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Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We
demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced
AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded
pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases
during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with
excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated
AM depletion experiments in wild type mice indicated a cause for AM reduction in
aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also
revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and
neutrophil migration, which might also contribute to the protective function of Lkb1 in
AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and
immune function of AMs.
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INTRODUCTION

Alveolar macrophages (AMs) act as the first sentinels of the pulmonary innate immune system (1),
whose niche in the alveolar space is important for monitoring pulmonary homeostasis. Under
steady conditions, AMs are primarily derived from fetal monocytes and maintain their niche by
proliferative self-renewal (1, 2). Studies have shown that AM development is highly dependent on
granulocyte macrophage colony-stimulating factor (GM-CSF) receptor signaling, as both Csf2ra-
and Csf2rb-deficient mice are devoid of AMs (3). GM-CSF has a lung-specific role in the perinatal
development of AMs via induction of PPAR-g in fetal monocytes, which may promote the
differentiation of pre-AMs into mature AMs (4). In addition, reports have identified that another
cytokine, transforming growth factor-b (TGF-b), is critical for the development and maturation of
AMs (2, 5). Although these studies have examined the development of AMs, the potential molecular
mechanisms underlying the self-renewal of terminally differentiated AMs are not well understood.
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The number of AMs is maintained at constant levels to
sustain pulmonary homeostasis and respiratory function and
to initiate the response to inhaled pathogens in the lung (1). AMs
have a role in regulating response to infections and epithelial
injury. AMs can interact with alveolar epithelial cells, dendritic
cells (DCs) and T cells through cell surface receptors and
chemokine/cytokine networks to finely regulate the immune
response to environmental pathogens and lung particles (6, 7).
Anti-inflammatory molecules are highly expressed in AMs, in
which the CD200 receptor can bind its ligand on alveolar
epithelial cells to inhibit the inflammatory response induced by
the Toll-like receptor (8). In addition, signal-regulatory protein-
a, which is expressed on AMs, inhibits macrophage activation
and phagocytosis by binding surfactant proteins A and D (6, 9).
AMs also release TGF-b, which prevents DC-mediated activation
of effector T cells to inhibit immune responses (1). AMs
recognize opsonized microorganisms and facilitate pathogen
clearance using different receptors, such as immunoglobulin
receptors and complement receptors (10, 11). How AMs
recognize the presence of pathogens or products of injury and
respond directly to provide optimal host protection and the
potential molecules that regulate these responses remain to
be discovered.

Liver kinase b1 (Lkb1), a serine–threonine kinase and tumor
suppressor, was first identified in Peutz–Jeghers syndrome (12,
13). Lkb1 participates in multiple processes, including cell
polarity, cel l cycle arrest , embryonic development,
hematopoietic stem cell maintenance, apoptosis and
metabolism (14). In various tissues, Lkb1 plays an important
role in regulating glucose homeostasis and energy metabolism. In
addition, there is also evidence that has highlighted a prominent
role for Lkb1 in the function of macrophages (15). Lkb1 inhibits
the activation and inflammatory function of innate macrophages
(16, 17). However, the roles of Lkb1 in regulating the
homeostasis of AMs and specific airway inflammation need to
be investigated.

Here, we investigated the role of Lkb1 in the maintenance of
AM self-renewal and immune homeostasis. We found that
disruption of Lkb1 impaired the self-renewal of AMs,
contributing to the reduction of AMs, which led to aggravated
symptoms and excessive accumulation of neutrophils in
Staphylococcus aureus (S. aureus) pneumonia and asthma. In
addition, we found that many critical immune genes of AMs are
regulated by Lkb1. Transcriptomic sequencing also revealed that
Lkb1 inhibits proinflammatory pathways, including IL-17
signaling and neutrophil migration pathways. Therefore, we
identified Lkb1 as a crucial maintainer of AM self-renewal and
immune homeostasis.
MATERIALS AND METHODS

