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Objective: Although many clinical metrics are associated with proximity to

decompensation in heart failure (HF), none are individually accurate enough to

risk-stratify HF patients on a patient-by-patient basis. The dire consequences of

this inaccuracy in risk stratification have profoundly lowered the clinical threshold for

application of high-risk surgical intervention, such as ventricular assist device placement.

Machine learning can detect non-intuitive classifier patterns that allow for innovative

combination of patient feature predictive capability. A machine learning-based clinical

tool to identify proximity to catastrophic HF deterioration on a patient-specific basis

would enable more efficient direction of high-risk surgical intervention to those patients

who have the most to gain from it, while sparing others. Synthetic electronic health

record (EHR) data are statistically indistinguishable from the original protected health

information, and can be analyzed as if they were original data but without any privacy

concerns. We demonstrate that synthetic EHR data can be easily accessed and

analyzed and are amenable to machine learning analyses.

Methods: We developed synthetic data from EHR data of 26,575 HF patients

admitted to a single institution during the decade ending on 12/31/2018. Twenty-seven

clinically-relevant features were synthesized and utilized in supervised deep learning and

machine learning algorithms (i.e., deep neural networks [DNN], random forest [RF], and

logistic regression [LR]) to explore their ability to predict 1-year mortality by five-fold

cross validation methods. We conducted analyses leveraging features from prior to/at

and after/at the time of HF diagnosis.

Results: The area under the receiver operating curve (AUC) was used to evaluate

the performance of the three models: the mean AUC was 0.80 for DNN, 0.72 for

RF, and 0.74 for LR. Age, creatinine, body mass index, and blood pressure levels

were especially important features in predicting death within 1-year among HF patients.
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Conclusions: Machine learning models have considerable potential to improve

accuracy in mortality prediction, such that high-risk surgical intervention can be applied

only in those patients who stand to benefit from it. Access to EHR-based synthetic data

derivatives eliminates risk of exposure of EHR data, speeds time-to-insight, and facilitates

data sharing. As more clinical, imaging, and contractile features with proven predictive

capability are added to these models, the development of a clinical tool to assist in timing

of intervention in surgical candidates may be possible.

Keywords: electronic health record (EHR), machine/deep learning, heart failure, synthetic data, surgical

intervention

INTRODUCTION

Heart failure (HF) patients comprise the largest, most
rapidly growing, and most expensive subset of patients
with cardiovascular disease1. In the early stages of new-onset HF,
the clinical prediction of each patient’s potential for a favorable
response to medical therapy is critical since it determines
initial management and sets the stage for their ultimate clinical
course. This prediction is confounded by the fact that these
patients commonly present in profound clinical HF with
severely impaired left ventricular (LV) function (ejection fraction
<20%) (1), only to subsequently demonstrate a very favorable
response to medical therapy. Despite the gravity of their initial
presentation, they are essentially cured by medical therapy alone.
Conversely, many patients with an identical clinical presentation
do in fact suffer precipitous deterioration (2).

Unfortunately, the poor prognostic performance of the
qualitative metrics (echocardiographic, functional, metabolic,
and others) that currently drive HF therapeutic clinical
algorithms leaves little hope of accurate one-on-one individual
patient risk-stratification (3). In fact, because of the lack of
metrics that can accurately and reliably predict catastrophic
hemodynamic deterioration, many HF programs have
adopted a very low threshold for early and highly invasive
surgical intervention (4). Thus, upon initial presentation
with profound LV impairment, congestive symptoms, and
borderline hemodynamics, new-onset HF patients are often
rushed off to invasive surgery for intra-aortic balloon pump,
extracorporeal membrane oxygenator (ECMO) support, or
ventricular assist device (VAD) placement with immediate
listing for cardiac transplantation (2). It is tragic to subject
patients to the significant risks of surgical intervention if they
can be managed on medical therapy alone. Similarly, however,
over-compensating toward medical therapy in these critically
ill patients also has a major downside: we are equally unable
to determine which of these patients will suddenly deteriorate
while on medical therapy. This deterioration is often so rapid
and unheralded that sudden death or severe end-organ failure
preclude any further efforts (5). All too often, we are left with
patients whose “windows of opportunity” have passed under
our watch.

