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Abstract: After mosquitoes, ticks are the most important vectors of infectious diseases. They play
an important role in public health. In recent decades, we discovered new tick-borne diseases;
additionally, those that are already known are spreading to new areas because of climate change.
Slovenia is an endemic region for Lyme borreliosis and one of the countries with the highest incidence
of this disease on a global scale. Thus, the spatial pattern of Slovenian Lyme borreliosis prevalence
was modelled with 246 indicators and transformed into 24 uncorrelated predictor variables that
were applied in geographically weighted regression and regression tree algorithms. The projected
potential shifts in Lyme borreliosis foci by 2050 and 2070 were calculated according to the RCP8.5
climate scenario. These results were further applied to developing a Slovenian Lyme borreliosis
infection risk map, which could be used as a preventive decision support system.
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1. Introduction

Tick-borne diseases are increasingly important in the field of human public health
in Europe [1]. A wide range of viruses, bacteria, and parasites that can potentially cause
serious health problems in humans and other animals are transmitted by ticks [2]. Ticks
are hematophagous ectoparasites and are, after mosquitoes, the most important vectors of
various infectious diseases [3]. The tick becomes infected with the pathogen while feeding
on the infected host and then transmits the pathogens to its next host. Thus, ticks harm
humans obliquely, through the transmission of pathogenic organisms during feeding [4].

Ticks belong to the phylum Arthopoda, class Arachnida, subclass Acari (mites and
ticks), and order Ixodida. The order Ixodida consists of three families: hard ticks (Ixodi-
dae), soft ticks (Argasidae) and the monotypic family, Nuttalliellidae. Because of their
characteristics (e.g., specialized host-seeking behavior, strong affinity for humans or a high
responsiveness to stimuli that indicate the presence of hosts) and high abundance, the
members of the hard tick family are good vectors of infectious diseases [5]. In Europe,
the predominant species of the hard tick family is the castor bean tick (Ixodes ricinus),
also known as the sheep tick. Compared to other species, the castor bean tick is very
sensitive to ambient temperature and humidity. Furthermore, all developmental stages
of this species are prone to desiccation, making air temperature and humidity even more
important environmental limiting factors. For survival, at least 70–80% relative humidity
is required, so castor bean ticks often return to lower-lying and more humid areas during
their host search, allowing them to rehydrate [1]. Therefore, the presence of this species
is usually limited to leaf fall and lower-lying vegetation in deciduous or mixed forests.
However, in areas with more precipitation, they can also be found in coniferous forests and
open habitats such as meadows and pastures [4]. Other important habitats include shrubs,
forest edges, forest clearings, parks and gardens [6]. The castor bean tick is a major carrier
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of pathogens dangerous to both humans and other animals [7]. Among other diseases, this
tick transmits the agent of tick-borne encephalitis and Lyme borreliosis (LB). The latter is
considered to be the most common tick-borne disease in the Northern hemisphere [8]. In
Europe, it is usually present in areas with a higher proportion of forests. The highest rate
of reported cases occurs in Austria, Germany, Slovenia and Sweden [9]. In many European
countries, including Slovenia, the incidence of LB is increasing every year [10].

One of the most frequently discussed, but perhaps less understood, consequences
of global climate change is its effect on infectious diseases and human health [11]. Since
ticks are ectothermic animals, changes in temperature, precipitation, humidity and other
environmental conditions affect their development, behavior and population dynamics, as
well as the development of the pathogens within them. Therefore, climate change indirectly
affects the dynamics of diseases transmitted by ticks, which can further endanger human
health [12]. The dispersion of ticks to higher latitudes and altitudes is correlated with
global warming, and has already been recorded in Sweden [13], Norway [14], the Czech
Republic [15] and the UK [16]. With climate and other environmental change processes, the
tick-borne disease infection risk is expected to escalate. Bouchard et al. [17] concluded that
ticks and tick-borne pathogens will become more abundant and active in the coming years.