Mice
Mice were housed in specific pathogen-free barrier facilities.
Mice were used in accordance with protocols approved by the
Institutional Animal Care and Use Committee at the Institute of
Frontiers in Immunology | www.frontiersin.org 2
Hematology, Chinese Academy of Medical Sciences. C57BL/6
mice, Lkb1f/f mice, AMPKa1f/f mice and Cd11cCre mice were all
purchased from Jackson Laboratories (Bar Harbor, ME, USA).
The mice were backcrossed with C57BL/six mice for at least
seven generations. Lkb1f/f mice and AMPKa1f/f mice were
crossed with Cd11cCre mice to generate Cd11cCreLkb1f/f mice
and Cd11cCreAMPKa1f/f mice, respectively. Mice were used at 6–
8 weeks old, unless otherwise indicated.
Cell Isolation and Preparation
For analysis of cell surface markers, single cell suspensions were
prepared from BAL fluid, lung, medLN, kidney, liver and
thymus. To obtain BAL fluid cells, mice were sacrificed and
pinned upright to a dissection board. The tracheas were exposed,
and a small opening was cut with surgical scissors. A 1 ml syringe
with a needle was inserted into the tracheal opening, and the
alveolar cavity was washed with 500 µl PBS at least six times. BAL
fluid was obtained and transferred to a 10 ml tube. The lung,
medLN, kidney, liver and thymus single-cell suspensions were
prepared using the same procedure as follows. The target tissues
were finely ground with a filter, and the red blood cells were lysed
with 200 µl erythrocyte lysate (Solarbio) for 10 min at 4°C.
Leukocytes were washed with PBS to obtain single
cell suspensions.
Flow Cytometry
Flow cytometry antibodies and their clone numbers are listed in
Table S2. Cell surface staining was performed at 4°C for 30–40
min in the dark. The cells were stimulated with phorbol myristate
acetate (50 ng/ml) and ionomycin (500 ng/ml) for 4–5 h for
intracellular cytokine staining. Intracellular staining with Ki67 was
performed using Foxp3 staining kits (eBioscience). The antibodies
we used were purchased from Biolegend, BD Bioscience,
eBioscience, and Invitrogen. The indicated AM populations were
sorted by FACSAria III (BD Biosciences) from BAL fluid or lung.
The purity of sorted populations was >99%, unless otherwise
indicated. Data were obtained on a FACSCanto II (BD
Biosciences) and analyzed using FlowJo software (FlowJo LLC,
Ashland, Oregon).

Bone Marrow Chimera Model
Recipient CD45.1+CD45.2+ mice (8–10 weeks old) were lethally
irradiated twice with 400 cGy. Irradiated recipient mice were
then intravenously injected with 1 × 107 BM cells, which were
from Lkb1f/f (CD45.1+) mice and Cd11cCreLkb1f/f (CD45.2+)
mice at a ratio of 3:1. Chimeric mice were housed in sterile
caging for 8 weeks to allow for reconstitution.
Apoptosis Detection
According to the instructions of the manufacturers, Annexin V
and PI staining were performed with an apoptosis detection kit
(Biolegend) to test the apoptosis of AMs from Lkb1f/f mice and
Cd11cCreLkb1 f / f mice by flow cytometry (Canto II ,
BD Biosciences).
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S. aureus Pneumonia Model
Lkb1f/f and Cd11cCreLkb1f/f mice were intranasally challenged
with 5 × 104 colony-forming units (CFU) per animal of S. aureus
in 50 ml PBS. The mouse body weight was monitored until the
mouse died or up to 6 days. The secretion of inflammatory
cytokines by T cells in the lung and medLN and the percentage of
neutrophils and eosinophils in the lung and BAL fluid were
analyzed by flow cytometry 3 days after challenge. BAL fluid was
obtained for culture on day 3 after challenge to calculate CFU.

Encapsome and Clodrosome
Encapsome and Clodrosome are the products of Encapsula
NanoSciences (SKU# CLD-8901). The clodronate was
encapsulated with liposomes to form a multilamellar liposome
suspension, which is called Clodrosome. Encapsome is the
control liposome of Clodrosome, in which clodronate was not
added to the liposomes. The larger particles were removed from
the liposomes, and all the preparation processes were performed
under sterile conditions. When treated with Clodrosome, the
phagocytic cells in animals recognize liposomes as invasive
foreign particles and remove liposomes by phagocytosis. Then,
the liposomes released the clodronate into the cytosol, leading to
cell death. The recognition and phagocytosis mechanism of
Encapsome was the same as that of Clodrosome. Since the
Encapsome did not contain clodronate, the phagocytic cells
were not killed.