Thus, our inability to accurately and consistently differentiate
these two patient subsets at the time of presentation results in

1Available online at: www.americanheart.org

high-risk surgery being unnecessarily applied to some patients,
while being denied to others who have the most to gain from
it. Improving the accuracy of the metrics utilized to predict
response to guideline-directed medical therapy has obvious
potential to more accurately direct the clinical use of highly
invasive, risky, and expensive HF surgical intervention. We
seek to more accurately identify HF medical therapy non-
responders on a one-by-one basis. This would enable their
targeting for intense surveillance with an appropriately lowered
threshold for early evaluation for high-risk therapy—while
simultaneously sparing those who will ultimately respond to
lower-risk medical therapy.

Machine learning can detect non-intuitive classifier patterns
that allow for innovative combination of patient feature
predictive capability (6). Recently, deep learning algorithms have
been successfully used in electronic health record (EHR) data
from healthcare fields. Deep learning algorithms can effectively
capture the informative and useful features and patterns from the
rich healthcare information in EHR data (7). For example, a very
recent study showed that deep-learning-based model achieved
significantly higher accuracy to predict mortality among acute
heart failure patients than the existing score models and several
machine learning models by using EHR data (8–13).

One of the problems with deep learning applications
in heart failure is the management of large volumes of
incomplete EHR information. The specter of public exposure
of protected individual patient health information is also
an important consideration when accessing the often-massive
datasets commonly used in deep learning analysis of healthcare
information (14). In regard to these concerns, synthetic electronic
health record (EHR) data are statistically indistinguishable from
that of original protected health information, and can be
analyzed as if they were original data but without any privacy
concerns (15).

In this investigation, we utilize an entirely synthetic
dataset derived from a large cohort of HF patients seen
at a single institution to test several machine learning
methodologies regarding their prediction of HF outcomes.
Using entirely synthetic data, we developed and compared a
deep learning model—deep neural networks (DNN) (16)—with
two machine learning models—random forest (RF) (17) and
logistic regression (LR) (18)—to predict 1 year mortality among
heart failure patients. Feature importance determinations by a
tree-based classifier (19) were utilized to optimize comparison of
model performance.
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TABLE 1 | Included 27 features and examples of feature values.

Feature names Feature description and value examples

Gender Gender (e.g., Female, Male)

Primary race Race (e.g., White, Black, Asian, Other)

Age at event Age of patients when the first time diagnosed

with HF

Visit group Visit types (e.g., Inpatient visit, Outpatient visit,

Emergency room visit, Observation Same day

Visit, Ancillary, Pre-visit, Series)

Source diagnosis Diagnosis types (e.g., Cardiomyopathy,

unspecified, Dilated cardiomyopathy, Other

cardiomyopathies, Secondary cardiomyopathy,

unspecified’,

Cardiomyopathy due to drug and external

agent’,

Cardiomyopathy in other diseases classified

elsewhere, Alcoholic cardiomyopathy,

Cardiomyopathy in diseases classified

elsewhere Nutritional and

metabolic cardiomyopathy)

Diagnosis type Diagnosis types (e.g., Final Diagnosis,

Admitting, Reason for visit, Interim)

Facility Facility (e.g., BJC/Washington University)

Present on admission If HF present on admission (e.g., Yes, No, Ns)

Principal problem If HF is the principal problem (e.g., True, False)

Problem class Problem class (e.g., Chronic, Temporary)

Severity Severity (e.g., High)

BMI-Age at measurement Age of patients at the measure of BMI

BMI-Average calculated bmi The numeric value of BMI

BP-Age at Measurement Age of patients at the measure of BP

BP-Diastolic The numeric value of BP Diastolic

BP-Systolic The numeric value of BP Systolic

Steroids-Age at medication order Age of patients at the order date of Steroids

VHD-Condition Valvular heart disease (VHD) (e.g., Endocarditis,

valve unspecified, unspecified cause,

Endocarditis, valve unspecified)