This research addresses the territory of the Republic of Slovenia, where LB is the most
common tick-borne disease. A large part of the country has been an endemic area for this
disease for more than 70 years, and it should be emphasized that the incidence of LB is
constantly increasing. Moreover, Slovenia is among the top European countries regarding
the number of people infected with LB [18]. In the last decade, between 5000 and 7000 cases
of LB infection were recorded in Slovenia annually [19]. The most common clinical forms
among documented LB cases in Slovenia were erythema migrans (6000 cases reported, on
average, between 2014 and 2018), meningitis (11 cases reported, on average, between 2014
and 2018) and polyneuropathy (4 cases reported, on average, between 2014 and 2018) [20].
In order to bridge the existing gaps in our understanding of LB distribution, we addressed
the following research questions: (1) Are there significant spatial foci of LB in Slovenia?
(2) Can these foci be explained with geospatial modelling techniques and proxy predictor
variables describing natural and anthropogenic processes in the study area? Finally, (3) will
climate change indirectly affect the spatial distribution of this disease in Slovenia?

2. Materials and Methods
2.1. The Dependent Variable

In order to reveal the spatial pattern of LB in Slovenia, we considered the average
number of people infected with LB between 2015 and 2018 in each Slovenian municipality
as the dependent variable. These data were obtained from the National Institute of Public
Health [21]. However, since Slovenian municipalities differ in both spatial dimension
and population density, we undertook, in the initial step, a normalization procedure for
the dependent variable. Here, the average value of people infected with LB within each
municipality between 2015 and 2018 was divided by the average number of inhabitants
per municipality. The resulting normalized dependent variable, which represented LB
prevalence (YLB) in the study area, was then used in all further analyses.

2.2. Independent Variables

As independent variables, we used 238 separate indicators that could potentially
explain the spatial distribution of infected castor bean ticks and, indirectly, the distribution
of LB.

The Slovenian municipalities’ vector database and the digital elevation model (DEM)
(25 m horizontal resolution) were obtained from the online platform e-Geodetic data
belonging to the Surveying and Mapping Authority of the Republic of Slovenia [22].

To estimate vegetation density, the MODIS-based Normalized Difference Vegetation
Index (NDVI) was obtained from the EarthData database [23] for the 2015–2018 period.
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In the following step, its average value, standard deviation and the linear trend coefficient
were calculated in the ArcGIS environment [24,25].

To assess the indirect impact of land use on the prevalence of LB, we used 12 inde-
pendent variables regarding land use types, which describe the potential habitat of the
castor bean tick (Table S1). Land use vector data for 2017 were obtained from the Slovenian
database MKGP-portal [26] and from the European database Land Copernicus [27] for
2018. The same database was used to download the Small Woody Features variable for
the 2018 time window. For modelling purposes, all categorical land use variables were
transformed to distance matrices by applying the Euclidean distance algorithm in the
ArcGIS environment [24].

Another important proxy indicator potentially explaining the spatial distribution of
tick-borne Lyme disease in Slovenia was the tick hosts. Here, the roadkill data from the
Slovenia Forest Service [28] for the 2010–2018 time window were obtained. We classified
these data into 5 categories, which included all roadkill species that could potentially
represent castor bean tick hosts: birds, rodents, carnivores, ungulates and rabbits. For
further analysis, we used the total number of roadkill in each category, considering the
area of the individual municipality.

Since direct human-to-tick contact is needed to become infected, we also included
some socio-economic drivers. These were obtained from the STAGE database [29], from the
state administration database GOV.SI [30], and from the SiStat database [31]. We calculated
the average number of inhabitants and the average population density per municipality in
the time span 2015–2018. In addition, the average number of inhabitants who achieved
higher or post-secondary education was also included. Next, the geometric mean of the
population-aging index per municipality for the time range 2015–2018 and the harmonic
mean value of the municipal development coefficient for the period 2015–2019 were added
to the predictor list. To assess the impact of population movements on the risk of becoming
infected with tick-borne Lyme disease, we used the average number of domestic tourist
overnight stays in each municipality for the period 2015–2018, the geometric mean of the
labor migration index for the period 2015–2018, and current road network vector data [22].

Climate predictors were obtained from the CHELSA website [32]. Current (1970–2013)
and future (2050 and 2070) bioclimatic characteristics were considered. To encapsulate the
variability of future bioclimatic predictions, data were analyzed from 5 significantly different
global climate models (HadGEM2-ES (Hadley Center Global Environment Model version 2—
Earth System configuration), CCSM4 (The Community Climate System Model 4), MIROC-
ESM (MIROC Earth System Model), HadGEM2-CC (Hadley Center Global Environment
Model version 2—low top configuration) and MPI-ESM-LR (The Coupled Max Planck
Institute Earth System Model at base resolution)) [33], within the RCP 8.5 climate scenario.