AMs Depletion
Lkb1f/f mice were intranasally challenged with 100 ml (500 mg)
Encapsome or Clodrosome (5 mg/ml, from Encapsula
NanoSciences, SKU# CLD-8901) per mouse once a day, one to
two times a week.

HDM Asthma Model
Lkb1f/f and Cd11cCreLkb1f/f mice were intraperitoneally
anesthetized with chloral hydrate (Solarbio) and then
intranasally challenged with 25 mg HDM (Greer Laboratories
Inc., Lenoir, NC, USA) per animal in 50 ml PBS on days 0, 2, 4, 7,
9, 11, 14, 15, and 16 (12). On day 17, the mice were sacrificed,
and the secretion of inflammatory cytokines by T cells in the lung
and medLNs and the percentage of neutrophils and eosinophils
in the lung and BAL fluid were analyzed by flow cytometry.

RNA-Seq
CD45+ CD11c+ SiglecF+ AMs in the lungs of Lkb1f/f and
Cd11cCreLkb1f/f mice were sorted for RNA sequencing. The
purity of sorted populations was more than 99%. RNA was
extracted using TRIzol reagent (Invitrogen) for RNA sequencing
analysis on the BGISEQ500 platform (BGI-Shenzhen, China).
DESeq2 (v1.4.5) was used for the differential expression analysis
(18) with a Q value ≤0.05. RNA transcriptome sequencing
datasets were analyzed and edited using GlueGO in Cytoscape
software (19). We have submitted the RNA-Seq datasets to the
Gene Expression Omnibus (GEO), and the accession number
is GSE167349.
Frontiers in Immunology | www.frontiersin.org 3
Histological Analyses
Samples were harvested from the lungs on day 3 after S. aureus
infection and fixed with 10% formalin immediately. Samples
were washed using 70% ethanol and embedded in paraffin. Then,
they were cut into 6-mm thick slices and stained with
hematoxylin and eosin. The presented data are from individual
lung. All slices used for analysis were encoded and read blindly.
Photomicrographs were taken at a 10 × and 40 × magnification.

Lung Injury Score
Two investigators quantified the lung injury score blindly
according to published criteria of American Thoracic Society
Documents (20). Each sample was analyzed for at least five
fields. Five independent parameters of lung injury scoring
system were as follows: A. neutrophils in the alveolar space; B.
neutrophils in the interstitial space; C. hyaline membranes; D.
proteinaceous debris filling the airspaces; E. alveolar septal
thickening. The calculation was: scores = [(20 × A) + (14 × B) +
(7 × C) + (7 × D) + (2 × E)]/(number offields × 100). The resulting
score is a continuous value between zero and one (inclusive).

Statistics
Data were analyzed using GraphPad Software (Prism 5.00, San
Diego, CA, USA). The statistical significance of the difference
between the two groups was calculated, and the P-value was
determined. According to the number of comparison groups,
Student’s t-test or two-way ANOVA was performed. P <0.05 was
considered statistically significant. *P <0.05; **P <0.01;
***P <0.001.
RESULTS

Loss of Lkb1 Leads to a Marked
Reduction of AMs
CD11c is highly expressed on AMs, and studies have shown that
LysmCre-mediated recombination results in inefficient gene
deletion in AMs (1, 4, 21). Therefore, we used Cd11cCreLkb1f/f

mice, in which Lkb1 was deleted in CD11c+ cells, including DCs
and macrophages, to explore the function of Lkb1 in AMs.
Interestingly, we found that the numbers of AMs and CD103+

DCs were prominently decreased in bronchoalveolar lavage
(BAL) fluid and/or lungs from Cd11cCreLkb1f/f mice (Figures
1A–D). Conversely, lung interstitial macrophages (IMs), lung
CD11b+ DCs and DCs in other tissues, including the kidney,
liver and thymus, were unaffected (Figures 1C, D and Figures
S1A–C). We then investigated whether cell-intrinsic or cell-
extrinsic factors contributed to AM reduction using a mixed
bone marrow chimera model in which Lkb1-deficient (CD45.2+)
bone marrow (BM) cells and wild type (CD45.1+) BM cells were
mixed at a ratio of 3:1 and then transferred into CD45.1+

