or coding robustness scores directly

across E. coli and yeast, as these scores could have a different scaling in different organisms.

Rather, all analyses with these metrics are done between genes with one organism only.

Gene evolutionary conservation analysis supports the role of coding

efficiency in protecting evolutionarily important, conserved genes

Evolutionary conservation is a key metric for testing what is truly important for a cell. For

example, if modifications in essential genes were a major liability for cell survival, we would

expect to observe higher selective pressure on them than on non-essential genes. Such a divi-

sion should show a distinct and measurable signature in each gene’s evolutionary rate. A con-

ventional metric for the latter is the dN/dS value, which tests the ratio of non-synonymous to

synonymous substitutions seen in each gene within a family of organisms. Past studies are

unclear about whether essential genes are more conserved than non-essential genes, showing

at best weak but significant relationships [7,23,24]. Therefore, we checked this feature first,

using dN/dS values for E. coli and yeast from [25,26]. We found that, in four out of five tested

datasets, essential genes are significantly more conserved than non-essential genes. A similar

test focusing only on metabolic genes showed significant conservation of essential vs. non-

essential genes in yeast (but not in E. coli–see Table 3).

Table 1. Coding efficiency of experimentally determined essential vs. non-essential genes.

Organism Data set Coding efficiency

All genes Metabolic genes

E. coli Gerdes et al., 2003 [10] 5.1e-9 7.7e-4

Hashimoto et al., 2005 [11] 7.6e-51 3.3e-8

Joyce et al., 2006 [12] 1.2e-18 7.3e-9

Baba et al., 2006 [13] 2e-39 8.2e-7

S. cerevisiae Giaever et al., 2002 [14] 8.6e-24 3.6e-4

P-values are reported, denoting the difference in coding efficiency between non-essential and essential genes in one-sided ranksum tests (checking for

higher coding efficiency of essential genes). This analysis is done for all genes (left), as well as only including metabolic genes (right). The criterion for

including a gene as ‘metabolic’ was that it exists in the E. coli or S. cerevisiae metabolic models.

doi:10.1371/journal.pone.0168444.t001

Table 2. Coding robustness of experimentally determined essential vs. non-essential genes.

Organism Data set Coding robustness

All genes Metabolic genes

E. coli Gerdes et al., 2003 [10] 9.6e-5 0.0039

Hashimoto et al., 2005 [11] 2.8e-6 5.8e-4

Joyce et al., 2006 [12] 0.0025 9.5e-6

Baba et al., 2006 [13] 0.0016 0.0158

S. cerevisiae Giaever et al., 2002 [14] 1.3e-33 0.0234

Results are shown for all genes and for only essential vs. non-essential metabolic genes (metabolic genes determined according to E. coli and S. cerevisiae

models).

doi:10.1371/journal.pone.0168444.t002
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The finding of high conservation among essential genes confirms the importance to cells of

evolving other compensatory mechanisms. To gain a better understanding of how conserva-

tion and robustness relate, we analyzed the correlation between the conservation data and cod-

ing efficiency and coding robustness scores of all genes and metabolic genes (Fig 3; also, see S1

Table for details). This analysis reveals that evolutionary conservation levels and coding effi-

ciency levels of genes, and to a lesser extent, also coding robustness for metabolic genes, are

strongly associated in yeast (Fig 3). Although the correlation values are much weaker in E. coli,
a Ranksum-based analysis still shows significant associations (S2 Fig). These results point to

the key role of coding efficiency in protecting evolutionary important, conserved genes,

although it remains a puzzle why the association of conservation with robustness measures is

so much weaker in E. coli.
We next analyzed coding efficiency versus coding robustness in E. coli and yeast, to see if

their levels correlate across genes (top of triangles in Fig 3). We found that coding efficiency

and coding robustness levels correlate only weakly in yeast, and non-significantly in E. coli.
Since robustness and efficiency are separate and in some ways complementary mechanisms,

we didn’t necessarily expect to see a correlation between them–efficiency, robustness, or both

could be at play in a given organism, leading to different compensational strategies in different

species.

Fig 2. Distributions of coding efficiency and coding robustness scores of experimentaly determined essential and non-essential genes, Y-

scale is normalized efficiency and normalized log10(robustness) values. Essential genes are significantly more efficient/robust in all cases, as

described above (see Table 1 and Table 2).

doi:10.1371/journal.pone.0168444.g002

Table 3. Conservation p-values for 1-sided Ranksum tests generated from experiments and genome

scale metabolic models.