2.3. Hot Spot Analysis

In order to inspect whether high or low YLB values were clustered by location, a
spatial Cluster and Outlier Analysis (Anselin Local Morans I) was performed in ArcGIS [24].
However, a Hot Spot Analysis (Gets-Ord Gi*) was needed to check whether the aggregation
of normalized values was statistically significant. Here, the contiguity–edges–corners
conceptualization of spatial relationships was selected since we operated with polygon
features and a normalized dependent variable (YLB). In doing so, we were primarily
interested in spatial clusters of high YLB values, i.e., those foci that indicated a much higher
risk of infection with LB.

2.4. Preprocessing of Independent Variables

To avoid predictor multicollinearity, a correlation analysis in the R statistical soft-
ware [34] was initially performed. Since not all our input independent variables met the
normal distribution criteria, the Spearman correlation coefficient was applied. Thus, all
redundant (positively [rS > 0.6] and negatively correlated [rS < −0.6]) predictors, except
elevation, NDVI, climatic principal components and some land use types, were omitted
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in the modelling procedure (Table S1). These exceptions were necessary for YLB future
modeling; nevertheless, their variance inflation factor (VIF) value was below the critical
value of 5.

To reduce the number of bioclimatic predictors and simultaneously retain their infor-
mative value, we performed a principal component analysis in the ArcGIS environment [24].
The resulting first two principal components carried 80% of bioclimatic variability. This
methodological procedure was then repeated for each of the 5 considered global climate
models, for the time windows 2050 and 2070 within the RCP8.5 scenario. Finally, the zonal
statistics algorithm in the ArcGIS software [24] was used to calculate the mean value of the
first and second bioclimatic principal components per municipality for all time windows
(current, 2050 and 2070).

Highly correlated roadkill categories (frequency of birds, rodents, carnivores, ungu-
lates and rabbits) were transformed using Factor Analysis in the R statistical software [34].
Two factors explaining 50% of variance were then used in further analysis. The same was
procedure was conducted with the following socio-economic predictors: average num-
ber of inhabitants, average population density, mean value of domestic tourist overnight
stays, average number of inhabitants with higher and post-secondary education, and mean
labor-migration index. Here, both further considered factors loaded 63% of the variability.

Thus, the final predictor list included 24 variables (Table S1).

2.5. Modelling

We calibrated, compared and, finally, averaged two models that enabled count data
prediction: the Multivariate Geographically Weighted Regression (MGWR) and the ma-
chine learning-based Regression Tree Analysis (CART). The first one was developed with
the MGWR 2.2 software [35] (Model Type = Poisson; Spatial Kernel = Adaptive; Bandwidth
Searching = Golden Section) (Tables S2 and S3), and the second one with the rpart [36],
rpart.plot [37], caTools [38] and tree [39] packages within the R statistical environment [34]
(Figure S1). In order to properly specify regression trees, we divided our sample (212 mu-
nicipalities) into test data (25%) and training data (75%). The resulting CART model was
additionally pruned by applying the complexity parameter value with the smallest relative
error (cp = 0.052). Based on the functional relationships between the dependent (YLB) and
predictor variables (Table S1) in the test data sample, we predicted the normalized number
of infected people in the training data sample for current and future bioclimatic conditions
(2050 and 2070). Essentially, both algorithms were used to predict future YLB, and thus
predict potential shifts in LB foci in Slovenia. In order to test and compare model quality,
the resulting standardized residuals were tested for significant spatial autocorrelation with
Moran’s I index. However, additional model quality indicators were also calculated: the
Monte Carlo Spatial Variability test for the MGWR model, Explained Deviance (ED), Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE), Corrected Akaike Information
Criterion (AICc).

2.6. Downscaling

After properly specifying both models, the resulting algorithms were used to generate
an LB infection risk map of Slovenia, concerning climate change scenario RCP8.5 and
time windows 2050 and 2070, in a higher spatial resolution. Local regression predictor
coefficients and the Hot Spot analysis confidence level bin field (Gi_Bin) enabled the
downscaling procedure within the MGWR model. Variable importance information and
the aforementioned Gi_Bin value were used to downscale our dependent variable YLB with
the CART model. Thus, we were able to spatially improve our results to the resolution of
the weakest dynamic predictor (both bioclimatic principle components = 30 arcseconds).
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3. Results
3.1. Foci of LB in Slovenia