CD45.2+ host mice. We observed significant impairment only
in AM and CD103+ DC accumulation (Figures 1E, F), indicating
that the homeostatic defects of AMs and CD103+ DCs were
cell intrinsic.
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Impaired Self-Renewal Contributes to the
Reduction of Lkb1-Deficient AMs
The development of AMs, including the stepwise process from
monocytes, prealveolar macrophages (pre-AMs) and mature
AMs in neonatal mice, is essential for maintaining the AM
population (1). To determine whether the development of
AMs was retarded and participated in their absence, we
Frontiers in Immunology | www.frontiersin.org 4
analyzed the numbers of monocytes, pre-AMs and mature
AMs in the lungs of Cd11cCreLkb1f/f and Lkb1f/f mice on DOB
(day of birth) and PND7 (postnatal day 7). The mature AM
population was comparable between Lkb1f/f and Cd11cCreLkb1f/f

mice on DOB. Although the percentage and absolute number of
mature AMs in Cd11cCreLkb1f/f mice were significantly reduced,
we observed that the percentages and absolute numbers of
A B

C D

E

F

FIGURE 1 | Loss of Lkb1 leads to a marked reduction in AMs in Cd11cCreLkb1f/f mice. (A) The AM frequency among CD45+ leucocytes in BAL fluid and lungs from
Lkb1f/f mice and Cd11cCreLkb1f/f mice was analyzed by flow cytometry. (B) The percentages and absolute numbers of AMs in BAL fluid and lungs from Lkb1f/f mice
and Cd11cCreLkb1f/f mice (n = 4). (C) Flow cytometry analysis of CD103+ and CD11b+ DC frequencies among CD11c+ MHCII+ DCs in the lungs of Lkb1f/f mice and
Cd11cCreLkb1f/f mice. (D) The percentages and absolute numbers of CD103+ and CD11b+ DCs in the lungs of Lkb1f/f mice and Cd11cCreLkb1f/f mice (n = 4).
(E) Mixed bone marrow chimeras were established by mixing Lkb1-deficient (CD45.2) BM cells and wild type (CD45.1) BM cells (3:1) and transferring them to
CD45.1+ CD45.2+ host mice. Chimeras were analyzed by flow cytometry. (F) The bar chart shows the frequency of chimerism contributed by Lkb1-deficient cells to
the indicated control B cells (n = 3–5). Each symbol (B, D) represents a mouse, and the results are presented as the mean ± S.D., NS (not significant), P > 0.05,
*P < 0.05, **P < 0.01, ***P < 0.001, (by Student’s t-test) (B, D, F). All data represent at least three independent experiments.
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monocytes, fetal macrophages and pre-AMs were comparable in
Lkb1f/f and Cd11cCreLkb1f/f mice at PND7 (Figures 2A–D).
These results indicated that the reduction in the AM pool
occurred postnatally but not prenatally. Since the AM
population is autonomously maintained by proliferative self-
renewal throughout life (1), we thus examined whether self-
renewal was impaired and contributed to AM reduction in
Cd11cCreLkb1f/f mice. Results showed that Lkb1-deficient AMs
exhibited increased apoptosis and reduced proliferation
compared to wild type AMs (Figures 2E, F). These results
Frontiers in Immunology | www.frontiersin.org 5
suggest that impaired self-renewal rather than AM development
contribute to AM reduction in Cd11cCreLkb1f/f mice.

Cd11cCreLkb1f/f Mice are More
Susceptible to S. aureus Infection
The AM pool is maintained at constant levels to ensure lung
homeostasis, respiratory function and the pulmonary response of
scavenging inhaled pathogens (22). Therefore, we detected the
impact of decreased AM number on the pulmonary response
using an S. aureus pneumonia model. Compared to Lkb1f/f mice,
A B

C

E F

D

FIGURE 2 | Lkb1 deletion leads to increased apoptosis and impaired proliferation. (A, B) Representative flow chart showing the gating scheme to identify mature
AMs (gated as CD11c+ SiglecF+ F4/80+ CD11bint), pre-AMs (gated as CD11c+ SiglecF− F4/80+ CD11bint), monocytes (gated as CD11bhigh Ly6c+ CD11c- SiglecF−