Organism Data set p-value

E. coli Gerdes et al., 2003 [10] 0.055

Hashimoto et al., 2005 [11] 0.0098

Joyce et al., 2006 [12] 0.0426

Baba et al., 2006 [13] 0.0331

GSM (metabolic genes) 0.8824

S. cerevisiae Giaever et al., 2002 [14] 6.09e-30

GSM (metabolic genes) 0.0159

doi:10.1371/journal.pone.0168444.t003
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Like genes, metabolites and metabolic reactions are backed-up at other

levels of the metabolic network

Our emerging hypothesis is that essential genes contain several compensatory mechanisms

that render their essentiality less dangerous to cell survival, in accordance with the general

observation that, like all evolved stable systems, cells are robust. We next asked if this concept

can be generalized to other cellular elements, which fill higher levels in the cell’s functional

hierarchy. For this we focused on metabolism, since its network structure is the best known

and it exhibits clear modes of essentiality that are more readily amenable to a computational

analysis than other cellular processes such as, e.g., regulation and signaling.

To this end we used genome-scale metabolic models (GSM), which have been built for both

E. coli [27] and S. cerevisiae [28], and provide a solid platform for analysis of a variety of meta-

bolic features. An advantage of GSM analysis is that we can examine network features in a

broad range of in silico conditions, thereby exposing our models to a much broader range of

conditions than might be possible in lab experiments. For the analyses we describe here, we

assessed the models in 2000 random viable growth media, thus spanning a large space of

potential in silico environments and thus ensuring broadly defined concepts of essentiality and

robustness (see Methods).

First, we identified two types of key metabolic elements to assess: metabolic reactions and

the metabolites themselves. We determined the essential members of each set by assessing

which ones, when removed from the metabolic network, eliminate in silico biomass produc-

tion. Next, we defined robustness and efficiency scores for each element as appropriate, analo-

gous to the scores we described for essential genes. Namely, we derived the efficiency and

robustness of a reaction from the coding efficiency and coding robustness of the underlying

genes, as calculated using gene-protein-reaction Boolean logic (see Methods). We determined

the robustness of a metabolite as the number of reactions in the metabolic network that are

able to produce it (i.e., the redundancy built into the system). We found that essential elements

overwhelmingly exhibit more efficiency and robustness than non-essential elements, with 9 of

10 comparisons yielding significance in Ranksum tests (Table 4). Fig 4 shows the essential and

non-essential elements distributions of efficiency and robustness scores. This considerably

extends our essential gene backup hypothesis to multiple cell layers.

Fig 3. Correlation triangle scheme between coding efficiency, coding robustness and evolutionary conservation scores, for S.

cerevisiae and E. coli. Outer lines state genome wide correlations while inner lines state correlations of metabolic genes. Edges

thickness represents the correlation coefficient.

doi:10.1371/journal.pone.0168444.g003
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Acetylated proteins are enriched for essential genes

Following our overall hypothesis about the existence of backup mechanisms, we performed a

preliminary analysis to determine if post-translational modifications also might play a role in

backing up essential genes. Specifically, we studied the post-translational modification of

lysine acetylation, which plays a key role in regulating chromatin dynamics, gene expression,

and metabolic pathways both in eukaryotes and in prokaryotes [29–32]. When analyzing a

dataset of acetylated proteins in E. coli [33], we found that they are highly enriched with essen-

tial genes (S2 Table). That is, E. coli proteins encoded by essential genes are more prone to

undergo this type of post-translational modification than proteins encoded by non-essential

genes. The extent to which such acetylation modifications confer robustness is yet an open

question.

Discussion

Our launching off point in this study is the question: what robustness mechanisms are in place

to protect cells against the loss of essential genes, which otherwise might represent significant

sources of vulnerability in single-celled organisms? We start by defining two complementary

gene features, coding efficiency and coding robustness, and showing that essential genes tend to

be encoded more efficiently and robustly than non-essential genes in both E. coli and yeast.

This result supports a previously observed relation between structurally and functionally more

important sites and high translation efficiency [34], and importantly, extends it to the gene

level. We next show that the compensatory mechanisms that protect against essential gene

loss, including and especially the mechanism of coding efficiency, are positively associated

with the genes’ evolutionary conservation rates. This testifies to the functional importance of

these properties.

Table 4. Efficiency and robustness 1-sided Ranksum p-values generated from genome scale metabolic models.

