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We recently analyzed the functional 
roles of UTX-1 during develop-

ment. utx-1 is an essential gene required 
for the correct embryonic and post-
embryonic development of C. elegans, 
and it displays an H3K27me3 demeth-
ylase activity. Rescue experiments dem-
onstrated that the enzymatic activity of 
UTX-1 is not relevant for its role in devel-
opment. The phenotypes associated with 
loss of UTX-1 might, instead, be a result 
of compromised functions of an UTX-1-
containing complex. Here we discuss the 
possible mechanisms by which UTX-1 
contributes to normal development.

Introduction

Although most cells in a multicellular 
organism contain the same genes, they are 
not all used in the same way in every cell. 
During development, genes are differen-
tially expressed or repressed when needed, 
thus specifying features unique to each 
cell type. The activity of transcription fac-
tors in the regulation of gene expression 
patterns is well known, but in recent years 
the role of epigenetics in the regulation 
of transcription has become increasingly 
clear. The term “epigenetics” refers to heri-
table changes of gene expression or phe-
notypic alterations not related to changes 
in the DNA sequence, but resulting from 
modifications of the chromatin structure.2 
Epigenetic mechanisms include DNA 
methylation, histone modifications and 
non-coding RNAs.

In the nuclei of all eukaryotic cells, 
genomic DNA is tightly wrapped around 
core histones (H2A, H2B, H3 and H4) into 
a compacted structure called chromatin. 
Core histones have flexible tails of 25–40 
amino acids, marked with a vast variety of 
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post-translational modifications, such as 
methylation of lysines and arginines, phos-
phorylation of serines and threonines, and 
ubiquitylation and sumoylation of lysines. 
These modifications have been proposed to 
represent a combinatorial “histone code”, 
that specifies the function of the affected 
genomic regions in terms of chromosome 
segregation, cell cycle progression, DNA 
replication/repair and transcriptional activ-
ity.3,4 Thus, some of these modifications 
appear to play important roles in dividing 
the genome into transcriptionally active/
relaxed and inactive/compacted regions. 
In addition to regulating chromatin com-
paction, modified nucleosomes provide 
binding sites for regulatory proteins that, 
in turn, might stabilize the chromatin sig-
nature and provide a platform to recruit 
additional factors.5

Methylation of the histone tails occurs 
at arginine and lysine residues and it 
is regulated by histone methyltransfer-
ases (HMTs) and histone demethylases 
(HDMs). Methylation on lysine 27 of 
histone 3 (H3K27) is considered a repres-
sive marker and it is established by the 
EZH2-containing Polycomb Repressive 
Complex 2 (PRC),6 the mes complex in 
C. elegans, and removed by the members 
of the KDM6 family, UTX (ubiquitously-
transcribed TPR protein on the X chro-
mosome) and JMJD3.7-9 Another protein, 
UTY, located on the Y chromosome, is 
part of the KDM6 family and shares high 
homology with UTX, but it seems unable 
to remove the H3K27me3 mark, at least 
in vitro.8,9 In C. elegans there are 3 homo-
logs of JMJD3 (jmjd-3.1–3) and a single 
homolog of UTX/UTY, called utx-1.1,7 
UTX-1 protein contains four tetratrico-
peptide repeats (TPR) in its N-terminal 
region, which are predicted to be protein 
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for brevity we call UTX-1/SET-16 com-
plex) that includes WDR-5.1–2, ASH-2, 
F21H12.1, SET-16 and PIS-1 (Fig. 2). A 
similar complex has also been identified 
in mammalian cell.20-22 While WDR-5, 
ASH-2 and F21H12.1 (the homolog of 
RBBP5) are in common with other com-
plexes,23-25 SET-16, the nematode homolog 
of MLL3/4 with H3K4 methyltransferase 
activity, and PIS-1, the homolog of PTIP, 
are specific components. The findings that 
the loss or reduction of any of the com-
ponents of the complex gives rise to the 
phenotypes identified in the utx-1 null 
mutant, together with the analyses of the 
genetic interactions between the members 
of the complex, indicates that the UTX-1/
SET-16 complex plays a relevant role dur-
ing development and that UTX-1 acts 
through the complex. By mass spectrom-
etry, we also identified UTX-1 in associa-
tion with other chromatin factors, such 
as HDA-1, LIN-53 and MIX-1, key com-
ponents of the NuRD complex26 and the 
Dosage Compensation Complex.27 This 
finding suggests that UTX-1 is present in 
several chromatin-associated machineries 
and supports the notion that chromatin 
factors are components of large complexes, 
containing several enzymatic functions. 
Strikingly, histone demethylases are often 
found in association with histone meth-
yltransferases7,21,22,28-31 suggesting that the 
coordinated removal of histone modifica-
tions by HDMs and the addition of other 
modifications by HMTs may be required 
for the timely establishment of a chro-
matin environment required for a precise 
transcriptional output. Future studies 
will be directed toward the identification 
of UTX-1-containing complexes in spe-
cific tissues and at specific developmental 
stages.