F4/80low) and fetal macrophages (gated as CD11b+ F4/80+ Ly6c− CD11c− SiglecF-) in the lungs of Lkb1f/f and Cd11cCreLkb1f/f mice on DOB (A) and PND7 (B).
(C, D) The percentages (C) and absolute numbers (D) of mature AMs, pre-AMs, monocytes and fetal macrophages in the lungs of Lkb1f/f and Cd11cCreLkb1f/f mice
on DOB and PND7 (n = 3–4). (E) Expression of Ki67 in AMs from Lkb1f/f and Cd11cCreLkb1f/f mice (n = 3). (F) Annexin V and PI staining of AMs and quantification of
apoptotic AMs (assessed as Annexin V-positive cells) from Lkb1f/f and Cd11cCreLkb1f/f mice (n = 3). Each symbol (C, D) represents a mouse, and the results are
presented as the mean ± S.D., NS (not significant) P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, (by Student’s t-test) (C, D, E, F). All data represent at least three
independent experiments.
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A

C
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F

B

FIGURE 3 | Cd11cCreLkb1f/f mice are more susceptible to S. aureus infection. (A) The relative weights of Lkb1f/f and Cd11cCreLkb1f/f mice challenged with S. aureus
intranasally (n = 9–11). (B) Images show histopathological sections of lungs from naive Lkb1f/f mice, Cd11cCreLkb1f/f mice, and Lkb1f/f, Cd11cCreLkb1f/f and Lkb1f/f

mice intranasally administered Encapsome or Clodrosome, intranasally challenged with S. aureus, and stained with hematoxylin and eosin (scale bar, 100 mm). (C) The
lung injury score was evaluated blindly by two independent investigators (n = 6). (D) Quantification of BAL fluid CFUs cultured for 48 h from Lkb1f/f, Cd11cCreLkb1f/f

and Lkb1f/f mice intranasally administered Clodrosome or Encapsome and intranasally challenged with S. aureus. (E, F) Flow cytometry analysis (E) and the
frequencies (F) of CD4+ Foxp3− CD44+ IL-4+ Th2 cells or CD4+ Foxp3− CD44+ IL-17+ Th17 cells in the lung and medLNs from Lkb1f/f and Cd11cCreLkb1f/f mice
challenged with S. aureus intranasally (n = 3). (G, H) Flow cytometry analysis (G) and quantification of the percentages (H) of eosinophils (CD45+ CD11b+ Siglec-F+)
and neutrophils (CD45+ CD11b+ Ly6G+) in BAL fluid and lungs from Lkb1f/f, Cd11cCreLkb1f/f and Lkb1f/f mice intranasally administered Encapsome or Clodrosome and
challenged with S. aureus intranasally (n = 3). Each symbol (C, D, H) represents a mouse, and the results are presented as the mean ± S.D., NS (not significant)
P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001 (by Student’s t-test) (C, D, F, H), two-way ANOVA (A). All data represent at least two to three independent experiments.
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Cd11cCreLkb1f/f mice presented much more body weight loss and
severe inflammation by pathologic analysis (Figures 3A–C and
Figure S2A). Moreover, we evaluated the bacterial scavenging
capacity of AMs by culturing BAL fluid from Lkb1f/f and
Cd11cCreLkb1f/f mice challenged with S. aureus pneumonia.
BAL fluid from Cd11cCreLkb1f/f mice produced more colonies
than that from Lkb1f/f mice, indicating that Cd11cCreLkb1f/f mice
had defects in bacterial scavenging capacity (Figure 3D). In
addition, we observed an increased percentage of T helper 17
(Th17) cells in the lung and mediastinal lymph node (medLN) in
Cd11cCreLkb1f/f mice (Figures 3E, F). There is evidence that IL-
17 enhances neutrophil accumulation under inflammatory
conditions (23, 24). Indeed, an increased frequency of
neutrophils and a significant reduction in eosinophils were
observed in the lungs and BAL in Cd11cCreLkb1f/f mice
(Figures 3G, H). These results indicate that Th17/neutrophilic
inflammation was driven by Lkb1 ablation in AMs. We next
determined whether loss of AMs also contributes to neutrophilic
lung inflammation during S. aureus pneumonia. Lkb1f/f mice
intranasally administered Clodrosome but not control
liposomes-Encapsome exhibited approximately 70% depletion
of AMs with no change in DCs, including CD11b+ DCs or
CD103+ DCs (Figures S3A–D). Consistent with the phenotype
in Cd11cCreLkb1f/f mice, Lkb1f/f mice without AMs also exhibited
more severe pathology, impaired bacteria-scavenging capacity
and an imbalance between eosinophils and neutrophils in the
lung during S. aureus pneumonia (Figures 3B–D, G, H and
Figure S2A). Although the potential role of CD103+ DCs may
not be completely excluded, AM deletion in Lkb1f/f mice caused
almost the same degree of changes in lung pathology and
neutrophil and eosinophil variation as observed in
Cd11cCreLkb1f/f mice; thus, we concluded that AMs exerted a
dominant role in S. aureus infection and might be involved in
maintaining the balance between eosinophils and neutrophils in
the lung during S. aureus pneumonia.