Model Metabolites robustness Reactions Genes

Efficiency Robustness Efficiency Robustness

E. coli 1.29e-6 0.0058 2e-4 0.0108 0.0771

S. cerevisiae 8.45e-7 3.61e-12 0.0117 3.5e-6 0.022

doi:10.1371/journal.pone.0168444.t004

Fig 4. Distributions of efficiency and robustness scores of essential vs non-essential elements generated from genome

scale models of E. coli and S. cerevisiae. Y-scale is normalized efficiency and normalized log10(robustness) values. Mets–

metabolites, Rxns–reactions, Eff–efficiency, Rob–robustness.

doi:10.1371/journal.pone.0168444.g004
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Unlike the other robustness and efficiency metrics we explored, E. coli genes’ coding

robustness was not found to associate significantly more strongly with essential genes than

non-essential ones when essentiality was determined in context of the ability of a metabolic

model to produce biomass (see Table 4). While this result is surprising, it is possible that it is

an artifact due to mis-labeling of the essentiality of some genes, especially since the result con-

flicts with that seen with experimentally validated essential gene sets (compare Table 2 with

the rightmost column of Table 4). This could easily happen if, for example, a gene is essential

under evolutionarily relevant conditions, but is marked non-essential because there are envi-

ronments (albeit non-evolutionarily relevant ones) in which the metabolic model predicts it is

not necessary for cell survival.

Beyond our main analyses of coding robustness and coding efficiency, we also explored two

generalizations of our main hypothesis. First, we explored whether back-up mechanisms exist

for essential elements other than genes–namely, essential metabolic reactions and essential

metabolites. Indeed, we found that essential metabolic reactions are encoded by more “robust”

genes than non-essential reactions, and that essential metabolites are produced by more reac-

tions than non-essential metabolites. This generalizes our initial result, showing that essential

elements in metabolic networks also display compensatory mechanisms.

Our second generalization of the main hypothesis involved checking if there might also be

mechanisms at the post-translational level that protect the loss of essential genes. While our

analysis is preliminary and only correlative, we found that essential genes are enriched among

acetylated proteins, suggesting that this may constitute another method of back-up. Fully vet-

ting this hypothesis is out of the scope of this study, but when taken alongside our finding of

backup mechanisms for essential metabolites and essential reactions in metabolism, it suggests

the possible existence of yet other backup mechanisms for essential genes (and other essential

cellular elements), which we have not yet identified, but that are yet present and active in cells.

If such mechanisms exist, this might explain one puzzling result that we found in our analy-

sis, that coding robustness and coding efficiency were both more strongly conserved among

metabolic genes than non-metabolic genes (in both yeast and E. coli—see Fig 3). Namely,

it would suggest that there might be a range of other, as-yet-unidentified compensational

mechanisms that play a stronger role in non-metabolic processes than metabolic ones, thus

alleviating the need for robust or efficient genes to be conserved in non-metabolic pathways.

Identifying each of these specific features and understanding the elaborate synergies between

them may give an entirely new perspective on network essentiality, and on how it affects cellu-

lar fitness as a whole.

Materials and Methods

Genome Scale Metabolic Modeling (GSMM)

A metabolic network consisting of m metabolites and n reactions can be represented by a stoi-
chiometric matrix S, where the entry Sij represents the stoichiometric coefficient of metabolite i
in reaction j [35]. A CBM model imposes mass balance, directionality and flux capacity con-

straints on the space of possible fluxes in the metabolic network’s reactions through a set of lin-

ear equations

S � v ¼ 0 ð1Þ

vmin � v � vmax ð2Þ

Where v stands for the flux vector for all of the reactions in the model (i.e. the flux distribu-
tion). The exchange of metabolites with the environment is represented as a set of exchange
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(transport) reactions, enabling a pre-defined set of metabolites to be either taken up or secreted

from the growth media. The steady-state assumption represented in Eq (1) constrains the pro-

duction rate of each metabolite to be equal to its consumption rate. Enzymatic directionality

and flux capacity constraints define lower and upper bounds on the fluxes and are embedded

in Eq (2). In the following, flux vectors satisfying these conditions will be referred to as feasible

steady-state flux distributions. Gene knock-outs are simulated by constraining the flux

through the corresponding metabolic reaction to zero.

Essentiality in the metabolic model

In order to determine essentiality values, each element (gene/reaction/metabolite) was KOed

in the following way: Gene KO–block the flux of all reactions with GPR statement that always

returns ‘false’ when the value of the current gene relevant variable is set to ‘false’ (by changing

the upper and lower limits to zero); Reaction KO–block the flux of the specific reaction; Metab-
olite KO–block the flux of every reaction that consumes this metabolite (and make sure there is

an appropriate exchange reaction, to preserve the steady-state constraint). According to the

effect of the KO on the maximal biomass production, one of three essentiality values was

assigned to each element: Essential–KO reduces biomass production to zero; Non-essential–
KO doesn’t affect the biomass at all (compared to the wild type); Undefined–KO reduces bio-

mass production but not completely, these elements (which constitute a small minority) are

ignored in the analysis.