The Hot Spot Analysis of YLB revealed five statistically significant clusters of high
values in Slovenia. One focus was in the northern part of the Mura Statistical Region; the
second focus covered the eastern part of the Drava Statistical Region, and the third focus
was located in the southwestern part of the Savinja Statistical Region. The fourth focus
was located in the western part of the Upper Carniola Statistical Region and in northern
parts of the Gorizia Statistical Region. The fifth focus was identified in the southern part of
the Gorizia Statistical Region, in the northern part of the Coastal-Karst and Littoral–Inner
Carniola Statistical Region, and in the southwestern part of the Central Slovenia Statistical
Region (Figure 1A,B).
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3.2. MGWR Modelling

Before drawing any conclusions or making further predictions, the model’s over- and
under-predictions were analyzed (Figure 2A,B). The insignificant (p > α; α = 0.05) Moran’s
Index indicted that the MGWR model was properly specified, since its standardized
residuals were normally distributed and free of spatial autocorrelation. The explained
deviance reached 65% and the AICc value decreased from 1180.45 in the global regression,
to 758.61 in the MGWR procedure (Tables S2 and S3).
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Figure 2. (A) Standardized residuals of predicted YLB (MGWR model); (B) The corresponding spatial autocorrelation test.

The Monte Carlo Spatial Variability test indicated that the following predictors had
statistically significantly varying estimates: elevation, land use (distance to Small Woody
Features) and climatic conditions represented by the first and second principle components.
These predictor variables had, in some places, a negative and, in other places, a positive
effect on the dependent variable YLB. The Hot Spot Analysis of predicted YLB enabled
additional quality control, since we were thus able to compare real and predicted LB foci in
Slovenia. The MGWR model predicted three major high value clusters of YLB (Figure 3).
The value between the Mura and Drava Statistical Regions was slightly underestimated,
and the value extending across three statistical regions (the southern part of the Gorizia
Statistical Region, the northern part of the Coastal-Karst and Littoral–Inner Carniola
Statistical Region, and the southwestern part of the Central Slovenia Statistical Region) was
somewhat overestimated. However, all deviations from real YLB values are shown with
numbers in Figure 3. Moreover, significantly low YLB value clusters were predicted with
greater accuracy. However, other model performance parameters also confirmed its high
quality (ED = 52%; MAE = 4.1 RMSE = 3.8; AICc improvement = 426.8).
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3.3. CART Modelling

The selected predictor variables implemented in the pruned CART model also yielded
results with randomly dispersed over- and under-predictions, free of spatial autocor-
relations (insignificant Moran’s I; p > α, α = 0.05; ED = 62%; MAE = 3.6 RMSE = 3.3)
(Figure 4A,B). Here, both bioclimatic principal components were important decision mak-
ers for explaining the spatial pattern of YLB in Slovenia. However, the following predictors
also significantly boosted model performance: elevation (14%), land use (dry open land
(14%), pasture (9%), and extensive orchards (6%)), and NDVI (10%) (Figure S1).
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Four LB foci were identified by calculating CART-predicted YLB hot and cold spots.
Thus, better results were produced in the northeastern part of the Mura Statistical Region
and in the eastern part of the Drava Statistical Region (Figure 5). The aggregation of
predicted high values was partly in accordance with actual YLB hot spots in the northern
part of the Littoral–Inner Carniola, in the western part of Central Slovenia and in the
eastern part of the Gorizia Statistical Region. However, both YLB foci in the eastern part
of Slovenia were slightly overpredicted. The opposite situation can be observed in the
northern and western parts of the study area, where most municipalities identified as LB
hot spots had underpredicted YLB values. Additional similarities with the MGWR model
results were identified in the predicted quality of YLB cold spot distribution.

3.4. LB Infection Risk Assessment

Finally, we used both developed algorithms to downscale YLB values and prepare an
LB infection risk map by considering currently realistic (RCP8.5) climate change predictions
for the second half of the 21st century (2050 and 2070). Thus, the spatial resolution of
the dependent variable was immensely improved, since we now operated with a grid of
30 arc seconds (~1 km2) instead of in individual municipalities. Figure 6A summarizes the
current LB infection risk value resulting from the cumulative mean from the MGWR and
CART models. However, future predictions indicate that the level of infection risk with LB
will increase by 2050 in most parts of Slovenia (by up to 7.6%), especially in the northern
and northeastern parts of the country (Figure 6B). Between 2050 and 2070, climate change
could additionally increase LB infection risk (by up to 1.5%) in the central, western and
eastern parts of Slovenia (Figure 6C). We can expect that by the end of the 21st century, the
following regions will be severely affected: the western Mura Statistical Region, northern
Gorizia and Upper Carniola Statistical Region, western Drava Statistical Region, and the
northern Savinja and Carinthia Statistical Region.
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Figure 6. (A) Current LB infection risk map (MGWR and CART ensemble mean value); (B) infection
risk difference under the RCP8.5 scenario between 2050 and the current state; (C) infection risk
difference under the RCP8.5 scenario between 2070 and 2050. All future predictions are based on the
mean values derived from five different global climate models (HadGEM2-ES, CCSM4, MIROC-ESM,
HadGEM2-CC and MPI-ESM-LR).