One of the major questions in cell 
type specifications during development 
is how extracellular signals control the 

female Utx KOs are embryonic lethal, 
hemizygous males that carry Uty on the 
Y chromosome, are born, suggesting that 
some developmental roles of mouse UTX 
can be fulfilled by UTY, despite its lack 
of catalytic activity. Taking together with 
our results, this shows that UTX has 
retained a catalytic-independent role dur-
ing evolution.

Our analysis also suggests that the 
members of the KDM6 family serve dif-
ferent roles during nematode life. While 
utx-1 is a broadly expressed gene required 
for viability, the JMJD3 homologs ( jmjd-
3.1–3) seem to have more specific and sub-
tle roles. This is indicated by the restricted 
cells/tissue localization of these proteins 
and by the fact that single or triple mutant 
animals lacking the three jmjd-3-like genes 
are viable and fertile (Vandamme et al., 
unpublished).7 Genetic analyses show that 
the three jmjd-3 genes do not act redun-
dantly with utx-1, thus further supporting 
that the members of KDM6 family play 
distinct roles in nematode. This is also 
in agreement with studies in mammals 
demonstrating specific roles for JMJD3 
in the response to environmental cues.17-

19 The fact that in the nematode, JMJD3 
is represented by 3 homolog genes and 
may reflect the necessity of the animal to 
adapt to several external stimuli. Notably, 
we previously reported that loss of jmjd-
3.1 results in aberrant gonadal migration 
and misshaped germline when the mutant 
animals are grown at a high temperature.7 
A detailed analysis of the other JMJD-3 
homologs, in particular under stress con-
ditions, will bring information on the spe-
cific role of these proteins in several aspect 
of nematode biology.

UTX-1 and Chromatin Complexes

Mass spectrometry analyses indicate 
that UTX-1 is part of a complex (that 

interaction motifs,10 and a carboxyl-termi-
nal Jmj-C domain, identified in proteins 
with demethylase activity (Fig. 1).11 By 
RNA interference approaches, utx-1 has 
been observed to be involved in vulva for-
mation12 and in longevity.13,14

Developmental Roles of UTX-1

The biological roles of UTX-1 during 
development were analyzed using utx-1 
null mutant alleles.1 The phenotypes asso-
ciated with UTX-1 loss are pleiotropic, 
suggesting that utx-1 is an essential gene 
involved in several aspects of development. 
Homozygous utx-1 animals with maternal 
contribution develop until adulthood and 
show somatic gonadal defects and steril-
ity. Few eggs are produced with the major-
ity failing to hatch. The escapers, lacking 
both maternal and zygotic contribution, 
develop as deformed animals and die at 
L1 stage, with prominent defects in body 
morphology. As its mammalian counter-
part, UTX-1 is an H3K27me3 demethyl-
ase, and its loss results in a global increase 
of H3K27 trimethylation, indicating that 
UTX-1 actively removes a large portion of 
H3K27me3 in the animal.