Echo-Surgery code Echocardiogram (Echo) (e.g., 1070001163)

kidD-Age at event Kidney disease (KidD) (e.g., Chronic kidney

disease, stage 3 (moderate), Hypertensive

chronic kidney disease, unspecified, with

chronic kidney disease stage I through stage IV,

or unspecified, Hypertensive heart and chronic

kidney disease with heart failure and stage 1

through stage 4 chronic kidney disease, or

unspecified chronic kidney disease, Chronic

kidney disease, unspecified, End stage renal

disease, Hypertensive chronic kidney disease

with stage 1 through stage 4 chronic kidney

disease, or unspecified chronic kidney disease,

Chronic kidney disease, Stage III (moderate),

Chronic kidney disease, stage 2 (mild), Cystic

kidney disease, unspecified)

creatinine-Age at event Age of patients at the measure of creatinine

creatinine-Result value numeric The numeric value of creatinine

SMK-Smoking tobacco status Smoking (SMK) status (e.g., Former Smoker,

Never Assessed, Never Smoker, Current Every

Day Smoker, Unknown If Ever Smoked, Heavy

Tobacco Smoker, Smoker, Current Status

Unknown)

SMK-Age at event Age of patients at the smoking

(Continued)

TABLE 1 | Continued

Feature names Feature description and value examples

AF-Condition Atrial fibrillation (AF) (e.g., Atrial fibrillation,

Paroxysmal atrial fibrillation, Unspecified atrial

fibrillation, Chronic atrial fibrillation, Persistent

atrial fibrillation)

AF-Age at event Age of patients at the diagnosis of AF

diab • Diabetes (diab)—Identify diabetes presented

based on if one of the following presented.

• Fasting gluecose

• Hemoglobin A1c

• Diagnosis (e.g., Diabetes mellitus without

mention of complication, type II or

unspecified type, not stated as uncontrolled,

Type 2 diabetes mellitus

without complications)

METHODS

Data Source and Study Design
In this study, the electronic health records (EHR) data was
from a single hospital, Barnes-Jewish Hospital from a large
academic medical center, Washington University in St Louis.
These data were synthesized by MDClone platform, which
can create synthetic electronic health data that is statistically
equivalent to original data, but contains no actual patient
information2. The synthetic data generation platform creates a
computationally derived data set which is statistically identical
to that of the original patients. The computationally-derived
variables and their pairwise correlations had the same or very
similar distributions as the relationships among variables in
the original data (20). We included a Spearman’s correlation
comparison between the variables in the original compared
to the variables derived from the MDClone synthetic data
platform (Supplementary Figure 1). The original patient cohort,
from which the synthetic data was derived, were admitted for
treatment at Barnes-Jewish Hospital with an admitting diagnosis
of heart failure during the decade ending on 12/31/2018.
Our goal was to predict their proximity to catastrophic HF
decompensation by predicting 1-year mortality based upon
features contained in their EHR after/at or prior to/at the earliest
diagnoses of heart failure. We studied 26,575 (26,600) patients if
using features prior to/at (if after/at) heart failure diagnoses.

For the feature extraction, we discarded features whose
missing values rate exceeded 70%, as we expected that they may
cause a substantial difference between features available prior
to/at and after/at the time of HF diagnosis. For example, the
feature “CABG—Procedure code” was included in the case of
after/at HF diagnosis, but was excluded from the case of prior
to/at HF diagnosis as it had a missing value rate more than
70%. For all others, we imputed any missing values as the mean
value for the continuous variables and the mode value for the
categorical variables. Under the criteria, there were 27 features
and one outcome (death) were included in our study. The

2https://www.mdclone.com/
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included features and possible value examples for each feature
were listed in Table 1.

We classified the heart failure patients into two groups based
upon their mortality dates: a positive class (patients who died
within 365 days of initial HF presentation) and a negative class
(patients who did not die or died later than 365 days after HF
presentation). There were 1,768 (1,735) positive patients and
24,807 (24,865) negative patients if using features prior to/at
(after/at) the first heart failure diagnosis dates.

Statistical Analysis
We then applied machine learning and deep learning models to
predict the all-cause mortality within 1 year by using features
either prior to/at or after/at heart failure diagnoses. The three
models employed were deep neural networks (DNN), random
forest (RF) and logistic regression (LR). For each model of each
prediction, we utilized five-fold cross validation by dividing the
dataset into five-folds, with each fold serving as a test dataset
and the remaining four-folds comprising a training dataset.
There was a significant imbalance between the positive and

negative classes. We utilized Synthetic Minority Over-sampling
Technique (SMOTE) (21) to deal with the imbalanced issue by
oversampling positive patients to the same amount of negative
patients in each cross validation, i.e., the four-folds training
datasets was oversampled by SMOTE while the remaining one-
fold which served as testing dataset kept as original without using
SMOTE to oversample.