Genes’ coding efficiency

Synonymous mutations do not alter the produced protein, yet can have a significant effect on

protein levels in the cell [36]. This score measures relative translation efficiency levels of genes,

achieved by preferring some codons over (synonymous) others. To quantify the relative transla-

tional efficiency, we use the tRNA Adaptation Index (tAI) [37], as also described in [38]. Briefly,

each codon is assigned with a TE value based on the availability of the corresponding tRNAs in

the cell (as reflected by their genomic copy numbers). A codon score is achieved by multiplying

all ratios between its TE value and the TE values of all synonymous codons that can be achieved

by a SNP (see example below). A gene score is achieved by a geometric average over all of its

codons’ scores. Our method is somewhat similar to using the RSCU metric, but the two are not

the same. RSCU also measures the tendency of preferring some codons over others, although

not necessarily more efficiently translated ones. Different environmental conditions can cause a

bias towards codons that are less efficiently translated (but more adapted to the specific environ-

ment), thus having a high RSCU score [17]. Also, higher RSCU values can result from several

reasons, such as mutational bias [39], and gene expression. In our work we wanted to analyze

the effect of selection for translational efficiency on the codon bias and that is why we used the

described method. Gene sequences for S. cerevisiae and E. coli were taken from KEGG [40] and

BioMart [41], respectively. Codons TE and efficiency scores are presented in S3 Table.

Codons efficiency score calculation example:

EFFICIENCYCCG ¼ ðTECCG=TECCTÞ � ðTECCG=TECCCÞ � ðTECCG=TECCAÞ
¼ ð0:165=0:054875Þ � ð0:165=0:125Þ � ð0:165=0:125Þ ¼ 3:007 � 1:32 � 1:32 ¼ 5:239107

Genes’ coding robustness

As opposed to synonymous SNPs, non-synonymous SNPs change the produced protein

and therefore can disrupt or even totally disable it. Each protein functionality level is derived

from its amino acids chain, and the robustness metric we define here aims to measure the

Essential Genes Are More Mutationally Robust
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functionality degradation caused by non-synonymous SNPs. We assume that common vari-

ants of the protein are a result of undamaging / minor damaging mutations. By utilizing that

assumption, we use the amino acid substitution matrix, PAM70 [42], to assign a score to all

codons. This is done by multiplying all relevant entries in the PAM70 matrix, representing all

possible resulting codons due to a non-synonymous SNP (see example below). Here also, a

gene score is achieved by a geometric average over all of its codons’ scores. Because the score is

calculated independently over all of the codons in the sequence, our method doesn’t take into

account SNPs that result in a stop codon (which will turn the rest of the sequence invalid).

Codons robustness scores are presented in S3 Table.

Codons robustness score calculation example:

ROBU STNESSGCT
¼ AA½GCT;TCT� � AA½GCT;CCT� � AA½GCT;ACT� � AA½GCT;GTT� � AA½GCT;GAT � � AA½GCT;GGT�

¼ e1 � e0 � e1 � e� 1 � e� 1 � e0 ¼ 1

Reactions’ efficiency and robustness

Each reaction in the metabolic model has its own boolean GPR (Gene Protein Relation) state-

ment which determines if the reaction will be catalyzed according to expressed genes. An effi-

ciency / robustness score is obtained by a summation over all possible entries in the induced

truth table of the reaction’s GPR. Instead of using a simple boolean values (thus treating all

genes as uniformly expressed), we used relevant genes efficiency / robustness scores (and min/

max operations instead of and/or).

Compiling essential network components from the metabolic model

We generated 2000 random viable media for each organism metabolic model, allowing the

production of cellular biomass. Utilizing these media, we obtained 2000 different metabolic

networks, which resulted in 2000 essential components groups in both E. coli and S. cerevisiae.
To avoid bias due to dead-end elements in the model we considered only: live reactions, genes

that appear in live reactions’ GPR and metabolites that are produced by at least one reaction.

Also, in the metabolites case, we tested only those that do not take part in the biomass reaction,

since we want to find metabolites that block the biomass reaction for a reason other than being

part of the biomass function itself. An element was considered essential if it was essential over

all random models. In order to validate the essential components groups, they were compared

to an essentiality test results using rich media. An element was considered non-essential if its

KO did not affect biomass production under all random models; Thus composing lists of ele-

ments with essentiality trait that is determined by the model itself and not affected by a given

media. A convergence test was used to determine that the number of random media was suffi-

cient. Lists of the always-essential and always-non-essential metabolic elements can be found

in S1 and S2 Files, respectively.

Supporting Information

S1 Fig. Comparison between essntial and non essential genes with similar expresstion val-

ues.

(PDF)

S2 Fig. Wilcoxon one sided test of efficiency and robustness scores between genes with

high vs. low conservation.

(PDF)
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