4. Discussion

The fact that global warming can trigger shifts in species range distribution is al-
ready well known. Climate change affects tick habitat suitability and alters their spatial
distribution [13–16]. It has a significant influence on tick hosts, which are crucial for
their survival [11]. These processes leave behind distinct spatial patterns of tick-borne
diseases [12]. Ostfeld and Brunner [11] reported that tick-borne diseases, such as LB and
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tick-borne meningoencephalitis, are already expanding over considerable areas of North
America and Eurasia, since tick populations are moving to higher latitudes and altitudes.
It seems that Slovenia is no exception; our results prove the same climate-change-triggered
spatial trend in the case of LB. Therefore, our findings are even more alarming, since
Slovenia is already among the leading countries for LB incidence [18]. It is predicted that
these five LB foci could become larger due to climate change. LB infection risk will increase
in the second half of the 21st century, particularly in the central, western and eastern parts
of Slovenia. However, we learned from both models that other environmental factors
(elevation, specific land use, host abundance) and socio-economic factors (population
density, tourists, labor migration, education, etc.) are important co-creators of the LB
footprint. Therefore, the developed infection risk map for the current and future climatic
conditions in Slovenia has a major applicative value. Such products enable a more accurate
assessment of the epidemiological situation, which leads to better preparation of mitigation
plans and preventive action implementation [40]. Understanding the spatial patterns of
human exposure to disease vectors, as well as related pathogens, is essential for limiting
and controlling the prevalence of tick-borne diseases [41]. Moreover, LB already exerts
an impact on employee health, travel choices, and the economic sustainability of tourism
in endemic areas [42]. The same authors [42] concluded that theoretical and applicative
research is needed to improve our knowledge of the relationships between public health,
tourism, and the natural environment so that tourism management stakeholders can be
empowered to be active agents in the evolving, transdisciplinary efforts to prevent, manage,
and recover from Lyme disease outbreaks.

However, due to recent advances in geospatial information technology, infection risk
maps can be easily integrated into web-based or mobile platforms to meet the needs of
multiple customer groups (health care professionals, outdoor workers, resident populations
and tourists) affected by and dealing with increasing levels of LB. The ESA demonstration
project LymeApp (https://business.esa.int/projects/lymeapp (accessed on 9 October 2020))
is a good example of where geospatial modelling techniques were applied on Scottish Lyme
data to produce maps of Lyme risk and vector distribution. Users were also able to report
the locations of ticks and bites to the central database. If such spatial decision support and
risk management systems covered all countries with a high LB prevalence/incidence, we
could potentially limit the substantial productivity losses and decrease the economic and
social costs caused by this disease on a global scale.

5. Conclusions

The climate crisis is deepening. Nowadays, the direct or indirect consequences of
climate change are recognized in each corner of the world. Lifeforms are reacting (and
adapting) to the changed environment, and so are the pathogens that they carry. The
studies that investigate the spatial pattern dynamics of dangerous human diseases, should
thus receive public attention. Indeed, such studies always provide applicative results,
supporting strategic preventive action planning and decision making, either on local,
regional (national), or even, global levels. From this perspective, the following conclusions
can be drawn from our study: (1) In Slovenia, significant spatial foci of Lyme borreliosis
are evident. (2) These can be explained and modelled with “proxy” predictor variables
describing natural and anthropogenic processes in the target area. (3) Climate change will
definitely potentiate the prevalence of Lyme disease in Slovenia and perhaps trigger a
spatial shift of existing foci. Finally (4), it is expected that, infection risk could increase by
up to 10% by the end of the century, especially in more elevated areas. However, these
findings are calling for action since Lyme borreliosis is perhaps not a fatal disease [43], but
can cause long-term symptoms that lead to limitations to daily life even after treatment [44],
thus causing high societal cost [45].

https://business.esa.int/projects/lymeapp
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