Our DNN was comprised of an input layer (with 27
dimensions), 5 hidden layers (with 256, 256, 128, 64, and 32
dimensions, respectively) and a scalar output layer. We used the
Sigmoid function (22) at the output layer and ReLu function
(23) at each hidden layer. Binary cross-entropy was used as loss
function and Adam optimizer (24) was used to optimize the
models with amini-batch size of 64 samples. The hyperparameter
of network depth was searched from 2 to 8 hidden layers. To
avoid overfitting, an early stopping technique was used which
would stop training when the monitored loss metric stopped
improving after 5 epochs. We set the maximum epochs at 50.
The LR and RF models were configured by the default options
in package of Scikit-learn in Python 3. We performed a grid

FIGURE 1 | The Flowchart of our work.
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search of hyperparameters for the RF model by five-fold cross
validation. We searched the number of trees in the forest for 100,
200, 500, and 700, and we considered the number of features for
the best split according to auto, sqrt, and log2. We also did a
grid search of hyperparameter tuning for LR models by five-fold
cross validation. In penalization, we searched the norm for L1
and L2 norm, and the inverse value of regularization strength for
10 different numbers spaced evenly on a log scale of [0, 4]. We
achieved the best hyperparameters on the default configurations
for both RF and LR models.

TABLE 2 | Characteristics [mean (SD) or n (%)] of the two study populations.

Demographics After/at heart failure

(n = 26,600)

Prior to/at heart

failure

(n = 26,575)

Age 63 (17) 63 (17)

Gender

Female 11,116 (41.8) 11,103 (41.8)

Male 15,484 (58.2) 15,418 (58.0)

Race

White 15,218 (57.2) 15,420 (58.0)

Black 4,738 (17.8) 5,015 (18.9)

Other/unknown 6,644 (25.0) 6,140 (23.1)

BMI 29.6 (6.3) 29.8 (6.2)

Diastolic blood pressure (DBP, mmHg) 73 (15) 75 (15)

Systolic blood pressure (SBP, mmHg) 127 (23) 131 (23)

Valvular heart disease (VHD) present 327 (1.2) 388 (1.5)

Echocardiogram (ECHO) present 38 (0.1) 5 (0.0)

Creatinine level 1.63 (1.01) 1.41 (0.88)

Current smoker 703 (2.6) 191 (0.7)

Diabetes present 3,809 (14.3) 5,174 (19.5)

Finally, we investigated the feature importance to better
understand which features played more important roles
compared to others by tree-based classifiers. We quantified
the importance of features by ordering them in an ascending
order. The prediction performances were then validated by using
different numbers of top features in the three machine learning
models. Figure 1 represents a flowchart of our data analysis.
Analyses were conducted by using the libraries of Scikit-learn,
Keras, Scipy, Matplotlib with Python, version 3.6.5 (2019).

RESULTS

The average age for the two study populations was 63 (Table 2).
Approximately 58% of patients in both groups were male and
white. There were 327 patients (388 for prior to/at heart failure)
who also had a diagnosis of valvular heart disease (VHD) and
14% (19% for prior to/at heart failure) of the patients had
diabetes. The average creatinine level was 1.63 (1.41 for prior
to/at heart failure) for patients. Approximately 7% of the patients
of both study populations died within 1 year from the earliest
diagnosis of heart failure.

Figure 2 shows the prediction performance for 1-year
mortality by using after/at and prior to/at first diagnosis heart
failure start date. All the 27 features are used for these predictions.
In the two study groups, DNN models outperformed the other
two models of RF and LR and achieved the highest AUC values:
the mean AUC value of DNN was 0.82 (0.80) compare to RF
and LR with 0.74 (0.72) and 0.74 (0.74) in the five-fold cross
validation models.