Cd11cCreLkb1f/f Mice Develop More
Severe Pathology in Asthma
We also utilized an asthma model to investigate whether the lung
inflammatory response was functionally affected in
Cd11cCreLkb1f/f mice. Lkb1f/f and Cd11cCreLkb1f/f mice were
challenged with house dust mite (HDM) allergen intranasally.
We observed a significant reduction in IL-4-producing T helper
2 (Th2) cells and an increased frequency of IL-17-producing
Th17 cells in the lungs and medLNs of Cd11cCreLkb1f/f mice
(Figures 4A, B). The typical feature of Th2-polarized allergies is
the robust recruitment of eosinophils, whereas IL-17 increases
neutrophil recruitment (25). Remarkably, we observed that
eosinophil accumulation was decreased, while the percentages
of neutrophils were significantly increased in BAL fluid and
lungs from Cd11cCreLkb1f/f mice (Figures 4C, D). Moreover,
Cd11cCreLkb1f/f mice manifested more severe pathology in the
lung than Lkb1f/f mice (Figures 4E, F). These results indicate that
the immunoprotective function is impaired in Cd11cCreLkb1f/f

mice during allergic inflammation. AMs were directly deleted by
intranasal administration of Clodrosome in Lkb1f/f mice to verify
Frontiers in Immunology | www.frontiersin.org 7
the crucial role of AMs in asthma. Although Lkb1f/f mice with
AM depletion developed more severe pathology and displayed
defects in recruiting eosinophils in the lung (Figures S4A–D), no
significant increase in neutrophils was observed in the lungs of
Lkb1f/f mice in the absence of AMs. These results suggest that
AMs exert a dominant role in protecting the host from allergic
inflammation and participate in regulating the balance of
neutrophils and eosinophils during lung inflammation.

Lkb1 Regulates Critical Immune and
Metabolic Gene Expression in AMs
Adenosine monophosphate-activated protein kinase (AMPK) is
an important downstream target of Lkb1 for regulating
metabolism (14). To investigate whether AMPK was involved
in AM reduction caused by Lkb1 deletion, we generated
Cd11cCreAMPKa1f/f mice in which AMPK was specifically
deleted in CD11c+ cells. However, we found that the numbers
of AMs or DCs were not significantly different between
AMPKa1f/f and Cd11cCreAMPKa1f/f mice (Figures S5A–D).
These results indicate that the function of Lkb1 in maintaining
AM abundance is independent of AMPK.

To explore the potential molecular mechanisms of Lkb1 in
regulating the homeostasis and functions of AMs, we further
analyzed the transcriptome sequencing of AMs sorted from
Cd11cCreLkb1f/f and Lkb1f/f mice. Remarkably, there were 508
transcripts with a ≥2- or ≤-2-fold change in Lkb1-deficient AMs.
Expression of a wide variety of genes critically involved in
immune function was increased in Lkb1-deficient AMs,
including those encoding secreted cytokines and chemokines
(Il1b, Il33, Cc19), their related receptors (Il1rl1, Il17re, C3ar1)
associated with immune activation, factors in the acute
inflammatory response (Ptgs2) (26), and molecular and
chemokine receptors in neutrophil migration and chemotaxis
(Itgb3, Itgam, Pecam1, Ccxr2, Ccr7) (27). The increased
expression of inflammatory mediators in Lkb1-deficient AMs
might contribute to the more severe pathology in Cd11cCreLkb1f/f