One of the major findings in our 
manuscript is that the catalytic activity of 
UTX-1 is not required for the described 
phenotypes. Indeed, reintroduction of a 
catalytically dead UTX-1 (UTX-1DD) 
was able, similar to the wild-type form, to 
rescue the sterility, the embryonic lethality 
and the morphological defects of the null 
mutants. This implies that UTX-1 must 
have other functions beside its demeth-
ylase activity. A catalytic-independent 
function of the members of the KDM6 
family has been previously hypothesized,15 
but never been demonstrated in vivo. 
However, recent results obtained in mice 
suggest that Utx also has a catalytic-inde-
pendent role in this organism.16 While 

Figure 1. Schematic representation of UTX-1 protein. The tetratricopeptide repeats (TPRs) and the Jmj-C domain are in black and red, respectively. 
Phosphorylated serines are also indicated.
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phenotypes strongly suggests that the cat-
alytic function of UTX-1 is not absolutely 
required, at least during development, for 
the functionality of the complex. Here, 
taking in account our results, we briefly 
summarize possible models of UTX-1 
action.

The fact that specific members of 
the complex are downregulated in utx-1 
mutants suggests that UTX-1 may be 
important to establish the complex by 
regulating the level of expression/avail-
ability of the components (Fig. 2A). 
Furthermore, the presence of UTX-1 may 
stabilize the complex by protein-protein 
interactions, mediated by the tetratrico-
peptide repeats, located at its N-terminal 

direction may provide not only infor-
mation on UTX-1 modulation, but also 
provides hints concerning how the epigen-
etic machineries integrate into signaling 
networks.

Mechanisms of UTX-1 Action

The evidences that UTX-1, a demethylase 
removing the repressive mark H3K27me3, 
associates with SET-16, a methyltrans-
ferase that deposits the activating mark 
H3K4me3, suggest that the UTX-1/
SET-16 complex promotes transcriptional 
activation by modulating the chromatin 
environment (Fig. 2). However, the ability 
of the inactive UTX-1 to restore wild-type 

transcriptional programs and therefore 
the activity of epigenetic enzymes. Since 
posttranslational modifications are often 
required for correct protein localization, 
stability and activity, we took advantage 
of our mass spectrometry analysis to iden-
tify modifications associated to UTX-
1. Interestingly, we found that UTX-1 
is phosphorylated on serines 830 and 
842, just upstream of the catalytic JmjC 
domain. While, we so far have not been 
able to detect any role of the phosphory-
lation sites during C. elegans development 
(Vandamme J et al., unpublished), their 
presence suggests that UTX-1 is subject 
to regulation by kinases and, possibly, 
phosphatases. Further studies in this 

Figure 2. Schematic representation of possible UTX-1 functions. In wild-type conditions (central box), the UTX-1/SET-16 complex is recruited at the 
promoter of developmental genes. The combined action of UTX-1 (in red) and SET-16 (in green) results in loss of H3K27me3 and acquisition of H3K-
4me3, leading to chromatin relaxation and proper transcription activation (green arrow). In utx-1 null mutant (upper part of the drawing), the complex 
may be not assembled (A) or not properly targeted to the promoter regions (B). In both cases the transcription remains repressed (red line), leading to 
utx-1 phenotypes. In the lower part of the drawing, possible functions of the catalytic inactive UTX-1 (UTX-1DD, indicated by the white portion in UTX-
1 molecule) are represented. UTX-1DD is recruited at the complex where it may hide the H3K27me3 site (C), or recruit other chromatin-remodeling 
factors (in gray) (D). In both cases, the transcription is activated, even in the presence of H3K27me3, leading to correct development. Core components 
(WDR-5, ASH-2 and F21H12.1/RBBP5) of the complex are shown in white. PIS-1 is represented in yellow.
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to directly assess the relevance of the 
enzymatic activities of the studied mol-
ecules. While not relevant for develop-
ment, UTX-1 enzymatic activity may 
be important for other functions during 
nematode life. Indeed, recently, the cata-
lytic activity of UTX-1 has been shown to 
modulate longevity.13,14 Further analyses 
testing response to stresses or cell repro-
gramming, together with identification of 
target genes, may reveal other catalytic-
dependent roles of UTX-1.
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