Figure 3 shows the feature importance by the tree-based
classifier method for both cases. In the first case of after/at
heart failure diagnosis, it shows that the most important features
included blood pressure, creatinine levels, body mass index
(BMI) etc. In the case of prior to/at heart failure diagnosis, the

FIGURE 2 | Prediction performance by deep neural network (DNN), random forest (RF) and logistic regression (LR). (A) Is using features after and at heart failure

diagnoses date; (B) is using features prior to and at heart failure diagnoses date.
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FIGURE 3 | Feature importance study by tree-based classifier. (A) Is using features after/at heart failure diagnoses date; (B) is using features prior to/at heart failure

diagnoses date.

most important features were age at the first diagnosis of heart
failure, creatinine, and BMI.

Figure 4 shows the prediction performance by using all
different numbers of top features for 3 models of DNN, RF and
LR. For example, if # of top feature = 12, it means the models
used only the top 12 important features listed in Figure 3 in each
case. In all cases, DNN models outperformed RF and LR models.
The AUC values were markedly reduced in both study groups
when the features dropped from 12 to 11, for all three machine
learning models.

DISCUSSION

In this study, we utilized 10-year synthetic EHR data by
MDClone platform to identify heart failure patients to predict
the mortality of patients within 1 year from the first diagnoses
of heart failure by machine learning and deep learning models.
We also investigated the top important features by tree-based
classifier and tested all different possible numbers of top features
as the inputs for all the three models in both two cases.

Our results indicated that the deep learning model DNN
can effectively predict the mortality within 1 year of patients
by using features such as measurements and diagnoses from
either after/at or prior to/at the first diagnoses of heart failure.
Our results also indicated that features such as blood pressure,
BMI and creatinine levels are the most informative ones, and
in all cases DNN models outperformed RF and LR models.
Three models consistently indicated that there was a significant
reduction in accuracy of model prediction, as represented by
AUC values, when the number of most important features
utilized in the model were reduced from 12 to 11, suggesting
that 12 features would be a potential threshold if a reduction in
features is necessary.

The case of using features from prior to/at HF diagnosis was to
provide insights into the 1-year mortality prediction at the time
of HF diagnosis, in which a mortality prediction risk score was
calculated for patients at the time of HF diagnosis. The case of
using features from after/at HF diagnosis to enhance the 1-year
mortality prediction following HF diagnosis. At each follow-
up time point, a predicted 1-year mortality risk score could be
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FIGURE 4 | Model performance with different numbers of top features for DNN, RF and LR.

calculated for patients. Based on these scores, providers may
make particular treatment decisions to optimize prevention and
more effectively manage these patients.

The use of synthetic EHR data in deep learning models
to predict 1-year mortality among heart failure patients is
unique to this investigation, which also emphasized the use of
feature importance to guide mechanistic hypotheses in this HF
patient population. This use of synthetic EHR data containing
no protected health information uniquely allows a broader
application of our results by enabling the sharing of data without
risk of exposure of individual patient EHR information. In future
work, we plan to pursue additional statistical analyses such as
permutation tests and statistical comparisons to investigate the
impact of feature importance. We acknowledge that our current
DNN model had a relatively simple structure with 5 hidden
layers. In future work, we will investigate more complicated
structures of DNN models with more hidden layers (e.g., from
2 to 32) and evaluate other novel deep learning models.

LIMITATIONS

This study is limited by the small number of health-related
features included in our machine learning applications. Many
features were not used in our models because of a high

proportion of missing values. As the EHR continues to expand
health data inclusion and improve in the accuracy, consistency,
and completeness of the data included, model performance will
almost assuredly improve by the inclusion of clinical variables
with proven predictive capability.

CONCLUSIONS

Machine learning models have obvious and considerable
potential to improve accuracy in the risk stratification of HF
patients. The ability to use EHR variables to identify HF patient
proximity to HF decompensation and death would allow the
more accurate and timely application of high-risk surgical
intervention. Access to synthetic data derivatives speeds time-
to-insight using EHR data, and allows the sharing of massive
datasets—while simultaneously reducing privacy concerns by
eliminating the risk of personal data exposure. As the EHR
becomes more complete, the inclusion of advanced clinical,
imaging, and contractile features—with proven predictive
capability—in predictive machine learning models can be
expected to improve their accuracy. As the accuracy of machine
learning, and especially deep learning, models improves, the
development of a clinical tool capable of assisting clinicians
in the timing of intervention in surgical candidates may be
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possible. Further, our ability to quantify individual EHR feature
impact on mortality prediction may allow the generation
of non-intuitive mechanistic hypotheses leading to potential
preventative clinical intervention.
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