mice during S. aureus infection and allergic inflammation. Four
genes were observed to have significantly reduced expression in
Lkb1-deficient AMs, including Igf-1, Fbp1, Prkn and Ugtla2. Igf-
1 enhances phagocytosis and bacterial killing in AMs (28, 29),
which could explain the impaired bacterial scavenging capacity
in AMs from Cd11cCreLkb1f/f mice during S. aureus infection.
The Ugtla2 gene regulates glycogen/glucose level and promotes
the storage of glycogen (30), and the Fbp1 gene encodes fructose-
1,6-bisphosphatase 1, which inhibits glycolysis and tumor
growth (31). Pathogenic variants in Prkn led to mitochondrial
autophagy (32). In addition, some genes critically participating
in lipid metabolism exhibited increased expression, such as fatty
acid synthesis (Dgat2) (33) and transport (Slc27a4) and lipid
synthesis, storage and b-oxidation (Acsl3, Dgat2, Hilpda) (34).
Inhba and Osm genes, which inhibit cell proliferation, and the
G0s2 gene, whose function is promoting apoptosis, were
increased in Lkb1-deficient AMs (Figures 5A, B) (35).
Furthermore, GO (Gene Ontology) enrichment and pathway
analysis revealed that positive regulation of the apoptotic
signaling pathway was upregulated (Figure 5C, Table S1),
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Lkb1 in AM Self-Renewal and Immune Homeostasis
which could explain the higher apoptosis proportion in Lkb1-
deficient AMs. In addition, some pathways related to immune
responses and metabolism were also enriched in Lkb1-deficient
AMs (Figure 5C). Immune response-related pathways, including
positive regulation of the (acute) inflammatory response and the
IL-17 signaling pathway, were upregulated in Lkb1-deficient
AMs, confirming the crucial function of Lkb1 in the
suppression of the inflammatory response. Metabolism-related
pathways, including positive regulation of the lipid biosynthetic
process pathway, long-chain fatty acid import into cells and lipid
storage, were upregulated in Lkb1-deficient AMs. The pathway
for regulating the ATP biosynthetic process was downregulated
in Lkb1-deficient AMs, which could be the potential mechanism
Frontiers in Immunology | www.frontiersin.org 8
through AM reduction occurs. These results suggest that Lkb1
operates as a pivotal mediator of AM immune protective
function and metabolic homeostasis in the lung.
DISCUSSION

In our study, we demonstrated that mice with CD11c+ cell-
specific deletion of Lkb1 exhibited a dramatically decreased
number and percentage of AMs. However, the CD11c+ cell-
specific deletion of AMPKa1 did not cause any reduction in
AMs, indicating that the function of Lkb1 in maintaining the
homeostasis of AMs was independent of the classical AMPK
A

C D

E F

B

FIGURE 4 | Cd11cCreLkb1f/f mice developed more severe pathology in asthma. (A, B) Flow cytometry analysis (A) and the frequency (B) of CD4+ Foxp3- CD44+

IL-4+ Th2 cells or CD4+ Foxp3- CD44+ IL-17+ Th17 cells in the lung and medLNs from Lkb1f/f and Cd11cCreLkb1f/f mice intranasally challenged with HDM allergens
(n = 3–4). (C) Flow cytometry analysis of eosinophils (CD45+ CD11b+ Siglec-F+) and neutrophils (CD45+ CD11b+ Ly6G+) in BAL fluid and lungs from Lkb1f/f and
Cd11cCreLkb1f/f mice intranasally challenged with HDM allergen. (D) Quantification of the percentages of eosinophils and neutrophils in BAL fluid and lungs from
Lkb1f/f and Cd11cCreLkb1f/f mice intranasally challenged with HDM allergen (n = 3–4). (E) Images show histopathological sections of lungs from Lkb1f/f and
Cd11cCreLkb1f/f mice intranasally challenged with HDM allergen and stained with hematoxylin and eosin (scale bar, 100 mm). (F) The lung injury score was evaluated
blindly by two independent investigators (n = 3–6). Each symbol (D, F) represents a mouse, and results are presented as the mean ± S.D., *P < 0.05, **P < 0.01,
***P < 0.001, (by Student’s t-test) (B, D, F). All data represent at least three independent experiments.
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signaling pathway. Previous studies have shown that proliferative
self-renewal is essential to maintain the AM population (36).
However, the molecular mechanisms underlying the self-renewal
of terminally differentiated AMs are not well understood. In our
study, we found that loss of Lkb1 impaired AM self-renewal,
reflected by increased apoptosis and reduced proliferation.
Therefore, Lkb1 acts as a key regulator of AM self-renewal
and homeostasis.

AMs play a crucial role in the maintenance of lung
homeostasis and innate immune responses to pathogens (37).
AMs certainly contribute to the development of severe
inflammation (38–40), but they also play an important role in
Frontiers in Immunology | www.frontiersin.org 9
limiting excessive inflammation caused by infection. In the
absence of AMs, influenza virus infection led to reduced viral
clearance and increased inflammation and pathology (41–43).
Here, we found that Cd11cCreLkb1f/f mice exhibited defects in
bacterial scavenging capacity and aggravated infection in
response to S. aureus pneumonia. It is well known that DCs are
an essential bridge between innate and adaptive immunity that
induce a T cell-specific immune response. AMs can suppress the
induction of an adaptive immune response via their effects on
alveolar and interstitial DCs and T cells. Similarly, increasing
evidence suggests that AMs also have an important role in
regulating T cell differentiation and the immune response in
A

B

C

FIGURE 5 | Lkb1 regulates critical immune and metabolic gene expression in AMs. (A) Heat map showing differentially expressed genes between AMs from Lkb1f/f

and Cd11cCreLkb1f/f mice; genes labeled purple are related to metabolism, and genes labeled blue are related to immune function. (B) Volcano plot showing
differentially expressed genes in Lkb1-deficient AMs compared to AMs from Lkb1f/f mice. (C) Network displaying the related genes involved in the pathways enriched
in Lkb1-deficient AMs. The list (right) of gene sets and corresponding P-values are shown. CD45+ CD11c+ SiglecF+ AMs were sorted from the lungs of at least five
to 10 mice in each sample with a FACSAria III (BD Biosciences). A P-value < 0.05 was considered statistically significant.
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the lung. Previous studies have demonstrated that AMs suppress
immune responses by inhibiting DC-mediated T cell activation
and TGF-b production (44–46). A recent study revealed that
CARD9S12N could turn AMs into IL-5-producing cells,
facilitating the pathologic responses mediated by Th2 cells (47).
However, the mechanisms that underlie AMs regulating the
immune response remain incompletely understood.

Interestingly, Cd11cCreLkb1f/f mice manifested excessive
accumulation of neutrophils and a significant reduction in
eosinophils in response to S. aureus pneumonia and asthma,
indicating that Lkb1 plays a dominant role in maintaining the
balance between eosinophilic and neutrophilic mediators of lung
inflammation.Additionally, as shown in transcriptomeanalysis, the
IL-17 signaling pathway was significantly enhanced in Lkb1-
deficient AMs, which might lead to neutrophil accumulation and
more severe pathology in S. aureus infection in Cd11cCreLkb1f/f

mice. Recent study also demonstrated that LysmCreLkb1f/f mice
manifested more severe lung inflammation during Klebsiella
pneumonia. These result indicated that Lkb1 is essential for local
host defense during S. aureus and Klebsiella pneumonia by
maintaining adequate AM numbers in the lung (48). In our
study, we found that in addition to preserving AM abundance,
Lkb1 may also protect the host from immune pathology and tissue
damage by inhibiting expression of genes involved in immune
activation and inflammation. Compared to other tissue
macrophages, the different signatures involved in lipid
metabolism of AMs highlighted their important role in the
maintenance of airway homeostasis (49). Lkb1-deficient AMs
might experience metabolic stress due to the lack of expression of
cellular metabolic program-related genes, such asUgtla2, Fbp1 and
Prkn. Although Lkb1-AMPK signaling could be activated under
cellular stress conditions, increasing evidence has demonstrated
that Lkb1 regulates lipid oxidation and reactive oxygen species
(ROS) production independent of AMPK (50, 51). Therefore, it is
unclear whether the cellular stress of Lkb1-deficient AMs is
dependent or independent of AMPK signaling. AMPK
conditional knockout mice had no effect on the AM pool,
indicating that Lkb1 maintains the abundance of AMs
independent of its classic downstream AMPK.

In conclusion, our results revealed an important role for Lkb1 in
the maintenance of self-renewal and immune homeostasis in AMs.
Lkb1 has crucial roles in suppressing signaling pathways related to
the inflammatory response, including the IL-17 signaling pathway
and neutrophil migration and chemotaxis signaling pathways. Our
findings extend the understanding of AM homeostasis and
function and the lung immune regulatory mechanism, indicating
that the Lkb1 pathway may represent a potential therapeutic target
to intervene in pulmonary inflammatory diseases.
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